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1 Introduction

For any assignment of values to its internal parameters θ (weights, thresholds,

etc.) a neural network N with binary outputs computes a function x 7→
N (θ, x) from D into {0, 1}, where D is the domain of the network inputs

x (e.g. D = R
n). The Vapnik-Chervonenkis dimension (VC-dimension)

of N is a number which may be viewed as a measure of the richness (or

diversity) of the collection of all functions x 7→ N (θ, x) that can be computed

by N for different values of its internal parameters θ. Not surprisingly,

the VC-dimension of a neural network is related to the number of training

examples that are needed in order to train N to compute—or approximate—

a specific target function h : D → {0, 1}. We shall discuss a number of

different types of neural networks, but typically the VC-dimension grows

polynomially (in many cases, between linearly and quadratically) with the

number of adjustable parameters of the neural network. In particular, if the

number of training examples is large compared to the VC-dimension, the

network’s performance on training data is a reliable indication of its future

performance on subsequent data.

The notion of the VC-dimension, which was introduced in [Vapnik and Chervonenkis, 1971],

is not specific to neural networks. It applies to any parameterized class F of

functions x 7→ f(θ, x) from some domain D into {0, 1}, where θ ranges over

some given parameter space, for example R
w. Related notions for the case

of real-valued outputs will be discussed later. The largest possible richness

of this class F of functions from D into {0, 1} is achieved if every function

h : D → {0, 1} can be computed by a function x 7→ f(θ, x) in F . In this case

one says that D is shattered by F , and the VC-dimension of F is equal to
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|D|, the number of elements of the domain D. In the general case one defines

the VC-dimension of F (VCdim(F )) as the size of the largest subset D′ of

its domain D so that D′ is shattered by F (or more precisely: by the restric-

tions of the function x 7→ f(θ, x) in F to inputs x ∈ D′). In other words:

the VC-dimension of F is the size of the largest subset D′ of its domain D

for which every dichotomy h over D′ (i.e., each of the 2|D
′| many functions

h : D′ 7→ {0, 1}) can be computed by some function in F , or in mathematical

notation:

∀ h : D′ → {0, 1} ∃ θ ∀ x ∈ D′ (f(θ, x) = h(x)) .

Although the definition of the VC-dimension focuses on the shattering effect,

it yields a remarkable bound that holds for all finite subsets X of the domain

D: If d is the VC-dimension of F then at most Σd
i=0

(

|X|
i

)

≤ |X|d +1 functions

from X into {0, 1} can be computed by (restrictions of) functions in F . This

estimate, which is commonly referred to as Sauer’s Lemma, was indepen-

dently discovered by several authors, including [Vapnik and Chervonenkis, 1971]

(see [Anthony and Bartlett, 1999], Chapter 3 for a review). Results of this

form provide the mathematical basis for bounding the number of training

examples that are needed for learning functions in F in terms of the VC-

dimension of F , as in the following theorem. (This theorem is a conse-

quence of a slightly improved version, due to Talagrand, of a result from

[Vapnik and Chervonenkis, 1971]; see [Anthony and Bartlett, 1999], Chap-

ter 4 for related references.)

Theorem 1.1 Suppose that F is a class of functions mapping from a domain

X into {0, 1}, and suppose also that F has VC-dimension d < ∞. Let

((x1, y1), . . . , (xm, ym)) be a sequence of m randomly chosen labelled training
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examples from X × {0, 1}. Then with probability at least 1 − δ over this

sequence, any function f ∈ F has

Pr(f(x) 6= y) ≤ 1

m
|{1 ≤ i ≤ m : f(xi) 6= y}| + ǫ,

provided that m ≥ c (d + log(1/δ)) /ǫ2, where c is a universal constant.

In particular, if the sample size is large compared to the VC-dimension

of the function class, the function from the class that minimizes the number

of errors on a training sample will have near-minimal probability of misclas-

sifying subsequent patterns. [Insert here links to related articles on

PAC-learning, etc.].

