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Abstract—Convex formulations of low-rank matrix factorization problems have received considerable attention in machine learning.
However, such formulations often require solving for a matrix of the size of the data matrix, making it challenging to apply them to large
scale datasets. Moreover, in many applications the data can display structures beyond simply being low-rank, e.g., images and videos
present complex spatio-temporal structures that are largely ignored by standard low-rank methods. In this paper we study a matrix
factorization technique that is suitable for large datasets and captures additional structure in the factors by using a particular form of
regularization that includes well-known regularizers such as total variation and the nuclear norm as particular cases. Although the
resulting optimization problem is non-convex, we show that if the size of the factors is large enough, under certain conditions, any local
minimizer for the factors yields a global minimizer. A few practical algorithms are also provided to solve the matrix factorization
problem, and bounds on the distance from a given approximate solution of the optimization problem to the global optimum are derived.
Examples in neural calcium imaging video segmentation and hyperspectral compressed recovery show the advantages of our
approach on high-dimensional datasets.

Index Terms—Low-rank matrix factorization, non-convex optimization, calcium imaging, hyperspectral compressed recovery.
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1 INTRODUCTION

In many large datasets, relevant information often lies
in a subspace of much lower dimension than the am-
bient space, and thus the goal of many learning algo-
rithms can be broadly interpreted as trying to find or
exploit this underlying “structure” that is present in the
data. One structure that is particularly useful both due to
its wide-ranging applicability and efficient computation is
the linear subspace model. Generally speaking, if one is
given N data points from a D dimensional ambient space,
Y = [Y1, Y2, . . . , YN ] ∈ RD×N , a linear subspace model
simply implies that there exists matrices (U, V ) such that
Y ≈ UV T . When one of the factors is known a priori, the
problem of finding the other factor simplifies considerably,
but if both factors are allowed to be arbitrary one can always
find an infinite number of (U, V ) matrices that yield the
same product. As a result, to accomplish anything meaning-
ful, one must impose some restrictions on the factors. This
idea leads to a variety of common matrix factorization tech-
niques, which includes the following well-known examples:

• Principal Component Analysis (PCA): The number
of columns, r, in (U, V ) is typically constrained to be
small, e.g., r � min{D,N}, and U is constrained to
have orthonormal columns, i.e., UTU = I .

• Nonnegative Matrix Factorization (NMF): The num-
ber of columns in (U, V ) is constrained to be small,
and (U, V ) are required to be non-negative [1], [2].

• Sparse Dictionary Learning (SDL): The number of
columns in (U, V ) is allowed to be larger than D or
N , the columns of U are required to have unit l2
norm, and V is required to be sparse as measured by,
e.g., the l1 norm or the l0 pseudo-norm [3], [4].1
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Mathematically, the general problem of recovering struc-
tured linear subspaces from a dataset can be captured by a
structured matrix factorization problem of the form

min
U,V

�(Y, UV T ) + λΘ(U, V ), (1)

where � is some loss function that measures how well
Y is approximated by UV T and Θ is a regularizer that
encourages or enforces specific properties in (U, V ). By
taking an appropriate combination of � and Θ one can
formulate both unsupervised learning techniques, such as
PCA, NMF, and SDL, or supervised learning techniques
like discriminative dictionary learning [5], [6] and learn-
ing max-margin factorized classifiers [7]. However, while
there are wide-ranging applications for structured matrix
factorization methods that have achieved good empirical
success, the associated optimization problem (1) is non-
convex regardless of the choice of � and Θ functions due to
the presence of the matrix product UV T . As a result, aside
from a few special cases (such as PCA), finding solutions to
(1) poses a significant challenge, which often requires one
to instead consider approximate solutions that depend on a
particular choice of initialization and optimization method.

Given the challenge of non-convex optimization, one
possible approach to matrix factorization is to relax the non-
convex problem into a problem which is convex on the
product of the factorized matrices, X = UV T , and then
recover the factors of X after solving the convex relaxation.
As a concrete example, in low-rank matrix factorization, one
might be interested in solving a problem of the form

min
X

�(Y,X) s.t. rank(X) ≤ r, (2)

1. As a result, in SDL, one does not assume that there exists a single
low-dimensional subspace to model the data, but rather that the data
lie in a union of a large number of low-dimensional subspaces.
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which is equivalently defined as a factorization problem

min
U,V

�(Y, UV T ), (3)

where the rank constraint is enforced by limiting the num-
ber of columns in (U, V ) to be equal to r. However, aside
from a few special choices of �, solving (2) or (3) is in general
an NP-hard problem. Instead, one can relax (2) into a convex
problem by using a convex regularizer that promotes low-
rank solutions, such as the nuclear norm �X�∗ (sum of the
singular values of X), and then solve

min
X

�(Y,X) + λ�X�∗, (4)

which can often be done efficiently if �(Y,X) is convex
with respect to X [8], [9]. Given a solution to (4), X̂ , it
is then simple to find a low-rank factorization UV T = X̂
via a singular value decomposition. Unfortunately, while
the nuclear norm provides a nice convex relaxation for
low-rank matrix factorization problems, nuclear norm re-
laxation does not capture the full generality of problems
such as (1) as it does not necessarily ensure that X̂ can
be factorized as X̂ = UV T for some (U, V ) pair which
has the desired structure encouraged by Θ(U, V ) (e.g., in
non-negative matrix factorization we require U and V to
be non-negative), nor does it provide a means to find the
desired factors. Additionally, solving over the full matrix X
also potentially requires significantly more parameters than
solving over (U, V ) if one expects the solution to (4) to have
rank significantly smaller than the dimensions of X , as the
iterates of many optimization algorithms, applied to (4), are
not guaranteed to be low-rank even if the ultimate solution
is low-rank.

Based on the above discussion, optimization problems
in the factorized space, such as (1), versus problems in
the product space, with (4) as a particular example, both
present various advantages and disadvantages. Factorized
problems attempt to solve for the desired factors (U, V )
directly, provide significantly increased modeling flexibility
by permitting one to model structure on the factors (sparsity,
non-negativity, etc.), and allow one to potentially work with
a significantly reduced number of variables if the number
of columns in (U, V ) is � min{D,N}; however, they suffer
from the significant challenges associated with non-convex
optimization. On the other hand, problems in the product
space can be formulated to be convex, which affords many
practical algorithms and analysis techniques, but one is
required to optimize over a potentially large number of
variables and solve a second factorization problem in order
to recover the factors (U, V ) from the solution X . These
various pros and cons are briefly summarized in Table 1.

TABLE 1
Typical properties of optimization problems in the product space (X) vs

factorized space (U, V ) (Items in bold are desirable.)

Product space Factorized space
Convex Yes No

Problem size Large Small
Structured factors No Yes

To bridge this gap between the two classes of problems,

here we explore the link between non-convex matrix factor-
ization problems, which have the general form

Factorized Problems: min
U,V

�(Y, UV T ) + λΘ(U, V ), (5)

and a closely related family of convex problems in the
product space, given by

Convex Problems: min
X

�(Y,X) + λΩΘ(X), (6)

where the function ΩΘ will be defined based on the choice
of the regularization function Θ and will have the desirable
property of being a convex function of X . Unfortunately,
while the optimization problem in (6) is convex w.r.t. X ,
it will typically be non-tractable to solve due to the fact
that the definition of ΩΘ requires one to solve another non-
convex optimization problem. Moreover, even if a solution
to (6) could be found, solving a convex problem in the
product space does not necessarily achieve our goal, as
we still must solve another matrix factorization problem
to recover the (U, V ) factors with the desired properties
encouraged by the Θ function (sparsity, non-negativity, etc.).
Nevertheless, the two problems given by (5) and (6) will
be tightly coupled. Specifically, the convex problem in (6)
will be shown to be a tight global lower-bound to the non-
convex factorized problem in (5), and solutions (U, V ) to
the factorized problem will yield solutions X = UV T to the
convex problem. As a result, we will tailor our results to
the non-convex factorization problem (5) using the convex
problem (6) as an analysis tool. While the optimization
problem in the factorized space is not convex, by analyzing
this tight interconnection between the two problems, we
will show that if the number of columns in (U, V ) is large
enough and can be adapted to the data instead of being fixed
a priori, local minima of the non-convex factorized problem
will be global minima of both the convex and non-convex
problems. This result will lead to a practical optimization
strategy that is parallelizable and often requires a much
smaller set of variables. Experiments in image processing
applications will illustrate the effectiveness of the proposed
approach.

