Final Project: Mathematics of Deep Learning (EN 580.745)

Instructor: René Vidal, Biomedical Engineering, Johns Hopkins University

Due Date: $12 / 15 / 2018,11: 59 \mathrm{PM}$ Eastern Time

Let $X=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right] \in \mathbb{R}^{D \times N}$ be a deterministic input data matrix and let $Y=\left[\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N}\right] \in \mathbb{R}^{d \times N}$ be its corresponding output. Let $U \in \mathbb{R}^{d \times r}$ and $V \in \mathbb{R}^{D \times r}$ be, respectively, the output and input weights of a linear neural network with D inputs, d outputs, and a single hidden layer with r neurons. Let $z_{k} \sim \operatorname{Ber}\left(\theta_{r}\right), \theta_{r} \in(0,1)$, be the k-th entry of the random vector $z \in\{0,1\}^{r}$ for $k=1, \ldots, r$. Consider the minimization the following stochastic objective

$$
\begin{equation*}
f_{r}(U, V)=\mathbb{E}_{\boldsymbol{z}}\left\|Y-\frac{1}{\theta_{r}} U \operatorname{diag}(\boldsymbol{z}) V^{\top} X\right\|_{F}^{2} . \tag{1}
\end{equation*}
$$

1. (15 points) Derive a stochastic gradient of f_{r}, i.e., find matrices $\boldsymbol{g}_{u}(U, V, \boldsymbol{z}) \in \mathbb{R}^{d \times r}$ and $\boldsymbol{g}_{v}(U, V, \boldsymbol{z}) \in \mathbb{R}^{D \times r}$ such that $\mathbb{E}_{\boldsymbol{z}}\left[\boldsymbol{g}_{u}(U, V, \boldsymbol{z})\right]=\nabla_{U} f_{r}(U, V)$ and $\mathbb{E}_{\boldsymbol{z}}\left[\boldsymbol{g}_{v}(U, V, \boldsymbol{z})\right]=\nabla_{V} f_{r}(U, V)$. Use $\left(\boldsymbol{g}_{u}, \boldsymbol{g}_{v}\right)$ to derive an SGD method for minimizing f_{r}. Explain how SGD relates to the dropout algorithm applied to the squared loss

$$
\begin{equation*}
\ell_{r}(U, V)=\left\|Y-U V^{\top} X\right\|_{F}^{2} \tag{2}
\end{equation*}
$$

Write down the GD method for minimizing ℓ_{r} and compare it with the SGD method for minimizing f_{r}.
2. (10 points) Let $\lambda_{r}=\frac{1-\theta_{r}}{\theta_{r}}$. Show that the stochastic objective f_{r} is equal to the regularized squared loss

$$
\begin{equation*}
f_{r}(U, V)=\ell_{r}(U, V)+\lambda_{r} \Theta_{r}(U, V) . \tag{3}
\end{equation*}
$$

Write Θ_{r} explicitly and explain the effect of the input data X on the regularizer Θ_{r}.
3. (25 points) Assume that $\lambda_{r}=r \lambda_{1}=r \frac{1-\theta_{1}}{\theta_{1}}$ and let

$$
\begin{equation*}
\Omega(Z)=\min _{U, V, r} \frac{\lambda_{r}}{2} \Theta_{r}(U, V, X) \quad \text { s.t. } \quad U V^{\top} X=Z \tag{4}
\end{equation*}
$$

Assume $D \geq N$ and X full column rank. Compute $\Omega^{* *}$, i.e., the Fenchel dual of the Fenchel dual of Ω.
4. (20 points) Show that if (U, V, r) is a global minimum of $f_{r}(U, V)$ then $Z=U V^{\top}$ is a global minimum of:

$$
\begin{equation*}
F(Z)=\frac{1}{2}\|Y-Z\|_{F}^{2}+\Omega^{* *}(Z) \tag{5}
\end{equation*}
$$

Bonus: Write down an algorithm to minimize F. For example, can you compute the proximal operator of $\Omega^{* *}$.
5. (30 points) Choose $d=30, D=100, N=50$ and $r=10$, and generate $U 0=r a n d n(d, r), V 0=r a n d n(D, r)$, $X=r a n d n(D, N)$ and $Y=U 0 * V 0^{\prime} * X$.
(a) Starting at $U_{0}=0$ and $V_{0}=0$, use GD to minimize $\ell_{r}(U, V)$. Explain how you choose the step size. Plot the loss $\ell_{r}\left(U_{t}, V_{t}\right)$ and the error $\epsilon\left(U_{t}, V_{t}\right)=\left\|U_{t}-\mathrm{U} 0\right\|_{F}^{2}+\left\|V_{t}-\mathrm{V} 0\right\|_{F}^{2}$ as a function of the number of iterations t. Does the loss converge to 0 ? Why? Does the error converge to 0 ? Why?
(b) Starting at $U_{0}=0$ and $V_{0}=0$, use the dropout algorithm with $\theta_{r}=0.5$ to minimize $\ell_{r}(U, V)$. Plot the loss, regularized loss, and error as a function of the number of iterations. Does the loss converge to 0 ? Why? Does the error converge to 0 ? Why? Does the regularized loss converge to 0 ? Why?
(c) Bonus: Evaluate the proximal operator of $\operatorname{prox}_{\Omega^{* *}}(Y)$ and compare with the regularized loss obtained in part (b). Are they the same? Why?

Submission instructions. Please submit a single PDF in Blackboard.

