Final Project: Mathematics of Deep Learning (EN 580.745)

Instructor: René Vidal, Biomedical Engineering, Johns Hopkins University

Due Date: 12/15/2018, 11:59PM Eastern Time

Let $X = [\mathbf{x}_1, \dots, \mathbf{x}_N] \in \mathbb{R}^{D \times N}$ be a deterministic input data matrix and let $Y = [\mathbf{y}_1, \dots, \mathbf{y}_N] \in \mathbb{R}^{d \times N}$ be its corresponding output. Let $U \in \mathbb{R}^{d \times r}$ and $V \in \mathbb{R}^{D \times r}$ be, respectively, the output and input weights of a linear neural network with D inputs, d outputs, and a single hidden layer with r neurons. Let $z_k \sim \text{Ber}(\theta_r), \theta_r \in (0, 1)$, be the k-th entry of the random vector $\mathbf{z} \in \{0, 1\}^r$ for $k = 1, \dots, r$. Consider the minimization the following stochastic objective

$$f_r(U,V) = \mathbb{E}_{\boldsymbol{z}} \| Y - \frac{1}{\theta_r} U \operatorname{diag}(\boldsymbol{z}) V^\top X \|_F^2.$$
(1)

1. (15 points) Derive a stochastic gradient of f_r , i.e., find matrices $\boldsymbol{g}_u(U, V, \boldsymbol{z}) \in \mathbb{R}^{d \times r}$ and $\boldsymbol{g}_v(U, V, \boldsymbol{z}) \in \mathbb{R}^{D \times r}$ such that $\mathbb{E}_{\boldsymbol{z}}[\boldsymbol{g}_u(U, V, \boldsymbol{z})] = \nabla_U f_r(U, V)$ and $\mathbb{E}_{\boldsymbol{z}}[\boldsymbol{g}_v(U, V, \boldsymbol{z})] = \nabla_V f_r(U, V)$. Use $(\boldsymbol{g}_u, \boldsymbol{g}_v)$ to derive an SGD method for minimizing f_r . Explain how SGD relates to the dropout algorithm applied to the squared loss

$$\ell_r(U, V) = \|Y - UV^\top X\|_F^2.$$
⁽²⁾

Write down the GD method for minimizing ℓ_r and compare it with the SGD method for minimizing f_r .

2. (10 points) Let $\lambda_r = \frac{1-\theta_r}{\theta_r}$. Show that the stochastic objective f_r is equal to the regularized squared loss

$$f_r(U,V) = \ell_r(U,V) + \lambda_r \Theta_r(U,V).$$
(3)

Write Θ_r explicitly and explain the effect of the input data X on the regularizer Θ_r .

3. (25 points) Assume that $\lambda_r = r\lambda_1 = r\frac{1-\theta_1}{\theta_1}$ and let

$$\Omega(Z) = \min_{U,V,r} \quad \frac{\lambda_r}{2} \Theta_r(U,V,X) \qquad \text{s.t.} \qquad UV^\top X = Z.$$
(4)

Assume $D \ge N$ and X full column rank. Compute Ω^{**} , i.e., the Fenchel dual of the Fenchel dual of Ω .

4. (20 points) Show that if (U, V, r) is a global minimum of $f_r(U, V)$ then $Z = UV^{\top}$ is a global minimum of:

$$F(Z) = \frac{1}{2} \|Y - Z\|_F^2 + \Omega^{**}(Z).$$
(5)

Bonus: Write down an algorithm to minimize F. For example, can you compute the proximal operator of Ω^{**} .

- 5. (30 points) Choose d=30, D=100, N=50 and r=10, and generate U0=randn(d, r), V0=randn(D, r), X=randn(D, N) and Y=U0*V0'*X.
 - (a) Starting at $U_0 = 0$ and $V_0 = 0$, use GD to minimize $\ell_r(U, V)$. Explain how you choose the step size. Plot the loss $\ell_r(U_t, V_t)$ and the error $\epsilon(U_t, V_t) = ||U_t - U0||_F^2 + ||V_t - V0||_F^2$ as a function of the number of iterations t. Does the loss converge to 0? Why? Does the error converge to 0? Why?
 - (b) Starting at $U_0 = 0$ and $V_0 = 0$, use the dropout algorithm with $\theta_r = 0.5$ to minimize $\ell_r(U, V)$. Plot the loss, regularized loss, and error as a function of the number of iterations. Does the loss converge to 0? Why? Does the error converge to 0? Why? Does the regularized loss converge to 0? Why?
 - (c) **Bonus:** Evaluate the proximal operator of $\operatorname{prox}_{\Omega^{**}}(Y)$ and compare with the regularized loss obtained in part (b). Are they the same? Why?

Submission instructions. Please submit a single PDF in Blackboard.