The definition of the VC-dimension of a function class F immediately

implies that VCdim(F ) ≤ log2 |F | if F is finite. Thus in particular if F is

parameterized by w k-bit parameters, VCdim(F ) ≤ kw. However, many

infinite classes F also have a finite VC-dimension. Consider for example the

class FT2 of functions from R
2 into {0, 1} that can be computed by linear

threshold gates (McCulloch-Pitts neurons) with two inputs:

FT2 = {〈x1, x2〉 7→ H(θ1x1 + θ2x2 − θ3) : θ = 〈θ1, θ2, θ3〉 ∈ R
3},

where H(x) = 1 if x ≥ 0, otherwise H(x) = 0. (See Figure 1; the

shaded region in each box corresponds to h(x) = 1.) Obviously the set

D′ := {〈0, 0〉, 〈0, 1〉, 〈1, 0〉} can be shattered by FT2 (as illustrated by the

eight dichotomies shown in Figure 1). On the other hand it is easy to see

that the set D′ ∪ {〈1, 1〉} can not be shattered by F (since the dichotomy

h that assumes the value 1 on the points 〈0, 0〉 and 〈1, 1〉 and the value 0

on the points 〈0, 1〉 and 〈1, 0〉 cannot be computed by any linear threshold
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Figure 1: Eight dichotomies of four points in R
2 computed by the class FT2

of linear threshold functions. For each of the eight functions h ∈ FT2 illus-

trated, the shaded region represents the halfspace where h(x) = 1. When

a point x satisfies h(x) = 1, it is marked as a cross; when it satisfies

h(x) = 0 it is marked as a circle. The functions illustrated show that the set

{〈0, 0〉, 〈0, 1〉, 〈1, 0〉} is shattered by FT2.

gate). Somewhat less obvious to see is that there exists no set D′ ⊆ R
2

consisting of 4 or more points which is shattered by FT2, i.e. that 3 is in

fact the VC-dimension of FT2. This follows immediately from the following

theorem.

Theorem 1.2 (Wenocur and Dudley): Let FTn be the class of functions

from R
n into {0, 1} that can be computed by a linear threshold gate, for any

n ∈ N. Then FTn has VC-dimension n + 1.

Sketch of the proof: One can easily verify that the set S := {0} ∪ {ei :
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i ∈ {1, . . . , n}} is shattered by N (where ei ∈ {0, 1}n denotes the ith unit

vector). Hence VCdim(N ) ≥ n + 1.

The upper bound follows from Radon’s Theorem, which states that any

set S of ≥ n + 2 points in R
n can be partitioned into sets S0 and S1 such

that the convex hulls of S0 and S1 intersect. Obviously such sets S0 and S1

cannot be separated by any hyperplane, hence not by any linear threshold

gate.

2 Feedforward Neural Nets with Binary Out-

puts

Theorem 2.1 (Cover, 1968; Baum and Haussler, 1989): Let N be an arbi-

trary feedforward neural net with w weights that consists of linear threshold

gates. Then VCdim(N ) = O(w · log w).

Sketch of the proof: Let S be some arbitrary set of m input-vectors for

N . By Theorem 1.2 and Sauer’s Lemma, a gate g in N can compute at most

|X| fan-in(g)+1 + 1 different functions from any finite set X ⊆ R
fan-in(g) into

{0, 1}, where fan-in(g) denotes the number of inputs of gate g. Hence N can

compute at most
∏

g gate in N

(mfan-in(g)+1 + 1) ≤ m2w different functions from

S into {0, 1}. If S is shattered by N then N can compute all 2m functions

from S into {0, 1}, which implies that 2m ≤ m2w, and hence m ≤ 2w · log m.

It follows that log m = O(log w), thus m = O(w · log w).

It is tempting to conjecture that the VC-dimension of a neural net N cannot

be larger than the total number of parameters in N , which, in view of Theo-
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rem 1.2, is equal to the sum of the VC-dimensions of the individual gates in

N . This conjecture would imply that the O(w log w) upper bound of Theo-

rem 2.1 can be improved to O(w). However the following result (whose proof

uses techniques from circuit complexity theory) shows that the superlinear

upper bound of Theorem 2.1 is in fact asymptotically optimal. Hence with

regard to the VC-dimension it is fair to say that a neural net can be “more

than the sum of its parts.”