2 MATHEMATICAL BACKGROUND & PRIOR WORK

As discussed in the introduction, relaxing low-rank matrix
factorization problems via nuclear norm formulations fails
to capture the full generality of factorized problems as it
does not yield “structured” factors, (U, V ), with the de-
sired properties encouraged by Θ(U, V ) (sparseness, non-
negativity, etc.). To address this issue, several studies have
explored a more general convex relaxation via the matrix
norm given by

�X�u,v ≡ inf
r∈N+

inf
U,V :UV T=X

r�

i=1

�Ui�u�Vi�v

≡ inf
r∈N+

inf
U,V :UV T=X

r�

i=1

1
2 (�Ui�2u + �Vi�2v),

(7)

where (Ui, Vi) denote the ith columns of U and V , respec-
tively, � · �u and � · �v are arbitrary vector norms, and the
number of columns, r, in the U and V matrices is allowed
to be variable [10]–[14]. The norm in (7) has appeared under
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multiple names in the literature, including the projective
tensor norm, decomposition norm, and atomic norm. It
is worth noting that for particular choices of the � · �u
and � · �v vector norms, �X�u,v reverts to several well
known matrix norms and thus provides a generalization
of many commonly used regularizers. Notably, when the
vector norms are both l2 norms, the form in (7) becomes the
well known variational definition of the nuclear norm [9]:

�X�∗ = �X�2,2 ≡ inf
r∈N+

inf
U,V :UV T=X

r�

i=1

�Ui�2�Vi�2 (8)

≡ inf
r∈N+

inf
U,V :UV T=X

r�

i=1

1
2 (�Ui�22 + �Vi�22).

Moreover, by replacing the column norms in (7) with gauge
functions one can incorporate additional regularization on
(U, V ), such as non-negativity, while still being a convex
function of X [12]. Recall that given a closed, convex set C
containing the origin, a gauge function, σC(x), is defined as,

σC(x) ≡ inf
µ

µ s.t. µx ∈ C. (9)

Further, recall that all norms are gauge functions (as can be
observed by choosing C to be the unit ball of a norm), but
gauge functions are a slight generalization of norms, since
they satisfy all the properties of a norm except that they are
not required to be invariant to non-negative scaling (i.e., it
is not required that σC(x) be equal to σC(−x)). Finally, note
that given a gauge function, σC , its polar, σ◦

C , is defined as

σ◦
C(z) ≡ sup

x
�z, x� s.t. σC(x) ≤ 1, (10)

which itself is also a gauge function. In the case of a norm,
its polar function is often referred to as the dual norm.

2.1 Matrix Factorization as Semidefinite Optimization
Due to the increased modeling opportunities it provides,
several studies have explored structured matrix factoriza-
tion formulations based on the � · �u,v norm in a way that
allows one to work with a highly reduced set of variables
while still providing some guarantees of global optimality.
In particular, it is possible to explore optimization problems
over factorized matrices (U, V ) of the form

min
U,V

�(Y, UV T ) + λ�UV T �u,v. (11)

While this problem is convex with respect to the product
X = UV T , it is still non-convex with respect to (U, V )
jointly due to the matrix product. However, if we define
a matrix Γ to be the concatenation of U and V

Γ ≡
�
U
V

�
=⇒ ΓΓT =

�
UUT UV T

V UT V V T

�
, (12)

we see that UV T is a submatrix of the positive semidefinite
matrix M = ΓΓT . After defining the function H : S+

n → R

H(ΓΓT ) = �(Y, UV T ) + λ�UV T �u,v, (13)

it is clear that the proposed formulation (11) can be recast as
an optimization problem over a positive semidefinite matrix.

At first the above discussion seems to be a circular
argument, since while H(M) is a convex function of M , this
says nothing about finding Γ (or U and V ). However, results

for semidefinite programs in standard form [15] show that
one can minimize H(M) by solving for Γ directly without
introducing any additional local minima, provided that the
rank of Γ is larger than the rank of the true solution, M̂ .
Further, if the rank of M̂ is not known a priori and H(M) is
twice differentiable, then any local minima w.r.t. Γ such that
Γ is rank-deficient give a global minimum of H(ΓΓT ) [11],
and these results can also be extended to non-differentiable
functions as shown in our prior work [13].

However, while the above results from semidefinite pro-
gramming are sufficient if we only wish to find general
factors such that UV T = X , for the purposes of solving
structured matrix factorizations, we are interested in finding
factors (U, V ) that achieve the infimum in the definition of
(7), which is not provided by a solution to (11), as the (U, V )
that one obtains is not necessarily the (U, V ) that minimize
(7). Put differently, results from semidefinite optimization
guarantee that we can find the optimal value of X by
reparameterizing X as UV T and not introduce additional
poor local minima if we solve a problem of form (13).
However, solutions to (13) simply guarantee that X can be
factorized as X = UV T for some (U, V ) with the desired
properties, but it does not guarantee that the (U, V ) that
we obtained by the reparameterization will satisfy those
properties. In this paper we will instead focus on solving
problems with form (1) directly using convex relaxations
merely as an analysis tool.

3 STRUCTURED MATRIX FACTORIZATION PROBLEM

To develop our analysis we will introduce a matrix regular-
ization function, Ωθ , that generalizes the � · �u,v norm and
is similarly defined in the product space but allows one to
enforce structure in the factorized space. We will establish
basic properties of the proposed regularization function,
such as its convexity, and discuss several practical examples.

3.1 Structured Matrix Factorization Regularizers
The proposed matrix regularization function, Ωθ , will be
constructed from a regularization function θ on rank-1 ma-
trices, which can be defined as follows:
Definition 1. A function θ : RD × RN → R+ ∪∞ is said to

be a rank-1 regularizer if

1) θ(u, v) is positively homogeneous with degree 2,
i.e., θ(αu,αv) = α2θ(u, v) ∀α ≥ 0, ∀(u, v).

2) θ(u, v) is positive semi-definite, i.e., θ(0, 0) = 0 and
θ(u, v) ≥ 0 ∀(u, v).

3) For any sequence (un, vn) such that �unv
T
n � → ∞

we have that θ(un, vn) → ∞.

The first two properties of the definition are straight-
forward and their necessity will become apparent when
we derive properties of Ωθ . The final property is nec-
essary to ensure that θ is well defined as a regularizer
for rank-1 matrices by ensuring that the rank-1 level sets,
{uvT : θ(u, v) ≤ k, k > 0}, are compact. Note also that
these properties imply that θ(u, v) > 0 for all uvT �= 0.

These three properties define a general set of require-
ments that are satisfied by a very wide range of rank-1 reg-
ularizers (see §3.2 for specific examples of regularizers that
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can be used for well known problems). While we will prove
our theoretical results using this general definition of a rank-
1 regularizer, later, when discussing specific algorithms that
can be used to solve structured matrix factorization prob-
lems in practice, we will require that θ(u, v) satisfies a few
additional requirements.

Using the notion of a rank-1 regularizer, we now define
a regularization function on matrices of arbitrary rank:

Definition 2. Given a rank-1 regularizer θ : RD×RN → R+∪
∞, the matrix factorization regularizer Ωθ : RD×N →
R+ ∪∞ is defined as

Ωθ(X) ≡ inf
r∈N+

inf
U∈RD×r

V ∈RN×r

r�

i=1

θ(Ui, Vi) s.t. X = UV T . (14)

We will further say that UV T = X is an optimal
factorization of X if (U, V ) achieves the infimum in (14).

The function defined in (14) is very closely related to other
regularizers that have appeared in the literature. In particu-
lar, taking θ(u, v) = �u�u�v�v or θ(u, v) = 1

2 (�u�2u + �v�2v)
for arbitrary vector norms � · �u and � · �v gives the � · �u,v
norm in (7). Note, however, there is no requirement for
θ(u, v) to be convex w.r.t. (u, v) or to be composed of norms.

