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Abstract-We show that standard multilayer feedforward networks with as few as a single hidden layer and 
arbitrary bounded and nonconstant activation function are universal approximators with respect to V(p.) per­
formance criteria, for arbitrary finite input environment measures Jl., provided only that sufficiently many hidden 
units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings 
can be learned uniformly over compact input sets. We also give very general conditions ensuring that networks 
with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and 
its derivatives. 
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1. INTRODUCTION 

The approximation capabilities of neural network ar­
chitectures have recently been investigated by many 
authors, including Carroll and Dickinson (1989), Cy­
benko (1989), Funahashi (1989), Gallant and White 
(1988), Hecht-Nielsen (1989), Hornik, Stinchcombe, 
and White (1989, 1990), Irie and Miyake (1988), 
Lapedes and Farber (1988), Stinchcombe and White 
(1989, 1990). (This list is by no means complete.) 

If we think of the network architecture as a rule 
for computing values at I output units given values 
at k input units, hence implementing a class of map­
pings from Rk to R1, we can ask how well arbitrary 
mappings from Rk to R1 can be approximated by the 
network, in particular, if as many hidden units as 
required for internal representation and computation 
may be employed. 

How to measure the accuracy of approximation 
depends on how we measure closeness between func­
tions, which in turn varies significantly with the spe­
cific problem to be dealt with. In many applications, 
it is necessary to have the network perform simul­
taneously well on all input samples taken from some 
compact input set X in Rk. In this case, closeness is 
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measured by the uniform distance between functions 
on X, that is, 

Pp.x(f, g) = sup if(x) - g(x)j. 
xEX 

In other applications, we think of the inputs as ran­
dom variables and are interested in the average per­
formance where the average is taken with respect to 
the input environment measure !J,, where ~t(Rk) < oo. 
In this case, closeness is measured by the U(ll) dis­
tances 

[ ]
lip 

Pp.if, g) = L if(x) - g(x)IP dfJ.(x) , 

1 ::::; p < oo, the most popular choice being p = 2, 
corresponding to mean square error. 

Of course, there are many more ways of measur­
ing closeness of functions. In particular, in many ap­
plications, it is also necessary that the derivatives of 
the approximating function implemented by the net­
work closely resemble those of the function to be 
approximated, up to some order. This issue was first 
taken up in Hornik et al. (1990), who discuss the 
sources of need of smooth functional approximation 
in more detail. Typical examples arise in robotics 
(learning of smooth movements) and signal process­
ing (analysis of chaotic time series); for a recent ap­
plication to problems of nonparametric inference in 
statistics and econometrics, see Gallant and White 
(1989). 

All papers establishing certain approximation ca-
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pabilities of multilayer perceptrons thus far have 
been successful only by making more or less explicit 
assumptions on the activation function If/, for ex­
ample, by assuming If/ to be integrable, or sigmoidal 
respectively squashing (sigmoidal and monotone), 
etc. In this article, we shall demonstrate that these 
assumptions are unnecessary. We shall show that 
whenever If/ is bounded and nonconstant, then, for 
arbitrary input environment measures fl, standard 
multilayer feedforward networks with activation 
function If/ can approximate any function in U(fl) 
(the space of all functions on Rk such that IRk lf(x)IP 
dfl(X) < oo) arbitrarily well if closeness is measured 
by PP.Jl' provided that sufficiently many hidden units 
are available. 

Similarly, we shall establish that whenever 1f1 is 
continuous, bounded and nonconstant, then, for ar­
bitrary compact subsets X of Rk, standard multilayer 
feedforward networks with activation function 1f1 can 
approximate any continuous function on X arbitrar­
ily well with respect to uniform distance P11.x, pro­
vided that sufficiently many hidden units are avail­
able. Hence, we conclude that it is not the specific 
choice of the activation function, but rather the mul­
tilayer feedforward architecture itself which gives 
neural networks the potential of being universal 
learning machines. 