Theorem 2.2 (Maass, 1993): There exist neural networks N consisting of

linear threshold gates whose VC-dimension scales proportional to w · log w,

where w is the number of parameters of N .

This superlinear growth of the VC-dimension occurs already for feedfor-

ward neural nets with two hidden layers in the case of discrete network inputs.

Sakurai [Sakurai, 1993] showed that for the case of continuous network inputs

it may even occur with a single hidden layer.

Proving upper bounds for sigmoidal neural nets, whose computational

units employ some smooth activation function instead of the Heaviside func-

tion H, turns out to be quite challenging. For instance, there exists a feedfor-

ward neural net consisting of a linear threshold gate as output unit and two

hidden units that employ as activation function a very smooth (real analytic)

strictly increasing squashing function, which has an infinite VC-dimension.

(See, for example, [Anthony and Bartlett, 1999]; the first result of this form

was due to Sontag.) This shows that it is necessary to exploit more spe-

cific properties of a particular activation function, for example of the logistic

sigmoid, in order to achieve a finite upper bound for the VC-dimension of
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a sigmoidal neural net. The following theorem [Goldberg and Jerrum, 1995]

provides the key step in this direction.

Theorem 2.3 (Goldberg and Jerrum, 1995): Consider the parameterized

class

F =
{

x 7→ f(θ, x) : θ ∈ R
d
}

,

for some {±1}-valued function f . Suppose that, for each input x ∈ R
n, there

is an algorithm that computes f(θ, x) and this computation takes no more

than t operations of the following types:

• the arithmetic operations +, −, ×, and / on real numbers,

• jumps conditioned on >, ≥, <, ≤, =, and 6= comparisons of real num-

bers, and

• output 0 or 1.

Then VCdim(H) ≤ 4d(t + 2).

The proof involves counting cells in parameter space. Consider a single

thresholded real-valued function, such as a neural network with a single real

output that is thresholded at 0. Fix a set of n input patterns. To estimate

the VC-dimension, we can estimate the number of distinct dichotomies of

those patterns. Suppose two parameter values give distinct output labels

for one of these patterns. Then in moving between these distinct values in

parameter space, we must pass through a parameter value where the real

output is zero in response to the pattern. Such values form the boundaries

of cells in parameter space, and within a cell all classifications are identical.
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Under appropriate conditions, counting the number of dichotomies reduces to

counting the number of these cells. For well-behaved parameterizations, the

number of cells defined by these zero sets is closely related to the number of

distinct solutions of generic systems of equations. If the output of the network

is polynomial in the parameters, classical results give bounds on the number

of such solutions, and hence on the number of dichotomies. (Ben-David and

Lindenbaumindependently obtained this proof and result in a paper that

appeared at the same conference as Goldberg and Jerrum’s paper.) The

argument is essentially unchanged if the parameterized function class is a

fixed boolean function of a number of thresholded functions that are each

polynomial in the parameters. If the computation of f(θ, x) involves few

operations, this implies f can be represented as a fixed boolean function of

a small number of thresholded, low degree polynomials.

2.1 Piecewise polynomial activation functions

As an example of the application of Theorem 2.3, the output of a linear

threshold net can be computed using O(w) of the operations listed in the

theorem, where w is the number of parameters, so the VC-dimension is

O(w2). Theorem 2.1 shows that this bound can be improved to Θ(w · log w).

Similarly, if the nonlinearity is a piecewise polynomial function with a fixed

number of pieces of fixed degree, the number of operations is again O(w), so

the VC-dimension bound of O(w2) again applies. In some cases, this bound

also can be improved, by applying Theorem 2.3 more carefully. This leads to

the following bound [Bartlett et al, 1998] on the VC-dimension of a feedfor-

ward neural net of piecewise polynomial gates arranged in L layers (so that
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each gate has connections only from gates in earlier layers).