Based on Definition 2, then if θ satisfies the requirements
from Definition 1, one can show that Ωθ satisfies the follow-
ing proposition:

Proposition 1. Given a rank-1 regularizer θ, the matrix facto-
rization regularizer Ωθ satisfies the following properties:

1) Ωθ(0) = 0 and Ωθ(X) > 0 ∀X �= 0.
2) Ωθ(αX) = αΩθ(X) ∀α ≥ 0, ∀X .
3) Ωθ(X + Z) ≤ Ωθ(X) + Ωθ(Z) ∀(X,Z).
4) Ωθ(X) is convex w.r.t. X .
5) The infimum in (14) is achieved with r ≤ DN .
6) If θ(−u, v) = θ(u, v) or θ(u,−v) = θ(u, v) for all

(u, v), then Ωθ is a norm on X .
7) The subgradient ∂Ωθ(X) of Ωθ(X) is given by:

�
W :�W,X�=Ωθ(X), uTWv ≤ θ(u, v) ∀(u, v)

�
.

8) Given a factorization X = UV T , if there exists a
matrix W such that

�r
i=1 U

T
i WVi =

�r
i=1 θ(Ui, Vi)

and uTWv ≤ θ(u, v) ∀(u, v), then UV T is an opti-
mal factorization of X and W ∈ ∂Ωθ(X).

Proof. A full proof of the above Proposition can be found
in Appendix C.1 and uses similar arguments to those found
in [10]–[12], [14], [16] for related problems.

Note that the first 3 properties show that Ωθ is a gauge
function on X (and further it will be a norm if property 6 is
satisfied). While this also implies that Ωθ(X) must be a con-
vex function of X , note that it can still be very challenging to
evaluate or optimize functions involving Ωθ due to the fact
that it requires solving a non-convex optimization problem
by definition. However, by exploiting the convexity of Ωθ ,
we are able to use it to study the optimality conditions of
many associated non-convex matrix factorization problems,
some of which are discussed next.

3.2 Structured Matrix Factorization Problem Examples

The matrix factorization regularizer provides a natural
bridge between convex formulations in the product space
(6) and non-convex functions in the factorized space (5) due
to the fact that Ωθ(X) is a convex function of X . Also, from
the definition (14) one can induce a wide range of properties
in (U, V ) by an appropriate choice of the θ(u, v) function. In
what follows, we give a number of examples which lead to
variants of several structured matrix factorization problems
that have been studied previously in the literature.

Low-Rank: The first example of note is to relax low-
rank constraints into nuclear norm regularized problems.
Taking θ(u, v) = 1

2 (�u�22 + �v�22) gives the well known
variational form of the nuclear norm, Ωθ(X) = �X�∗, and
thus provides a means to solve problems in the factorized
space where the size of the factorization gets controlled by
regularization. In particular, we have the conversion

min
X

�(Y,X) + λ�X�∗ ⇐⇒

min
r,U,V

�(Y, UV T ) + λ
2

r�

i=1

(�Ui�22 + �Vi�22) ⇐⇒

min
r,U,V

�(Y, UV T ) + λ
r�

i=1

�Ui�2�Vi�2,

(15)

where the ⇐⇒ notation implies that solutions to all three
objective functions will have identical values at the global
minimum and any global minimum w.r.t. (U, V ) will give
a global minimum w.r.t X as X = UV T . While the above
equivalence is well known for the nuclear norm [9], [17],
the factorization is “unstructured” in the sense that the Eu-
clidean norms do not bias the columns of U and V to have
any particular properties. Therefore, to find factors with
additional structure, such as non-negativity, sparseness, etc.,
more general θ(u, v) functions need to be considered.

Non-Negative Matrix Factorization: If we extend the
previous example to now add non-negative constraints on
(u, v), we get θ(u, v) = 1

2 (�u�22+�v�22)+δ(u ≥ 0)+δ(v ≥ 0),
where δ(C) denotes the indicator function for a condition C ,
which takes value 0 if C is satisfied and ∞ otherwise. This
choice of θ acts similarly to the variational form of the nu-
clear norm in the sense that it limits the number of non-zero
columns in (U, V ), but it also imposes the constraints that U
and V must be non-negative. As a result, one gets a convex
relaxation of traditional non-negative matrix factorization

min
U,V

�(Y, UV T ) s.t. U ≥ 0, V ≥ 0 =⇒ (16)

min
r,U,V

�(Y, UV T ) + λ
2

r�

i=1

(�Ui�22 + �Vi�22) s.t. U ≥ 0, V ≥ 0.

The =⇒ notation is meant to imply that the two problems
are not strictly equivalent as in the nuclear norm example.
The key difference between the two problems is that in the
first one the number of columns in (U, V ), r, is fixed a priori,
while in the second one r is allowed to vary and is adapted
to the data via the low-rank regularization induced by the
squared Frobenius norms on (U, V ).

Row or Columns Norms: Taking θ(u, v) = �u�1�v�v
results in Ωθ(X) =

�D
i=1 �(XT )i�v , i.e., the sum of the � ·�v

norms of the rows of X , while taking θ(u, v) = �u�u�v�1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

results in Ωθ(X) =
�N

i=1 �Xi�u, i.e., the sum of the � · �u
norms of the columns of X [10], [11]. As a result, the reg-
ularizer Ωθ(X) generalizes the �X�u,1 and �X�1,v mixed
norms. The reformulations into a factorized form give:

min
X

�(Y,X)+λ�X�1,v⇔ min
r,U,V

�(Y, UV T )+λ
r�

i=1

�Ui�1�Vi�v

min
X

�(Y,X)+λ�X�u,1⇔ min
r,U,V

�(Y, UV T )+λ
r�

i=1

�Ui�u�Vi�1.

However, the factorization problems in this case are rela-
tively uninteresting as taking either U or V to be the identity
(depending on whether the l1 norm is on the columns of U
or V , respectively) and the other matrix to be X (or XT )
results in one of the possible optimal factorizations [11].

Sparse Dictionary Learning: Similar to the non-negative
matrix factorization case, convex relaxations of sparse dic-
tionary learning can also be obtained by combining l2 norms
with sparsity-inducing regularization. For example, taking
θ(u, v) = 1

2 (�u�22 + �v�22 + γ�v�21) results in a relaxation

min
U,V

�(Y, UV T ) + λ�V �1 s.t. �Ui�2 = 1 ∀i =⇒

min
r,U,V

�(Y, UV T ) + λ
2

r�

i=1

(�Ui�22 + �Vi�22 + γ�Vi�21),
(17)

which was considered as a potential formulation for sparse
dictionary learning in [11], where now the number of atoms
in the dictionary is fit to the dataset via the low-rank
regularization induced by the Frobenius norms. A similar
approach would be to take θ(u, v) = �u�2(�v�2 + γ�v�1).

Sparse PCA: If both the rows and columns of U and
V are regularized to be sparse, then one can obtain convex
relaxations of sparse PCA [18]. One example of this is to take
θ(u, v) = 1

2 (�u�22 + γu�u�21 + �v�22 + γv�v�21). Alternatively,
one can also place constraints on the number of elements in
the non-zero support of each column in (u, v) via a rank-1
regularizer of the form θ(u, v) = 1

2 (�u�22+�v�22)+δ(�u�0 ≤
k) + δ(�v�0 ≤ q), where �z�0 denotes the number of non-
zero elements in z. Such a form was analyzed in [19] and
gives a relaxation of sparse PCA that regularizes the number
of sparse components via the �2 norm, while requiring that
a given component have the specified level of sparseness.

General Structure: More generally, this theme of using
a combination of l2 norms and additional regularization
on the factors can be used to model additional forms of
structure on the factors. For example one can take θ(u, v) =
�u�2�v�2+γθ̂(u, v) or θ(u, v) = �u�22+�v�22+γθ̂(u, v) with
a function θ̂ that promotes the desired structure in U and V
provided that θ(u, v) satisfies the necessary properties in
the definition of a rank-1 regularizer. Additional example
problems can be found in [12], [13].

Symmetric Factorizations: Assuming that X is a square
matrix, it is also possible to learn symmetrical formulations
with this framework, as the indicator function δ(u = v)
that requires u and v to be equal is also positively ho-
mogeneous. As a result, one can use regularization such
as θ(u, v) = δ(u = v) + �u�22 to learn low-rank sym-
metrical factorizations of X , and add additional regular-
ization to encourage additional structures. For example
θ(u, v) = δ(u = v) + �u�22 + �u�21 + δ(u ≥ 0) learns

symmetrical factorizations where the factors are required to
be non-negative and encouraged to be sparse.