In addition to that, we significantly improve the 
results on smooth approximation capabilities of 
neural nets given in Hornik et al. (1990) by simul­
taneously relaxing the conditions to be imposed on 
the activation function and providing results for the 
previously uncovered cases of weighted Sobolev ap­
proximation with respect to finite input environment 
measures which do not have compact support, for 
example, Gaussian input distributions. 

2. RESULTS 

For notational convenience we shall explicitly for­
mulate our results only for the case where there is 
only one hidden layer and one output unit. The cor­
responding results for the general multiple hidden 
layer multioutput case can easily be deduced from 
the simple case, cf. corollary 2.6 and 2.7 in Hornik 
et al. (1989). 

If there is only one hidden layer and only one 
output unit, then the set of allfunctions implemented 
by such a network with n hidden units is 

:~l["> (lfl) = { h:Rk ~ Rih(x) = ~ f3ilfl(aj x - Oi) }, 

where If/ is the common activation function of the 
hidden units and 1 denotes transpose so that if a has 
components a:t. ... , ak and x has components ~ t. 
• • . , ~b a 1X is the dot product a: 1 ~ 1 + ... + ak~k· 
(Output units are always assumed to be linear.) The 
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set of all functions implemented by such a network 
with an arbitrarily large number of hidden units is 

~ 

\~k(lfl) = u 'Dl1"l(lfl). 
n:l 

In what follows, some concepts from modern anal­
ysis will be needed. As a reference, we recommend 
Friedman (1982). For 1 ::s p < oo, we write 

llfllp.p = [L lf(x)IP dp(x) rp 

so that pP,if, g) = llf - gllp.11 • U(fl) is the space of 
all functions f such that llfllp.11 < oo. A subset S 
of U(fl) is dense in U(fl) if for arbitrary f E U(fl) 
and e > 0 there is a function g E S such that 
Pp.if, g) < e. 

Theorem 1: If 1f1 is unbounded and nonconstant, then 
~·Jzk(lfl) is dense in U(fl) for all finite measures f1 on 
Rk. 

C(X) is the space of all continuous functions on 
X. A subsetS of C(X) is dense in C(X) if for arbitrary 
f E C(X) and e > 0 there is a function g E S such 
that Pu.x<f, g) < e. 

Theorem 2: If If/ is continuous, bounded and non­
constant, then ~·Jzk( If!) is dense in C(X) for all compact 
subsets X of Rk. 

A k-tuple a: = ( a:1, ... , ak) of nonnegative in­
tegers is called a multiindex. We then write la:l = 
a:1 + .. · + ak for the order of the multiindex a: and 

aal+···+akf 

D•f(x) = a~r~ ... a~fk(x) 

for the corresponding partial derivative of a suffi­
ciently smooth function f of x = ( ~ 1 , ••. , ~ k) 1 E 
Rk. 

Cm(Rk) is the space of all functions f which, to­
gether with all their partial derivatives Da f of order 
la:l ::s m, are continuous on Rk. For all subsets X of 
Rk and f E Cm(Rk), let 

llfllm.ux: = maxlalsmSUPxExiD•f(x )I. 
A subset S of cm(Rk) is uniformly m dense on com­
pacta in Cm(Rk) if for all f E cm(Rk), for all compact 
subsets X of Rk, and for all e > 0 there is a function 
g = g(f, X, e) E S such that llf - gllm.u,x < e. 

For f E cm(Rk), f1 a finite measure on Rk and 
1 ::s p < oo, let 

llfllm.p.u: = [ ~ r ID"fiP dp]llp ' 
lalsm JRk 

and let the weighted Sobolev space cm·P(fl) be defined 
by 

Cm·P(p) = {f E Cm(Rk) : llfllm.p.u < oo} . 

Observe that cm·P(fl) = cm(Rk) if f1 has compact 
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support. A subsets of cm·P(/1) is dense in cm·P(/1), if 
for all f E cm·P(/1) and e > 0 there is a function g = 
g(f, e) E S such that llf - glim.p.u <e. 

We then have the following results. 