Theorem 2.4 (Bartlett, Maiorov, Meir, 1998) Suppose N is a feed-forward

network with w weights, l layers, and all non-output gates having a fixed

piecewise-polynomial activation function with a fixed number of pieces. Then

VCdim(N ) = O(wl log w + wl2).

Linear threshold gates have a piecewise polynomial activation function.

Thus, Theorem 2.4, together with the lower bound for linear threshold nets

(Theorem 2.2), show that the VC-dimension of piecewise polynomial net-

works with a fixed number of layers is also Θ(w log w). Perhaps surprisingly,

the transition from linear threshold gates to piecewise polynomial gates does

not increase the rate of growth of the VC-dimension for networks with a fixed

number of layers.

In contrast, if the number of layers is unbounded, the rate of growth of

the VC-dimension can be faster for piecewise polynomial networks than for

linear threshold networks. The following lower bound applies to networks of

gates with an activation function satisfying two conditions: it has distinct

left and right limits, and it has non-zero slope somewhere. This result is due

to Koiran and Sontag [Koiran and Sontag, 1997]; the refinement to give the

dependence on the depth was shown by Bartlett, Maiorov and Meir, and also

by Sakurai.

Theorem 2.5 Suppose the activation function s : R → R has the following

properties:

1. limα→∞ s(α) 6= limα→−∞ s(α), and
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2. s is differentiable at some point α0 ∈ R, with s′(α0) 6= 0.

Then for any l and w ≥ 10l, there is a neural network N with l layers and w

parameters, where every gate but the output gate has activation function s,

the output gate being a linear threshold gate, and for which the VC-dimension

scales as lw. In particular, for l = Θ(w), there are such networks with

VCdim(N ) = Ω(w2).

2.2 Sigmoidal activation functions

While the VC-dimension of networks with piecewise polynomial activation

functions is well understood, most applications of neural networks use the

logistic sigmoid function, or gaussian radial basis function. Unfortunately,

it is not possible to compute such functions using a finite number of the

arithmetic operations listed in Theorem 2.3. However, Karpinski and Mac-

intyre [Karpinski and Macintyre, 1997] extended Theorem 2.3 to allow the

computation of exponentials. The proof uses the same ideas, but the bound

on the number of solutions of a system of equations is substantially more

difficult.

Theorem 2.6 Consider the parameterized class

F =
{

x 7→ f(θ, x) : θ ∈ R
d
}

,

for some {±1}-valued function f . Suppose that, for each input x ∈ R
n, there

is an algorithm that computes f(θ, x) and this computation takes no more

than t operations of the following types:

• the exponential function α 7→ eα on real numbers, and
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• all of the operations listed in Theorem 2.3.

Then VCdim(F ) = O(t2d2).

We immediately obtain bounds for the VC-dimension of sigmoid networks

and radial basis networks of the form O(w4), where w is the number of param-

eters. This upper bound is considerably larger than the Θ(w log w) bound

achieved for linear threshold networks or fixed depth piecewise polynomial

networks. It remains open whether it is optimal. For fixed depth sigmoid

networks, the best lower bounds are those implied by Theorems 2.2 and 2.5:

Ω(w log w) for networks of fixed depth, and Ω(w2) for arbitrary depth.

If the inputs are restricted to a small set of integers, a simple parameter

transformation allows the machinery of the piecewise polynomial case to

be applied to two-layer sigmoid networks, giving the following result. See

[Anthony and Bartlett, 1999] for a proof. A related result applies to gaussian

radial basis networks.

Theorem 2.7 Consider a two-layer feedforward network N with input do-

main X = {−k, . . . , k}n (for k ∈ N) and first-layer computation gates

with the standard sigmoid activation function (the output gate being a linear

threshold gate). Let w be the total number of parameters in the network.

Then VCdim(N ) = O(w log(wk)).
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3 Feedforward Neural Nets with Real Out-

puts

All of the results presented so far apply to nets with binary-valued outputs.