4 THEORETICAL ANALYSIS

In this section we provide a theoretical analysis of the link
between convex formulations (6), which offer guarantees of
global optimality, and factorized formulations (5), which
offer additional flexibility in modeling the data structure
and recovery of features that can be used in subsequent
analysis. Using the matrix factorization regularizer intro-
duced in §3.1, we consider the convex optimization problem

min
X,Q

�
F (X,Q) ≡ �(Y,X,Q) + λΩθ(X)

�
. (18)

Here the term Q can be used to model additional variables
that will not be factorized. For example, in robust PCA
(RPCA) [20] the term Q accounts for sparse outlying entries,
and a formulation in which the data is corrupted by both
large corruptions and Gaussian noise is given by:

min
X,Q

{FRPCA(X,Q) ≡ 1
2�Y −X −Q�2F + γ�Q�1 +λ�X�∗}.

In addition to the convex formulation (18), we will also con-
sider the closely related non-convex factorized formulation

min
U,V,Q

�
f(U, V,Q) ≡ �(Y, UV T , Q) + λ

r�

i=1

θ(Ui, Vi)
�
. (19)

Note that in (19) we consider problems where r is held
fixed. If we additionally optimize over the factorization size,
r, in (19), then the problem becomes equivalent to (18), as
we shall see. We will assume throughout that �(Y,X,Q) is
jointly convex w.r.t. (X,Q) and once differentiable w.r.t. X .
Also, we will use the notation [r] to denote the set {1, . . . , r}.

4.1 Conditions under which Local Minima Are Global
Given the non-convex optimization problem (19), note from
the definition of Ωθ(X) that for all (X,U, V ) such that X =
UV T we must have Ωθ(X) ≤ �r

i=1 θ(Ui, Vi). This yields
a global lower bound between the convex and non-convex
objective functions, i.e., for all (X,U, V ) such that X = UV T

F (X,Q) = �(Y,X,Q) + λΩθ(X) (20)

≤ �(Y, UV T , Q) + λ
r�

i=1

θ(Ui, Vi) = f(U, V,Q).

From this, if X̂ denotes an optimal solution to the convex
problem minX,Q F (X,Q), then any factorization UV T = X̂
such that

�r
i=1 θ(Ui, Vi) = Ωθ(X̂) is also an optimal solu-

tion to the non-convex problem minU,V,Q f(U, V,Q). These
properties lead to the following result.
Theorem 1. Given a function �(Y,X,Q) that is jointly convex

in (X,Q) and once differentiable w.r.t. X ; a rank-1
regularizer θ that satisfies the conditions in Definition
2; and a constant λ > 0, local minima (Ũ , Ṽ , Q̃) of
f(U, V,Q) in (19) are globally optimal if (Ũi, Ṽi) = (0, 0)
for some i ∈ [r]. Moreover, (X̂, Q̂) = (Ũ Ṽ T , Q̃) is
a global minima of F (X,Q) and Ũ Ṽ T is an optimal
factorization of X̂ .

Proof. Since F (X,Q) provides a global lower bound for
f(U, V,Q), the result follows from the fact that local minima
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of f(U, V,Q) that satisfy the conditions of the theorem also
satisfy the conditions for global optimality of F (X,Q). More
specifically, because F (X,Q) is a convex function, we have
that (X̂, Q̂) is a global minimum of F (X,Q) iff

− 1
λ∇X�(Y, X̂, Q̂) ∈ ∂Ωθ(X) and 0 ∈ ∂Q�(Y, X̂, Q̂). (21)

Since (Ũ , Ṽ , Q̃) is a local minimum of f(U, V,Q), it is neces-
sary that 0 ∈ ∂Q�(Y, Ũ Ṽ T , Q̃). Moreover, from the charac-
terization of the subgradient of Ωθ(X) given in Proposition
1, we also have that − 1

λ∇X�(Y,X,Q) ∈ ∂Ωθ(X) will be
true for X = Ũ Ṽ T iff the following conditions are satisfied

uT (− 1
λ∇X�(Y, Ũ Ṽ T , Q̃))v ≤ θ(u, v) ∀(u, v) (22)

r�

i=1

ŨT
i (− 1

λ∇X�(Y, Ũ Ṽ T , Q̃))Ṽi =
r�

i=1

θ(Ũi, Ṽi). (23)

To show (22), recall that the local minimum (Ũ , Ṽ , Q̃) is
such that one column pair of (Ũ , Ṽ ) is 0. Assume without
loss of generality that the final column pair of (Ũ , Ṽ ) is 0 and
let U� = [Ũ1, . . . , Ũr−1, �

1/2u] and V� = [Ṽ1, . . . , Ṽr−1, �
1/2v]

for some � > 0 and arbitrary (u, v). Then, due to the fact
that (Ũ , Ṽ , Q̃) is a local minimum, we have that for all (u, v)
there exists δ > 0 such that for all � ∈ (0, δ) we have

�(Y, U�V
T
� , Q̃) + λ

r�

i=1

θ(Ũi, Ṽi) + λθ(�1/2u, �1/2v) = (24)

�(Y, Ũ Ṽ T + �uvT , Q̃) + λ
r�

i=1

θ(Ũi, Ṽi) + �λθ(u, v) ≥ (25)

�(Y, Ũ Ṽ T , Q̃) + λ
r�

i=1

θ(Ũi, Ṽi), (26)

where the equivalence between (24) and (25) follows from
the positive homogeneity of θ. Rearranging terms, we have

−1
λ� [�(Y, Ũ Ṽ T + �uvT , Q̃) − �(Y, Ũ Ṽ T , Q̃)] ≤ θ(u, v). (27)

Since �(Y,X,Q) is differentiable w.r.t. X , after taking the
limit w.r.t. � � 0, we obtain

�
−1
λ ∇X�(Y, Ũ Ṽ T , Q̃), uvT

�
≤

θ(u, v) for any (u, v) vector pair, showing (22).

To show (23), let U1±� = (1 ± �)1/2Ũ and V1±� = (1 ±
�)1/2Ṽ for some � > 0. Since (Ũ , Ṽ , Q̃) is a local minimum,
there exists δ > 0 such that for all � ∈ (0, δ) we have

�(Y,U1±�V
T
1±�, Q̃) + λ

r�

i=1

θ((1 ± �)1/2Ũi, (1 ± �)1/2Ṽi)

= �(Y, (1 ± �)Ũ Ṽ T , Q̃) + λ(1 ± �)
r�

i=1

θ(Ũi, Ṽi)

≥ �(Y, Ũ Ṽ T , Q̃) + λ
r�

i=1

θ(Ũi, Ṽi).

(28)

Rearranging terms gives

−1
λ� [�(Y, (1 ± �)Ũ Ṽ T , Q̃) − �(Y, Ũ Ṽ T , Q̃)] ≤ ±

r�

i=1

θ(Ũi, Ṽi),

and taking the limit w.r.t. � � 0 gives
r�

i=1

θ(Ũi, Ṽi) ≤
�

−1
λ ∇X�(Y, Ũ Ṽ T , Q̃), Ũ Ṽ T

�
≤

r�

i=1

θ(Ũi, Ṽi),

showing (23). The last two statements of the result fol-
low from the discussion before the theorem, together with
Proposition 1 part (8).

Note that the above proof provides sufficient conditions
to guarantee the global optimality of local minima with spe-
cific properties, but in addition it also proves the following
sufficient conditions for global optimality of any point.
Corollary 1. Given a function �(Y,X,Q) that is jointly

convex in (X,Q) and once differentiable w.r.t. X ; a rank-
1 regularizer θ that satisfies the conditions in Definition
2; and a constant λ > 0, a point (Ũ , Ṽ , Q̃) is a global
minimum of f(U, V,Q) in (19) if it satisfies the condi-
tions

1) 0 ∈ ∂Q�(Y, Ũ Ṽ T , Q̃)
2) ŨT

i (−1
λ ∇X�(Y, Ũ Ṽ T , Q̃))Ṽi = θ(Ũi, Ṽi) ∀i ∈ [r]

3) uT (−1
λ ∇X�(Y, Ũ Ṽ T , Q̃))v ≤ θ(u, v) ∀(u, v).