Theorem 3: If f/1 E cm(Rk) is nonconstant and 
bounded, then ~'Jlk(f!l) is uniformly m-dense on com­
pacta in Cm(Rk) and dense in Cm·P(Ji) for all finite 
measures Ji on Rk with compact support. 

Theorem 4: If f/1 E cm(Rk) is nonconstant and all its 
derivatives up to order mare bounded, then ~')lk(f/1) is 
dense in cm·P(Ji) for all finite measures Ji on Rk. 

3. DISCUSSION 

The conditions imposed on f/1 in our theorems are 
very general. In particular, they are satisfied by all 
smooth squashing activation functions-such as the 
logistic squasher or the arctangent squasher-that 
have become popular in neural network applications. 

A lot of corollaries can be deduced from our theo­
rems. In particular, as convergence in LP(/1) implies 
convergence in Ji measure, we conclude from Theo­
rem 1 that whenever f/1 is bounded and nonconstant, 
all measurable functions on Rk can be approximated 
by functions in ~'nk( f/1) in Ji measure. It follows that 
(cf. Lemma 2.1 in Hornik et al. [1989]) for arbitrary 
measurable functions f and e > 0, we can find a 
compact subset x. of Rk and a function g E ~Xk( f/1) 
such that 

Pu.xlf, g) < e, 

This substantially improves Theorems 3 and 5 in 
Cybenko (1989) and Corollary 2.1 in Hornik et 
al. (1989), and is of basic importance for the use 
of artificial neural networks in classification and 
decision problems, cf. Cybenko (1989), Sections 3 
and 4. 

If the activation function is constant, only constant 
mappings can be learned, which is definitely not a 
very interesting case. The continuity assumption in 
Theorem 2 can be weakened. For example, Theorem 
2.4 in Hornik et al. (1989) shows that whenever f/1 
is a squashing function, then ~Xif/1) is dense in C(X) 
for all compact subsets of Rk. In fact, their method 
can easily be modified to deliver the same uniform 
approximation capability whenever f/1 has distinct fi­
nite limits at ±oo. Whether or not the continuity as­
sumption can entirely be dropped is still an open (and 
quite challenging) problem. 

There are, of course, unbounded functions which 
are capable of uniform approximation. For example, 
a simple application of the Stone-WeierstraB theo­
rem ( cf. Hornik et al. [1989]) implies that 'Dli exp) 
is dense in C(X), where of course exp is the standard 
exponential function. However, our theorems do 
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definitely not remain valid for all unbounded acti­
vation functions. If f/1 is a polynomial of degree d 
(d;::: 1), then 'Dlifll) is just the space Pd of all poly­
nomials in k variables of degree less than or equal 
to d. Hence, for all reasonably rich input spaces X 
or input environment measures Ji, <iJl-'k{f/1) cannot be 
dense in C(X) or LP(/1), respectively. Also, if the 
tail behavior of an unbounded function f/1 is not com­
patible with the tail behavior of Ji, then x ~ f/1 
(a'x - 0) may not be an element of LP(/1) for most 
or all nonzero a E Rk. 

By allowing for a much larger class of activation 
functions, Theorem 3 significantly improves the re­
sults in Hornik et al. (1990), where the conclusions 
of Theorem 3 are established under the assumption 
that there exists some l;::: m such that f/1 E C1(R) and 
0 < f R ID1flll dt < oo (/-finiteness). However, many 
interesting functions, such as all nonconstant periodic 
functions, are not l finite. Using Theorem 3 we easily 
infer that if f/1 is a nonconstant finite linear combi­
nation of periodic functions in cm(R) (in particular, 
if f/1 is a nonconstant trigonometric polynomial), then 
mk(f!l) is uniformly m dense on compacta in cm(Rk). 
Other interesting examples that can now be dealt 
with are functions such as f//(t) = sin(t)/t (which is 
not l finite for any l), or more generally, all functions 
which are the Fourier transform of some finite signed 
measure which has finite absolute moments up to 
order m (such functions are usually not I finite). 