Neural networks with real outputs are also commonly used, for instance in

regression problems. In such cases, the appropriate measure of complexity

of the network is a scale-sensitive version of the VC-dimension, called the

fat-shattering dimension.

Suppose that F is a set of functions mapping from a domain X to R,

D = {x1, x2, . . . , xm} is a subset of the domain X, and γ is a positive real

number. Then we say that D is γ-shattered by F if there are real numbers

r1, r2, . . . , rm such that for all b ∈ {0, 1}m there is a function fb in F with

fb(xi) ≥ ri + γ if bi = 1,

fb(xi) ≤ ri − γ if bi = 0

for 1 ≤ i ≤ m. The fat-shattering dimension of F at scale γ, denoted fatF (γ),

is the size of the largest subset D of the domain X that is γ-shattered by F .

It is significant that this notion of complexity depends on a scale param-

eter γ. In a sense, the fat-shattering dimension ignores complex behaviour of

the function class below a certain scale. If we are concerned with predicting a

real value to some accuracy ǫ, then it seems that the behaviour of the function

class on a scale much smaller than ǫ should not be relevant. The following re-

sult formalizes this intuition, by showing that the fat-shattering dimension is

related to the number of training examples that are needed to solve a regres-

sion problem. Although the result is stated in terms of the squared prediction

error, similar results apply to a broad class of loss functions. (The result re-
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lies on a generalization of Sauer’s Lemma to the fat-shattering dimension

from [Alon et al, 1997]. See, for example, [Anthony and Bartlett, 1999] for a

proof.)

Theorem 3.1 Suppose that F is a class of functions mapping from a domain

X into the real interval [0, 1], and suppose also that F has finite fat-shattering

dimension. Let ((x1, y1), . . . , (xm, ym)) be a sequence of m randomly chosen

labelled training examples from X × [0, 1]. Then there are constants c1, c2

such that, with probability at least 1−δ, any function f ∗ that has the average

over the sample of (f ∗(x)−y)2 within 1/
√

m of the minimum over F satisfies

E(f ∗(x) − y)2 ≤ inf
g∈F

E(g(x) − y)2 + ǫ, (1)

provided that m ≥ c1

(

fatF (c2ǫ) log2(1/ǫ) + log(1/δ)
)

/ǫ2.

It is also known that for any learning algorithm to return a function f ∗

that satisfies (1) requires the amount of training data to grow at least as

fatF (ǫ). This shows that the fat-shattering dimension is the right measure of

complexity of a function class that is used for regression.

The fat-shattering dimension is also useful for pattern classification using

thresholded real-valued functions, like neural networks. Many practical algo-

rithms for such functions typically lead to solutions that have large margins

on the training data, where the margin of a thresholded real-valued function

is the amount by which the function is to the correct side of the thresh-

old. The following result, from [Bartlett, 1998], shows that in these cases the

fat-shattering dimension gives an upper bound on the error.

Theorem 3.2 Consider a class F of real-valued functions. With probability

at least 1−δ over m independently generated examples (x1, y1), . . . , (xm, ym),
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for every function f in F , the classifier H(f) has misclassification probability

no more than

b

m
+ O

(

√

1

m

(

fatF (γ/16) log2 m + log(1/δ)
)

)

,

where b is the number of labelled training examples with margin no more than

γ.

The easiest way to obtain bounds on the fat-shattering dimension for neu-

ral networks is via VC-dimension bounds. The following theorem shows that

the fat-shattering dimension of a network is no bigger than the VC-dimension

of a slightly larger network with one additional input variable. The theorem

is a trivial observation involving another combinatorial dimension, called the

pseudo-dimension; see Chapters 11 and 14 of [Anthony and Bartlett, 1999]

for details.

Theorem 3.3 Let N be any neural network with a single real-valued output

unit, and form a neural network N ′ as follows. The network N ′ has one

extra real input and one extra computation unit. This additional computation

unit is the output unit of N ′, and is a linear threshold unit receiving input

only from the output unit of N and from the new input. For any γ > 0,

fatN (γ) ≤ VCdim(N ′).