Condition 1 is easy to verify, as one can hold (U, V ) constant
and solve a convex optimization problem for Q. Likewise,
condition 2 is simple to test (note that the condition is
equivalent to (23) due to the bound in (22)), and if a (Ui, Vi)
pair exists which does not satisfy the equality, then one can
decrease the objective function by scaling (Ui, Vi) by a non-
negative constant. Further, for many problems, it is possible
to show that points that satisfy first-order optimality will
satisfy conditions 1 and 2, such as in the following result.
Proposition 2. Given a function �(Y,X,Q) that is jointly

convex in (X,Q) and once differentiable w.r.t. X ; a
constant λ > 0; and two gauge functions (σu(u),σv(v)),
then for θ(u, v) = σu(u)σv(v) or θ(u, v) = 1

2 (σu(u)2 +

σv(v)
2), any first-order optimal point (Ũ , Ṽ , Q̃) of

f(U, V,Q) in (19) satisfies conditions 1-2 of Corollary 1.

Proof. See Appendix C.2.
As many optimization algorithms can guarantee conver-

gence to first-order optimal points, from the above result
and discussion it is clear that the primary challenge in
verifying if a given point is globally optimal is to test if
condition 3 of Corollary 1 holds true. This is known as the
polar problem and is discussed in detail next.

4.2 Ensuring Local Minimality via the Polar Problem
Note that, because the optimization problem in (19) is non-
convex, first-order optimality is not sufficient to guarantee a
local minimum. Thus, to apply the results from Section 4.1 in
practice one needs to verify that condition 3 from Corollary
1 is satisfied. This problem is known as the polar problem
and generalizes the concept of a dual norm. In particular,
the proof of Proposition 1 shows that the polar function
Ω◦

θ(Z) ≡ supX�Z,X� s.t. Ωθ(X) ≤ 1 of a given matrix
factorization regularizer Ωθ(X) can be computed as

Ω◦
θ(Z) = sup

u,v
uTZv s.t. θ(u, v) ≤ 1. (29)

Therefore, condition 3 of Corollary 1 is equivalent to
Ω◦

θ(
−1
λ ∇X�(Y, Ũ Ṽ T , Q̃)) ≤ 1. Note that the difficulty of

solving the polar problem heavily depends on the particular
choice of the θ function. For example for θ(u, v) = �u�1�v�1
the polar problem reduces to simply finding the largest
entry of Z in absolute value, while for θ(u, v) = �u�∞�v�∞
solving the polar problem is known to be NP-hard [21].
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While for general θ(u, v) functions it is not necessarily
known how to efficiently solve the polar problem, given a
point (Ũ , Ṽ , Q̃) that satisfies conditions 1 and 2 of Corollary
1, the value of the polar problem solution at a given point
and how closely the polar problem can be approximated
provide a bound on how far a particular point is from being
globally optimal. The bound is based on the following result.

Proposition 3. Given a function �(Y,X,Q) that is lower-
semicontinuous, jointly convex in (X,Q), and once dif-
ferentiable w.r.t. X ; a rank-1 regularizer θ that satisfies
the conditions in Definition 2; and a constant λ > 0, for
any point (Ũ , Ṽ , Q̃) that satisfies conditions 1 and 2 of
Corollary 1, we have the following bound

f(Ũ , Ṽ , Q̃) − F (X̂, Q̂) ≤
λΩθ(X̂)[Ω◦

θ(
−1
λ ∇X�(Y, Ũ Ṽ T , Q̃)) − 1]

− mX

2 �Ũ Ṽ T − X̂�2F − mQ

2 �Q̃− Q̂�2F ,
(30)

where (X̂, Q̂) denotes a global minimizer of F (X,Q) in
(18), and mX ≥ 0 and mQ ≥ 0 denote the constants of
strong-convexity of � w.r.t. X and Q, respectively (note
that both m constants can be 0 if � is not strongly convex).

Proof. See Appendix C.3.
There are a few interpretations one can draw from

the above proposition. First, if X̂ = 0 is a solution to
minX,Q F (X,Q), then the only (U, V ) pair that will satisfy
conditions 1 and 2 of Corollary 1 is a global optimum
(and if mX > 0 then the solution is the unique solution
UV T = 0). Second, for X̂ �= 0 recall that Ωθ(X̂) > 0
and Ω◦

θ(
−1
λ ∇X�(Y, Ũ Ṽ T , Q̃)) ≥ 1, since if condition 2 of

Corollary 1 is satisfied then the polar is clearly at least
equal to 1 by definition of the polar. If the polar is truly
greater than 1, then the [Ω◦

θ(
−1
λ ∇X�(Y, Ũ Ṽ T , Q̃))−1] in the

above proposition effectively measures the error between
the true value of the polar and our lower-bound estimate
of the polar. Further, the maximum difference between a
first-order optimal point and the global minimum is upper
bounded by the value of the polar at that point, and if
the loss function � is strongly convex, the error in the
objective function is decreased further. As a result, if one
can guarantee solutions to the polar problem to within a
given error level or provide an upper-bound on the polar
problem, one can also guarantee solutions that are within a
given error level of the global optimum.

A final interpretation of Proposition 3 is to note that
condition 3 of Corollary 1 (and the need for an all-zero
column in Theorem 1) is essentially a check that the size of
the representation (i.e., the number of columns r in U and
V ) is sufficiently large to represent the global optimum. If,
instead, we find a local minimum with a smaller represen-
tation than the global optimum, r < r̂, where r̂ denotes
the number of columns in the global optimum, then the
value of the [Ω◦

θ(
−1
λ ∇X�(Y, Ũ Ṽ T , Q̃)) − 1] bounds how far

from the global minimum we are by using a more compact
representation (i.e., using only r instead of r̂ columns).

As a concrete example, consider the case where θ(u, v) =
�u�2�v�2. Recall that this choice of θ gives the nuclear norm,

Ωθ(X) = �X�∗, whose polar function is given by

�Z�◦∗ = sup
u,v

{uTZv s.t. �u�2�v�2 ≤ 1} (31)

= sup
u,v

{uTZv s.t. �u�2 ≤ 1, �v�2 ≤ 1} = σmax(Z),

where σmax(Z) denotes the largest singular value of
Z (and thus � · �◦∗ is the spectral norm). In this
case, given any first-order optimal point (Ũ , Ṽ , Q̃), then
Proposition 3 guarantees that the distance of the cur-
rent point from the global minimum is bounded by
λ�X̂�∗[σmax(

−1
λ ∇X�(Y, Ũ Ṽ T , Q̃)) − 1]. If (Ũ , Ṽ , Q̃) is a

global minimizer, then the largest singular value term will
be equal to 1 (and hence the bound is 0), while if the largest
singular value term is greater than 1 this indicates that
(Ũ , Ṽ ) do not have sufficiently many columns to represent
the global optimum (or some of the columns are redundant),
and the size of the representation should be increased.
Further, appending the largest singular vector pair (u, v)
to the factorization U ← [Ũ τu] and V ← [Ṽ τv] (as this
is the vector pair that achieves the supremum of the polar
function) will be guaranteed to reduce the objective function
for some step size τ > 0, as Theorem 1 showed this will be
a descent direction if the polar is larger than 1.

4.3 Reachability of Global Minima via Local Descent

Building on the above results, which provide sufficient
conditions to guarantee global optimality, we now describe
a generic meta-algorithm that is guaranteed to reach the
global minimum of problem (19) via local descent, provided
the number of columns in (U, V ) is allowed to be variable
and adapted to the data via regularization. In particular,
recall that the condition of Theorem 1 that one column of
(U, V ) must be entirely 0 is essentially a check that r is
sufficiently large to represent the optimal factorization of
a global optimum, X̂ , of (18). If the condition is not sat-
isfied, then the size of the factorization can be increased by
appending a column of all zeros without changing the value
of the objective and then proceeding with local descent.
This suggests a meta-algorithm of alternating between local
descent on (19), followed by incrementing r by appending
a column of all zeros. Algorithm 1 outlines the steps of this
approach and adds an additional step to remove redundant
columns of (U, V ) from the factorization (without changing
the value of the objective function), and the following result
formally proves that the meta-algorithm will find a global
minimizer of (18) and (19), with the number of columns in
(U, V ) never growing larger than the dimensionality of X .