Theorem 4 gives weighted Sobolev type approx­
imation results for the previously uncovered case of 
finite input environment measures which are not 
compactly supported. Using Theorem 4 we may con­
clude that if f/1 is the logistic or arctangent squasher, 
or a nonconstant trigonometric polynomial, then 
\'Jlifll) is dense in cm·P(/1), for all finite measures li· 
In particular, we now have a result for inputs that 
follows a multivariate Gaussian distribution. 

The following generalization of our results is im­
mediate: suppose that f/1 is unbounded, but that there 
is a nonconstant and bounded function tjJ E ~(f!l). 
Then, by Theorem 1, mk(tjJ) is dense in LP(/1). As 
mk(tjJ) C ~nk(f/1), we can state that in this case, mk(f!l) 
contains a subset which is dense in LP(/1). (Observe 
that if the support of Ji is not compact and f/1 is un­
bounded, we do not necessarily have mk(f!l) C LP(/1); 
hence, we cannot simply state that mk(f!l) itself is 
dense in U(Ji).) Similar considerations apply for the 
other theorems. 

If 0 is an open subset of Rk, let cm(O) be the 
space of all functions f which, together with all their 
partial derivatives Da f of order lal :s m, are contin­
uous on 0. Let us say that a subset S of cm(O) is 
uniformly m dense on compacta in cm(O) if for all 
f E cm(O), for all compact subsets X of 0, and for 
all e > 0 there is a function g = g(f, X, e) E S such 
that llf - gllm,u,x < e. 
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It is easily seen that under the conditions of Theo­
rem 3, ~Jlk( If/) is uniformly m dense on compacta in 
em(O.) for all open subsets 0. of Rk. In fact, it suffices 
to show that whenever f E em( 0.) and X is a compact 
subset of 0., then we can find a function Exf E 
em(Rk) satisfying Exf(x) = f(x) for allx EX. Now, 
by Problem 3.3.1 illFriedman (1982), we can find a 
function h E C"(Rk) such that h = 1 on X, 0 :s 
h :s 1 on 0\X, and h = 0 outside 0.. Take Exf = 
hf on 0. and Exf = 0 outside 0.. 

Suppose that 0. is bounded. Functions fin em(O.) 
do not necessarily satisfy llfllm.u,n < 00 • On the other 
hand, all functions in em(Rk), and hence in partic­
ular all functions in ~')li If!) if If/ E em(Rk), satisfy 
llgllm.u.X < oo for each compact subset X of Rk. 
Hence in general, it is not possible to approxi­
mate functions in em(O.) by functions ~')lk( If!) arbi­
trarily well with respect to ll·llm.u.n· 

However, one might ask whether such approxi­
mation is possible for at least all functions in the 
space er(O.) which consists of all functions f E 
em(O.) for which vat is bounded and uniformly con­
tinuous on 0. for 0 :s lal :sm. The following prom­
inent counterexample shows that this is not always 
possible. Let k = 1, 0. = ( -1,0) U (0,1) and let 
f = 0 on ( -1,0) and f = 1 on {0,1). Then f E 
e;(O.), but it is obviously impossible to approximate 
f by continuous functions on R uniformly over 0.. In 
fact, we always have llf - gllo.u,n ::::: 112 for all 
g E C(R). Roughly speaking, if 0. is bounded, then 
mk( If/) approximates all functions in ere 0.) arbitrarily 
well with respect to ll·llm.u.n if the geometry of 0. is 
such that functions f E er(O.) can be extended to 
functions in em(Rk). (Cf. also the next paragraph.) 

Classical (nonweighted) Sobolev spaces are de­
fined as follows. Let 0. be an open set in Rk, let the 
input environment measure J1. be standard Lebesgue 
measure on 0., for functions f E em(O.) let 

and let 

Hm·P(fi) = {f E cm(n):Jifllm.p.n < oo}. 

(More precisely, standard Sobolev spaces are defined 
as the completions of the above Hm·P(O.) with respect 
to ll·llm.p.n· The elements of these spaces are not nec­
essarily classically smooth functions, but have gen­
eralized derivatives. See, for example, the discussion 
in Hornik et al. (1990).) 