This result and the upper bounds of the previous section immediately

imply upper bounds on the fat-shattering dimension of networks with linear

threshold gates, with piecewise polynomial activation functions, and with

logistic sigmoidal activation functions. These bounds are in terms of the

number of parameters in the network, and, significantly, do not depend on
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the scale parameter γ. In some cases, bounds like this are very loose. For

example, the following theorem [Bartlett, 1998] gives an upper bound on the

fat-shattering dimension of a two-layer network with an arbitrary number of

computation units (and hence parameters).

Theorem 3.4 Suppose that s : R → [−b, b] is a non-decreasing bounded

function. For v ≥ 1, suppose that F is the class of functions from R
n to R

computed by two layer neural networks with an arbitrary number of first layer

units, each with activation function s, and a linear output unit for which the

sum of the magnitudes of the weights is bounded by v. Then

fatF (ǫ) = O

(

nv2

ǫ2
ln
(v

ǫ

)

)

.

It follows that for regression and pattern classification (when the learning

algorithm finds a network with large margins on the training data), it is not

necessary to restrict the number of parameters in the network, provided the

parameters are kept small. Bounds of this kind are also known for deeper

networks; see [Anthony and Bartlett, 1999] for details.

4 Other Applications to Neural Networks

The VC-dimension of recurrent neural networks was analysed by DasGupta,

Koiran and Sontag (see [Sontag, 1998] for a survey of results for feedforward

and recurrent neural nets). In this case it is of interest to consider the case

of a time series as the network input. The length k of the time series enters

the bounds for the VC-dimension of the neural network as an additional
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parameter (in most bounds the number w of network parameters is multiplied

by a factor of the form log k or k).

In models for biological neural circuits the transmission delays between

neurons enter as additional parameters, which influence the VC-dimension

of such circuits even more than the synaptic weights: the VC-dimension of a

very simple mathematical model for a single spiking neuron grows superlin-

early in the number d of adjustable delays, and the VC-dimension of a feedfor-

ward network of such neurons grows quadratically in d [Maass and Schmitt, 1999].

In [Koiran, 1996] a technique was introduced for using upper bounds on

the VC-dimension of neural networks for proving lower bounds on the size of

any sigmoidal neural net (with thresholded output) that is able to compute

some concrete function. No other method for proving lower bounds on the

size of sigmoidal neural nets is known at present. This technique can, for

example, be used to show that there exist functions that can be computed

with few spiking neurons, but if they are computed by a sigmoidal neural

net, the number of neurons must grow linearly in the number of inputs. (see

COMPUTATION WITH SPIKING NEURONS).

5 Discussion

The VC-dimension of a neural net with a binary output measures its “ex-

pressiveness”. The related notion of the fat-shattering dimension provides a

similar tool for the analysis of a neural net with a real-valued output. The

derivation of bounds for the VC-dimension and the fat-shattering dimension

of neural nets has turned out to be a rather challenging but quite inter-
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esting chapter in the mathematical investigation of neural nets. This work

has brought a number of sophisticated mathematical tools into this research

area, which have subsequently turned out to be also useful for the solution

of a variety of other problems regarding the complexity of computing and

learning on neural nets. More detailed information about all of the results

in Sections 1 to 3 can be found in [Anthony and Bartlett, 1999].

Bounds for the VC-dimension (resp. fat-shattering dimension) of a neural

net N provide estimates for the number of random examples that are needed

to train N so that it has good generalization properties (i.e., so that the error

of N on new examples from the same distribution is at most ε, with proba-

bility ≥ 1 − δ). From the point of view of a single application these bounds

tend to be too large, since they provide such a generalization guarantee for

any probability distribution on the examples and for any training algorithm

that minimizes disagreement on the training examples. For some special dis-

tributions and specific training algorithms tighter bounds can be obtained,

for instance with the help of heuristic arguments (replica techniques) from

statistical physics.
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