Theorem 2. Given a function �(Y,X,Q) that is jointly convex
in (X,Q) and once differentiable w.r.t. X ; a rank-1 regu-
larizer θ that satisfies the conditions in Definition 2; and
a constant λ > 0, then Algorithm 1 will monotonically
decrease the value of (19) and terminate at a global
minimum of (18) and (19) with r ≤ max{DN +1, rinit}.

Proof. See Appendix C.4.
Additionally, note that the proof of Theorem 2 provides

a formal proof that the error surface of (19) does not contain
any local minima which require one to increase the value of
the objective function to escape from, provided the number
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of columns are initialized to be sufficiently large as formal-
ized in the following immediate corollary.
Corollary 2. Under the conditions in Theorem 2, if r > DN

then from any (U0, V0, Q0) such that f(U0, V0, Q0) < ∞
there must exist a non-increasing path from (U0, V0, Q0)
to a global minimizer of f(U, V,Q).

Finally, we pause to caution that the above results apply
to local descent, not necessarily first-order descent (e.g.,
gradient descent or the algorithm we describe below), and
many first-order descent algorithms can typically only guar-
antee convergence to a critical point but not necessarily a
local minimum. As a result the main computational chal-
lenge is to find a local descent direction from a critical point,
which can be accomplished by finding a (u, v) pair such that
θ(u, v) ≤ 1 and uT (−1

λ ∇X�(Y, UV T , Q))v > 1. However, to
find such a pair (if it exists) in the worst case we would
need to be able to solve the polar problem to guarantee
global optimality, which can be challenging as discussed
above, but note that from Proposition 3, as it becomes
harder to find (u, v) pairs that can be used to decrease the
objective function (i.e., the true value of the polar function
at a critical point moves closer to 1) we are also guaranteed
to be closer to the global minimum. Additionally, another
practical challenge is that even if a particular local descent
algorithm guarantees convergence to a critical point, due
to numerics one may never be exactly at a critical point.
Nevertheless, the polar problem still provides a bound on
the distance to the global optimum and a guaranteed (u, v)
descent direction for an arbitrary point.

Algorithm 1 (Meta-Algorithm)
input Initialization for variables, (Uinit, Vinit, Qinit)

while Not Converged do
Local descent to arrive at a local minimum (Ũ , Ṽ , Q̃).
if (Ũi, Ṽi) = (0, 0) for some i ∈ [r]. then

At global optimum, return.
else

if ∃β ∈ Rr/0 such that
�r

i=1 βiŨiṼ
T
i = 0. then

Scale β so that mini βi = −1.
Set (Ui, Vi) ← ((1 + βi)

1/2Ũi, (1 + βi)
1/2Ṽi).

\\ We now have an all-zero column in (U, V ).
else

Append an all zero column to (U, V ).
(U, V ) ← ([Ũ 0], [Ṽ 0]).

end if
end if
Continue loop.

end while

5 MINIMIZATION ALGORITHM

In the previous section we described and analyzed a generic
meta-algorithm that can be used to solve the family of
problems we consider. However, while the meta-algorithm
is useful from an analysis perspective, it still needs to
be paired with a computationally practical local descent
algorithm to be of use. Here we describe a specific and easily
implementable algorithm that applies to a wide range of the
problems discussed above that allows one to be guaranteed

convergence to a critical point of the non-convex objective
function (19).

Before we begin the discussion of the algorithm, note
that in addition to the conditions included in Theorem 1,
the particular method we present here assumes that the
gradients of the loss function �(Y, UV T , Q) w.r.t. U and
w.r.t. V (denoted as ∇U �(Y, UV T , Q) and ∇V �(Y, UV T , Q),
respectively) are Lipschitz continuous (i.e. the gradient w.r.t.
U is Lipschitz continuous for any fixed value of V and
vice versa). For a variable Z , Lk

Z will be used to notate the
Lipschitz constant of the gradient w.r.t. Z with the other
variables held fixed at iteration k. Additionally, we will
assume that θ(u, v) is convex in u if v is held fixed and
vice versa (but not necessarily jointly convex in u and v).
Under these assumptions on � and θ, the bilinear structure
of our objective function (19) gives convex subproblems
if we update U or V independently while holding the
other fixed, making an alternating minimization strategy
efficient and easy to implement. Further, we assume that
�(Y, UV T , Q) = �̂(Y, UV T , Q) +H(Q) where �̂(Y, UV T , Q)
is a convex, once differentiable function of Q with Lipschitz
continuous gradient and H(Q) is convex but possibly non-
differentiable.2

The updates to our variables are made using accelerated
proximal-linear steps similar to the FISTA algorithm, which
entails solving a proximal operator of an extrapolated gra-
dient step to update each variable [22], [23]. The general
structure of the alternating updates we use is given in
Algorithm 2, and the key point is that to update either U , V ,
or Q the primary computational burden lies in calculating
the gradient of the loss function and then calculating a
proximal operator. The structure of the non-differentiable
term in (19) allows the proximal operators for U and V to be
separated into columns, greatly reducing the complexity of
calculating the proximal operator and offering the potential
for substantial parallelization.

5.1 Proximal Operators of Structured Factors

Recall from the introductory discussion that one means
to induce general structure in the factorized matrices is
to regularize the columns of a factorized matrix with an
l2 norm, to limit the rank of the solution, plus a general
gauge function, to induce specific structure in the factors.
For example, potential forms of the rank-1 regularizers
could be of the form θ(u, v) = �u�2�v�2 + γσu(u)σv(v)
or θ(u, v) = (�u�2 + γuσu(u))(�v�2 + γvσv(v)), where the
σu and σv gauge functions are chosen to encourage specific
properties in U and V , respectively. In this case, to apply
Algorithm 2 we need a way to solve the proximal operator
of the l2 norm plus a general gauge function. While the
proximal operator of the l2 norm is simple to calculate, even
if the proximal operator of the gauge function is known, in
general the proximal operator of the sum of two functions
is not necessarily easy to compute or related to the proximal

2. Note that the assumption that there is a component of the objective
that is differentiable w.r.t. Q, �̂, is only needed to use the particular
update strategy we describe here. In general one could also optimize
objective functions that are non-differentiable w.r.t. Q (but which do
need to be convex w.r.t. Q) by doing a full minimization w.r.t. Q at each
iteration instead of just a proximal gradient update. See [22] for details.
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Algorithm 2 (Structured Matrix Factorization)

Input: Y , U0, V 0, Q0, λ, NumIter
Initialize Û1 = U0, V̂ 1 = V 0, Q̂1 = Q0, t0 = 1
for k = 1 to NumIter do
\\Calculate gradient of loss function w.r.t. U
\\evaluated at the extrapolated point Û
Gk

U = ∇U �(Y, Û
k(V k−1)T , Qk−1)

P = Ûk −Gk
U/L

k
U

\\Calculate proximal operator of θ
for i = 1 to number of columns in U do
Uk
i = proxλθ(·,V k−1

i )/Lk
U
(Pi)

end for
\\Repeat similar process for V
Gk

V = ∇V �(Y, U
k(V̂ k)T , Qk−1)

W = V̂ k −Gk
V /L

k
V

for i = 1 to number of columns in V do
V k
i = proxλθ(Uk

i ,·)/Lk
V
(Wi)

end for
\\Repeat again for Q
Gk

Q = ∇Q�̂(Y, U
k(V k)T , Q̂k)

R = Q̂k −Gk
Q/L

k
Q

Qk = proxH(Y,Uk(V k)T ,·)/Lk
Q
(R)

\\Update extrapolation based on prior iterates
\\Check if objective decreased
if obj(Uk, V k, Qk) < obj(Uk−1, V k−1, Qk−1) then
\\The objective decreased, update extrapolation
tk = (1 +

�
1 + 4(tk−1)2)/2

µ = (tk−1 − 1)/2

µU = min{µ,
�
Lk−1
U /Lk

U}
µV = min{µ,

�
Lk−1
V /Lk

V }
µQ = min{µ,

�
Lk−1
Q /Lk

Q}
Ûk+1 = Uk + µU (Uk − Uk−1)
V̂ k+1 = V k + µV (V k − V k−1)
Q̂k+1 = Qk + µQ(Qk −Qk−1)

else
\\The objective didn’t decrease.
\\Run again without extrapolation.
tk = tk−1

Ûk+1 = Uk−1; V̂ k+1 = V k−1; Q̂k+1 = Qk−1

end if
end for

operators of the individual functions. Fortunately, the fol-
lowing result shows that for the sum of the l2 norm plus a
general gauge function, the proximal operator can be solved
by sequentially calculating the two proximal operators.