It is easily seen that globally smooth functions on 
Rk are not dense in Hm·P(O.) (with respect to 11-ilm.p,n) 
for most domains 0.. In the above example, no func­
tion in e 1(R) can approximate f in H 1•1(0.). Arbi­
trarily close approximations by globally smooth 
functions on Rk are only possible under certain con­
ditions on the geometry of 0. that somehow exclude 
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the possibility that 0. lies on both sides of part of its 
boundary. Such conditions are, for example, that 0. 
has the segment property (Adams, 1975, Theorem 
3.18) or that 0. is starshaped with respect to a point 
(Maz'ja, 1985, Theorem 1.1.6.1). In both cases, it 
can be shown that eQ'(Rk), the space of all func­
tions on Rk with compact support which are in­
finitely often continuously differentiable, is dense in 
Hm·P(O.). Hence, if in addition 0. is bounded, mi If!) 
is dense in Hm·P(O.) under the conditions of Theo­
rem 3. 

If the underlying input environment measure J1. is 
not finite, but is regular in the sense that JJ.(X) < oo 

for all compact subsets X of Rk (as an example we 
may take standard Lebesgue measure on Rk), then 
~·)lk(lfl) is dense in all Lfoc{Jl.) spaces, 1 :s p < oo, 
whenever If/ is bounded and nonconstant, improving 
results in Stinchcombe and White {1989). 

Similarly, we can measure closeness of functions 
in em(Rk) by the local weighted Sobolev space dis­
tance measure 

Pm.p.lcx:.if, g):= L z-n min(llf- gllm.p.pn,l), 
n=t 

where 1 :s p :s oo, Jl.n is the restriction of J1. to some 
bounded set Xn and the Xn exhau~t all of Rk, that is, 
U;'= 1 Xn = Rk. It follows straightforwardly that, un­
der the conditions of Theorem 3, ~)li If!) is dense in 
em(Rk) with respect to Pm.p.toc.w 

Concluding Remark 

In this article, we established that multilayer feed­
forward networks are, under very general conditions 
on the hidden unit activation function, universal ap­
proximators provided that sufficiently many hidden 
units are available. However, it should be empha­
sized that our resultsA!o not mean that all activation 
functions 1f1 will perform equally well in specific 
learning problems. In applications, additional issues 
as, for example, minimal redundancy or computa­
tional efficiency, have to be taken into account as 
well. 

4. PROOFS 

In order to establish our theorems, we follow an 
approach first utilized by Cybenko (1989) that is 
based on an application of the Hahn-Banach theo­
rem combined with representation theorems for con­
tinuous linear functionals on the function spaces 
under consideration. 

Proof of Theorems 1 and 2: As If/ is bounded, 
~')lk( 1f1) is a linear subspace of U(Jl.) for all finite mea­
sures J1. on Rk. If, for some Jl., milfl) is not dense in 
U(Jl.), Corollary 4.8.7 in Friedman (1982) yields that 
there is a nonzero continuous linear functional A on 
U(Jl.) that vanishes on 'Dlilfl). 
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As well known (Friedman, 1982, Corollary 4.14.4 
and Theorem 4.14.6), A is of the form f ~ A(f) = 

fRk f g df.l with some g in Lq(f.l), where q is the 
conjugate exponent q = p!(p - 1). (For p = 1 we 
obtain q = oo; L ~(fl.) is the space of all functions f 
for which the fl. essential supremum 

llfllx.~ = inf {N > 0 : f.1 {x E Rk :lf(x)l > N} = 0} 

is finite, that is, the space of all f1 essentially bounded 
functions.) 

If we write a(B) = f 8 g df.l, we find by Holder's 
inequality that for all B, 

la(B)I = IL lngdf.11 

:S lllniiP.PIIgllq.~ :S (f.l(Rk))"PIIgllq.~ < 00 , 

hence a is a nonzero finite signed measure on Rk 

such that A (f) = f Rk f g df.l = f Rk fda. As A vanishes 
on \')lk( If/), we conclude that in particular 

{ lfl(a'x - B) da(x) = 0 
JRk 

for all a E Rk and () E R. 
Similarly, suppose that If/ is continuous and that 

for some compact subset X of Rk, mk( If/) is not dense 
in C(X). Proceeding as in the proof of Theorem 1 in 
Cybenko (1989), we find that in this case there exists 
a nonzero finite signed measure a on Rk (a is actually 
concentrated on X) such that 

{ lfl(a'x - B) da(x) = 0 
JRk 

for all a E Rk, () E R. 
Summing up, in either case we arrive at the fol­

lowing question. Can there exist a nonzero finite 
signed measure a on Rk such that f Rk !f!(a'x - fJ) 
da(x) vanishes for all a E Rk and() E R? This ques­
tion was first asked and investigated by Cybenko 
(1989) who basically gave the following definition. 

Definition. A bounded function If/ is called discrim­
inatory if no nonzero finite signed measure a on Rk 

exists such that 

{ lfl(a'x - B) da(x) = 0 
JRk 

for all a E Rk, 0 E R. 

In Cybenko (1989), it is shown that if If! is sigmoidal, 
then If/ is discriminatory. (The proof can trivially be 
generalized to the case where If/ has distinct and finite 
limits at ±oo.) However, the following much stronger 
result is true, which, upon combination with the 
above arguments, establishes Theorem 1 and 2. 

Theorem 5: Whenever If! is bounded and noncon­
stant, it is discriminatory. 

Proof: Throughout the proof, certain techniques 
and results from Fourier analysis will be used. As a 
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reference we recommend the excellent book by Ru­
din (1967). 

Suppose that If/ is bounded and nonconstant and 
that a is a finite signed measure on Rk such that 
fRk !f!(a'x - fJ) da(x) = 0 for all a E Rk and() E R. 

Fix u E Rk and let au be the finite signed measure 
on R induced by the transformation x ~ u'x, that is, 
for all Borel sets of R we have 

au(B) = a{x E Rk : u'x E B}. 

Then at least for all bounded functions x on R, 

{ x(u'x) da(x) = { x(t) dau(t). 
J~ JR 

Hence by assumption, 

{ lfi(A.u'x - 0) da(x) = { lfi(A.t- 0) dau(t) = 0 
J. JR 

for all A., () E R. 
To simplify notations, let us write L = U(R) for 

the space of integrable functions on R (with respect 
to Lebesgue measure) and M = M(R) for the space 
of finite signed measures on R. For f E L, llfiiL 
denotes the usual U norm and J the Fourier trans­
form. Similarly, for r E M, llriiM denotes the total 
variation of r on R and i the Fourier transform. 

By choosing () such that If!(- 8) ¥ 0 and setting 
A. to zero, we find that in particular f R da u(t) = 
au(O) = 0. For u = 0, a0 is concentrated at t = 

0 and a 0{0} = 8-0 = 0, hence a 0 = 0. Now suppose 
u ¥ 0. Pick a function w E L whose Fourier trans­
form has no zero (e.g., take w(t) = exp( -f)). Con­
sider the integral 

LL lfi(A.(s + t) - 0) w(s) ds dau(t). 

As 

LL ilfi(A.(s + t) - O)llw(s)l ds dia ul(t) 

:s llwiiL!IauiiM sup,ERIIfl(t)l < 00 , 

we may apply Fubini's theorem to obtain 

0 = L[L lfi(At- (0- A.s)) dau(t) J w(s) ds 

= LL lfi(A.(s + t) - 0) w(s) ds dau(t) 

= L lfi(A.t - 0) d(w * au)(t), 

where w * au denotes the convolution of w and au· 
By Theorem 1.3.5 in Rudin (1967), L is a closed 
ideal in M, hence in particular w * au is absolutely 
continuous with respect to Lebesgue measure. Let h 
E L be the corresponding Radon-Nikodym deriva­
tive. Then h = wa u' hence in particular h(O) = 0. 
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The above equation is then equivalent to f R If/ 
(A.t - 0) h(t) dt = 0. Let a ~ 0 and y E R. By first 
replacing A. by 1/ a and() by - y/ a and then perform­
ing the change of variables t ~ at - y, we obtain 
that for all y E R and for all nonzero real a, 

L lfl(l)h(at - y) dt = 0. 