Proposition 4. Let σC be any gauge function. The proximal
operator of ψ(x) = λσC(x) + λ2�x�2 is the composition
of the proximal operator of the l2 norm and the proximal
operator of σC , i.e., proxψ(y) = proxλ2�·�2

(proxλσC
(y)).

Proof. See Appendix C.5.
Combining these results with Theorem 1 and our previ-

ously discussed points, we now have a potential strategy to
search for structured low-rank matrix factorizations as we
can guarantee global optimality if we can find a local mini-
mum with an all-zero column in U and V (or equivalently

a critical point that also satisfies condition 3 of Corollary 1),
and the above proposition provides a means to efficiently
solve proximal operator problems that one typically en-
counters in structured factorization formulations. However,
recall the critical caveats to note about the optimization
problem; namely that first order descent methods as we
have presented here are only guaranteed to converge to a
critical point, not necessarily a local minimum, and solving
the polar problem to guarantee global optimality can be
quite challenging for certain classes of problems.

6 APPLICATIONS IN IMAGE PROCESSING

In the next two sections, we will explore applications of the
proposed structured matrix factorization framework to two
image processing problems: spatiotemporal segmentation of
neural calcium imaging data and hyperspectral compressed
recovery. Such problems are well modeled by low-rank lin-
ear models with square loss functions under the assumption
that the spatial component of the data has low total variation
(TV) and is optionally sparse in the row and/or column
space. Specifically, we will consider the following objective

min
U,V,Q

1

2
�Y−A(UV T ) − B(Q)�2F + λ

�

i

�Ui�u�Vi�v (32)

(optionally s.t.) U ≥ 0, V ≥ 0

where A(·) and B(·) are linear operators, and the � · �u and
� · �v norms have the form given by

� · �u = νu1� · �1 + νuTV
� · �TV + νu2� · �2 (33)

� · �v = νv1� · �1 + νvTV
� · �TV + νv2� · �2, (34)

for non-negative scalars ν. Here, the �1 and TV terms allow
the incorporation of sparsity or spatial coherence, respec-
tively, while the �2 term limits the rank of the solution
though the connection with the variational form of the
nuclear norm. Recall that the anisotropic TV of x is defined
as [24]

�x�TV ≡
�

i

�

j∈Ni

|xi − xj | , (35)

where Ni is the set of pixels in the neighborhood of pixel i.
Further, note that this objective function exactly fits

within the proposed framework as we can define a rank-
1 regularizer θ(u, v) = �u�u�v�v and optionally add in-
dicator functions on u and/or v to enforce non-negativity
constraints. Additionally, the proximal operators for the
proposed regularization function can be easily evaluated as
we show in Appendix B.

6.1 Neural Calcium Imaging Segmentation

This section demonstrates the applicability of the proposed
structured matrix factorization framework to the problem
of segmenting calcium imaging data. Calcium imaging is
a microscopy technique in neuroscience that records flu-
orescent images from neurons that have been loaded with
either synthetic or genetically encoded fluorescent calcium
indicator molecules. When a neuron fires an electrical action
potential (or spike), calcium enters the cell and binds to the
fluorescent calcium indicator molecules, changing the fluo-
rescence properties of the molecule. By recording movies of
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the calcium-induced fluorescent dynamics it is possible to
infer the spiking activity from large populations of neurons
with single neuron resolution [25].

Specifically, let y ∈ Rt be the fluorescence time series
from a single neuron (normalized by the baseline fluores-
cence) during t imaging frames. We can infer the neuron’s
spiking activity x ∈ Rt (each entry of x is monotonically
related to the number of action potentials of the neuron
during that imaging frame) by solving a Lasso like problem:

x̂ = arg min
x≥0

1

2
�y −Dx�22 + λ �x�1 , (36)

where D ∈ Rt×t is a matrix that applies a convolution with a
known decaying exponential to model the change in fluores-
cence resulting from a neural action potential [26]. However,
the above model only applies to a single fluorescence time
series extracted from a manually segmented data volume,
and a significant challenge in neural calcium imaging is
that the data can have a significant noise level, making
manual segmentation extremely challenging. Additionally,
it is also it is possible for two neurons to overlap in the
spatial domain if the focal plane of the microscope is thicker
than the size of the distinct neural structures in the data,
making simultaneous spatiotemporal segmentation neces-
sary. A possible strategy to address these issues would be to
extend (36) to estimate spiking activity for the whole data
volume via the objective

X̂ = arg min
X≥0

1

2
�Y −DX�2F + λ �X�1 , (37)

where now each column of Y ∈ Rt×p contains the fluores-
cent time series for a single pixel, the corresponding column
of X̂ ∈ Rt×p contains the estimated spiking activity for that
pixel, and � · �1 denotes the �1 norm. However, due to the
significant noise often present in the actual data, and the fact
that each column of X̂ is estimated with data from a single
pixel in the dataset without the benefit of averaging over a
spatial area, solving (37) directly typically gives poor results.
To address this issue, [27] exploits the knowledge that if two
pixels are from the same neural structure they should have
identical spiking activities. Therefore, the matrix X can be
well approximated as X ≈ UV T =

�r
i=1 UiV

T
i , where

Ui ∈ Rt is the spiking activity of one neural structure,
Vi ∈ Rp is a shape image of the same neural structure,
and r � p is the number of neural structures in the data.
This suggests adding a low-rank regularization term to (37),
which leads to [27]

X̂ = arg min
X≥0

1

2
�Y −DX�2F + λ �X�1 + λ2�X�∗. (38)

Given X̂ , one can estimate the temporal and spatial features
(U, V ) by applying non-negative matrix factorization to X̂ .

While (38) provides a nice model of spiking activity
within a dataset, recall from the introduction that solving
a factorization problem in the product space (i.e., solving
for X) is somewhat unsatisfactory as it does not provide
us with the desired factors. For example, the number of
calcium transients from each neuron should be small, hence
each column of U should be sparse. Likewise, each neuron
should occupy a small fraction of the image, hence each

column of V should also be sparse. Notably, it can be shown
that problem (32) is equivalent to a standard Lasso estima-
tion when both U and V are regularized by the l1 norm
[11], while combined l1, l2 norms of the form (33) and (34)
with νuTV

= 0 promote solutions that are simultaneously
sparse and low rank. Thus, the projective tensor norm (7)
can generalize the two prior methods for calcium image
processing by providing regularizations that are sparse or
simultaneously sparse and low-rank, while also having the
advantage of solving for the desired factors directly. Further,
by working in the factorized space we can also model
additional known structure in the factors. In particular, we
extend formulations (37) and (38) by noting that neighbor-
ing pixels are likely to be from the same neural structure and
thus have identical spiking activity, implying low TV in the
spatial domain. We demonstrate the flexible nature of our
formulation (32) by using it to process calcium image data
with regularizations that are either sparse, simultaneously
sparse and low-rank, or simultaneously sparse, low-rank,
and with low TV. Additionally, by optimizing (32) to simul-
taneously estimate temporal spiking activity U and neuron
shape V , with A(UV T ) = DUV T , we inherently find
spatial and temporal features in the data (which are largely
non-negative even though we do not explicitly constrain
them to be) directly from our optimization without the need
for an additional matrix factorization step. Finally, note that
the B(Q) term can be used to fit the background intensity of
the pixels by taking B(Q) = 1QT for a vector Q ∈ Rp, and if
the data exhibits temporal variations in pixel intensities not
due to calcium activity, such as from slow movements of
the sample or photo-bleaching, this can also be modeled via
an appropriate choice of the B operator. For the experiments
presented here the data has been normalized by background
intensity, so the B(Q) term is not used.