Let us write Mah(t) for h(at). The above equation 
implies that f R lfl(t)f(t) dt vanishes for all f contained 
in the closed translation invariant subspace I spanned 
by the family M ah, a~ 0. By Theorem 7 .1.2 in Rudin 
(1967), I is an ideal in L. 

Following the notation in Rudin (1967), let us 
write Z(f) for the set of all w E R where the Fourier 
transform]( w) off E L vanishes, and if I is an ideal, 
define Z(I), the zero set of I, as the set of w where 
the Fourier transforms of all functions in I vanish. 

Suppose that h is nonzero. As Mah(w) = h(wl 
a)/ a, we find that Z(I) = {0} and in fact, I is precisely 
the set of all integrable functions f with f R f(t) 
dt = ](0) = 0. To see this, let us first note that for 
all functions f E I, we trivially have {0} = Z(I) ~ 
Z(f). Conversely, suppose that f has zero integral. 
As the intersection of the boundaries of Z(I) and 
Z(f) (again trivially) equals {0} and hence contains 
no perfect set, Theorem 7 .2.4 in Rudin (1967) im­
plies that f E I. 

Hence, if h is nonzero, the integral f R lf/(t)f(t) dt 
vanishes for all integrable functions which have zero 
integral. It is easily seen that this implies that If/ is 
constant which was ruled out by assumption. Hence 
h = 0 and thus h = wau is identically zero, which in 
turn yields that au vanishes identically' because w 
has no zeros. By the uniqueness Theorem 1.3.7(b) 
in Rudin (1967), O'u = 0. 

Summing up, we find that au = 0 for all u E Rk. 
To complete the proof, leta(u) = f Rk exp(iu'x) da(x) 
be the Fourier transform of a at u. Then 

u(u) = J exp(iu'x) da(x) 
Rk 

= L exp(it) da.(t) 

= 0, 

that is, a = 0. Again invoking the uniqueness Theo­
rem 1.3.7(b) in Rudin (1967), a = 0 and the proof 
of Theorem 5 is complete. 

The proofs of the remaining theorems require 
some additional preparation. For functions f defined 
on Rk, let llfllu : = supRk lf(x)l. Let w be the familiar 
function in C"(Rk) with support in the unit sphere 
given by 

w(x) = {c exp( -1/(1 - lxl2)), 

0, 
if lxl < 1, 
if lxl ;::: 1, 

K. Hornik 

where I xI is the euclidean length of x and c is a 
constant chosen in a way that f Rk w(x) dx = 1. For 
e > 0, let us write w,(x) = e-kw(x!e). 

If f is a locally integrable function on Rk, let J.f 
be the convolution w, * f. The following facts are 
well known (Adams, 1975, pp. 29ff.). 

• J.f E CX'(Rk) with derivatives Da J,f = Da w, * 
f. 

• IIJ.fllu :S llfllu· Thus, iff is bounded, then J.f(x) is 
uniformly bounded in x and e. 

• Iff is continuous, then J.f- f uniformly on com­
pacta as e - 0. 

Similarly, if a is a locally finite signed measure on 
Rk, let J.a be the convolution w, * a, that is, 

J,a(x) = J w,(x - y) da(y). 
Rk 

Then again, l.a E C"(Rk). If a has compact support, 
J.a has compact support. 

Finally, the following result can easily be estab­
lished. (The first assertion is a straightforward ap­
plication of Fubini's theorem using the symmetry of 
w., and the second one follows by Lebesgue's 
bounded convergence theorem.) 

Lemma. Suppose that f and a satisfy one of the two 
following conditions: (a) f is continuous and a is a 
finite signed measure with compact support; (b) f is 
bounded and continuous and a is a finite signed mea­
sure. Then, if Ty denotes translation by y, that is, 
Tyf(x) = f(x + y), 

J f J,a x = J [J TJ da] w,(y) dy = J J.f da, 
Rk Rk Rk Rk 

and 

lim J f J,a dx = f t da. 
l!-'J'0 Rk JRk 

Proof of Theorem 3: If 'ini If/) is not uniformly m 
dense on compacta in cm(Rk), then by the usual dual 
space argument there exists a collection aa, 
I al s m of finite signed measures with support in 
some compact subset X of Rk such that the functional 

A(f) = L { nat daa 
ialsm JRk 

vanishes on 'Dlk(lf/), but not identically on cm(Rk). 
For e > 0, define functionals A, by 

A,(f) : = L { nat J,aa dx. 
lalsm JRk 

(All integrals exist because all J,aa have compact 
support.) By part (a) of the above lemma, we con-
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elude that 

A,(f) = f [ 2:; f D•TJ da.] w,(y) dy 
Rk lal:-o;m Rk 

= f A(TJ) w,(y) dy 
Rk 

and that 

lim A,(f) = A(f) 
,_.o 

for all IE Cm(Rk). Finally, integration by parts yields 
that 

A,(f) = f [ 2:; ( -1)1•1 D•J,a.J f dx. 
Rk lal::'fm 

:= h, 

Let us write If/ a,e(x) = If/ (a' x - 8). Suppose that 
A vanishes on mk(lfl). As lfla.e E mk(lfl) for all a E Rk 
and 8 E R, we infer that A( If/ a,e) = 0. Observing that 
Tylf/a.e = lfla..e-a'y• we see that A(Tylf/a.e) = 0 for all 
a, y E Rk, 8 E R. It follows that 

f lfla.o h, dx = A,(lf/ •. 0) = J A(Tylf/a.o) w,(y) dy = 0 
• • 

for all a E Rk and e E R. As, by assumption, If/ is 
bounded and nonconstant, Theorem 5 implies that 
h, = 0. Hence A,(f) = f Rk I h, dx vanishes for all 
functions I E cm(Rk) which in turn yields that 

A(f) = lim A,(f) = 0 
e-->0 

for all IE cm(Rk), which was ruled out by assump­
tion. We conclude that, under the conditions of 
Theorem 3, \')lk( If/) is uniformly m dense on compacta 
in cm(Rk), establishing the first half of Theorem 3. 

The second half of Theorem 3 now follows 
easily. We have to show that for all f E Cm(Rk) 
and e > 0, there is a function g E mk( If/) such that 
III - gllm.p.,u < e. Let X be a compact set containing 
the support of 11- We find that 

II! - gllm.p." :s Y II! - gllm.u.x• 

where yP = J1(Rk) #{a: lal :s m}. Hence, if we take 
g E \')Lllfl) such that III - gllm.u.X < ely, which is 
possible by the first half of Theorem 3 that we just 
established, we find that III - gllm,p,11 < e and the 
proof of Theorem 3 is complete. 

Proof of Theorem 4: The proof of Theorem 4 
parallels the one of Theorem 3. Let us write 
cm,u(Rk) for the space of all functions I E Cm(Rk) 
which, along with their derivatives up to order m, 
are bounded, that is, 

Cm·•(Rk) = {f E cm(Rk) : IID"fllu < oo, lal :s m}. 

It is easily seen that cm,u(Rk) is a dense subset of 
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Cm·P(Jl). By assumption, If/ E cm,u(R), hence mk 
(If/) C cm.u( Rk) C cm·P(Jl). 

If \')Lk( 1f1) is not dense in Cm·P(Jl), the usual dual 
space argument yields the existence of a suitable col­
lection of functions ga E Lq(Jl), lal :5 m, where q is 
the conjugate exponent pl(p - 1), such that the 
functional 

A(f) = 2:; f D•f g. df.l 
lalsm Rk 

vanishes on ~)Lk( If/), but not identically on cm.u( Rk). 
Now proceed as in the proof of Theorem 3 with the 
finite signed measures CJ 01 given by dCJ 01 = ga dJ1, 
Cm·u(Rk) replacing Cm(Rk), and using part (b) of the 
lemma. 
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