Simulation Data. We first tested our algorithm on a sim-
ulated phantom dataset which was constructed with 19
non-overlapping spatial regions (see Figure 1, left panel)
and 5 randomly timed action potentials and corresponding
calcium dynamics per region. The phantom was 200 frames
of 120x125 images, and the decaying exponentials in D had
a time constant of 1.333̄ sec with a simulated sampling rate
of 10Hz. Gaussian white noise was added to the modeled
calcium signal to produce an SNR of approximately -16dB.

Using this phantom, we used Algorithm 2 to solve the
formulation given in (32) with different ν parameters for the
norms in (33) and (34). In particular, we used just sparse
and low-rank regularization by taking [νu1

, νuTV
, νu2

] =
[νv1 , νvTV

, νv2 ] = [1, 0, 1] and λ = 1.5σ, where σ denotes
the standard deviation of the Gaussian noise. Then, to
demonstrate the benefit of adding TV regularization in the
spatial domain, we used an 8-connected lattice for the TV
graph,3 [νu1

, νuTV
, νu2

] = [1, 0, 1], [νv1 , νvTV
, νv2 ] = [1, 1, 1]

and λ = 0.4σ. For the sparse + low-rank condition U was
initialized to be the identity matrix. For the experiments that
include TV regularization, we again conducted experiments
with U initialized to be the identity, and to study the effects
of different initializations, we additionally also performed

3. The regularization parameters were roughly tuned by hand to
produce the best qualitative results for the two experimental conditions
(i.e., sparse + low-rank w/wo TV)
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True Labels Recovered Labels Recovered Labels
Uinit = I Uinit = RND50

Fig. 1. Recovered spatial segmentations from phantom dataset. Left :
True spatial labels. Middle: Spatial labels recovered with sparse + low-
rank + TV regularization, with U initialized as an identity matrix. Right :
Same as the middle panel but with U initialized as 50 columns of random
values uniformly distributed between [0, 1].

True SignalRaw Data Sparse + Low-Rank + TVSparse +
Low-Rank Uinit = I Uinit = RND50

Fig. 2. Example reconstructed calcium signal from phantom dataset.
The two rows correspond to two different example image frames. From
left to right : Raw data. True calcium signal. Reconstruction with sparse +
low-rank regularization. Reconstruction with sparse + low-rank + TV reg-
ularization with U initialized as the identity. Reconstruction with sparse +
low-rank + TV regularization with U initialized as 50 columns of random
values uniformly distributed in [0, 1].

experiments with U initialized with 50 columns, where each
entry in U was initialized to a random value uniformly
distributed in [0, 1] (in all cases V was initialized as 0).

Figure 2 shows two example reconstructions of the cal-
cium signal estimated with our algorithm with different
regularization conditions. Figure 3 shows example spatial
components recovered by our algorithm as well as spatial
components recovered by PCA. For each case, the compo-
nents shown are the first 9 most significant components
(i.e., those with the largest value of �Ui�u�Vi�v).4 Note that
although we only show the first 9 spatial components here
for compactness, the remaining components also closely
correspond to the true spatial regions and allow for the true
spatial segmentation to be recovered.

The recovered temporal components for the 9 regions
shown in Figure 3 are plotted in Figure 4 along with
the corresponding true temporal spike times (red dots)
for the sparse + low-rank + total-variation (SRLTV) reg-
ularization conditions. The spatial segmentation obtained
via SLRTV regularization with the two different initial-
izations for U is shown in Figure 1. This segmentation
was generated by simply finding connected components
of the non-zero support of the spatial components, then
any two connected components that overlapped by more
than 10% were merged (note that this step is largely only

4. Note that the differences in the specific components shown in
Figure 3 between the two initializations of U is due to the fact that
the structure of the objective function (32) allows for components to be
duplicated without changing the value of the objective function. For
example, if U = [U1 U2] and V = [V1 V2], then Ũ = [U1 0.2U2 0.8U2]
and Ṽ = [V1 V2 V2] will give identical objective function values.

Principal Component Analysis 
(PCA)

Sparse + Low-Rank + TV

Sparse + Low-Rank

Uinit = I

Uinit = RND50

Fig. 3. Example recovered spatial components from phantom dataset.
Top Left : First 9 most significant spatial components recovered via Prin-
cipal Component Analysis (PCA). Bottom Left : First 9 most significant
spatial components recovered with sparse and low-rank regularization.
Top Right : First 9 most significant spatial components recovered using
sparse, low-rank, and TV regularization, with U initialized as the identity.
Bottom Right : Same as the top right panel but with U initialized as 50
columns of random values uniformly distributed in [0, 1].

True Spike Time Recovered Component

Uinit = RND50Uinit = I

Fig. 4. Reconstructed spike trains from phantom dataset with sparse +
low-rank + TV for the components shown in Figure 3. Blue lines are
the temporal components estimated by our algorithm, while the red dots
correspond to the true temporal spike times. Left Panel : Reconstruction
with U initialized as the identity. Right Panel : Reconstruction with U
initialized as 50 columns of random values uniformly distributed in [0, 1].

necessary to combine duplicate components – see footnote
4 – and the results are very insensitive to the choice of the
percentage of overlap as any duplicated components had
almost identical non-zero supports). Despite the very high
noise level, adding SLRTV regularization recovers the true
spatial and temporal components with very high accuracy
and faithfully reconstructs the true calcium signal. Further,
this performance is robust to the choice of initialization, as
initializing U with either the identity or random values still
faithfully recovers true spatial and temporal components.
Additionally, despite the very different initializations, the
relative error between the two final objective values (given
as |obj1−obj2|/min{obj1, obj2}, where obj1 and obj2 denote
the final objective values for the 2 different initializations)
was only 3.8833 × 10−5.
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1 2 3 4 5

Same Neuron

Example Spatial Regions

Manual

Sparse

Sparse + 
Low-Rank

Sparse + 
Low-Rank + TV

1 & 2 3 4 5
Example Frames

Data

Sparse

Sparse + 
Low-Rank

Sparse + 
Low-Rank + TV

Fig. 5. Results from an in vivo calcium imaging dataset. Left : Spatial features for 5 example regions. (Top Row) Manually segmented regions.
(Bottom 3 Rows) Corresponding spatial feature recovered by our method with various regularizations. Note that regions 1 and 2 are different parts
of the same neurons - see discussion in the text. Right : Example frames from the dataset corresponding to time points where the example regions
display a significant calcium signal. (Top Row) Actual Data. (Bottom 3 Rows) Estimated signal for the example frame with various regularizations.

Top 5 Principal 
Components

(PCA)

Reconstructed 
Image Frames

(PCA)

Fig. 6. Results of PCA applied to an in vivo calcium imaging dataset. Left : The first 5 most significant spatial components from PCA analysis. Right :
Example image frames reconstructed from the first 20 most significant Principal Components. The example frames are the same is in Figure 5.

In vivo Calcium Image Data. We also tested our algorithm
on actual calcium image data taken in vivo from the primary
auditory cortex of a mouse that was transfected with the
genetic calcium indicator GCaMP5 [28]. The left panel of
Figure 5 shows 5 manually labeled regions from the dataset
(top row) and the corresponding spatial features recovered
by our algorithm (bottom 3 rows) under the various regu-
larization conditions. The right panel of Figure 5 displays
a frame from the dataset taken at a time point when the
corresponding region had a significant calcium signal, with
the actual data shown in the top row and the corresponding
reconstructed calcium signal for that time point under the
various regularization conditions shown in the bottom 3
rows. We note that regions 1 and 2 correspond to the
cell body and a dendritic branch of the same neuron. The
manual labeling was purposefully split into two regions
due to the fact that dendrites can have significantly different
calcium dynamics from the cell body and thus it is often ap-
propriate to treat calcium signals from dendrites as separate
features from the cell body [29].

The data shown in Figure 5 are particularly challenging
to segment as the two large cell bodies (regions 1 and 3) are
largely overlapping in space, necessitating a spatiotemporal
segmentation. In addition to the overlapping cell bodies
there are various small dendritic processes radiating per-
pendicular to (regions 4 and 5) and across (region 2) the
focal plane that lie in close proximity to each other and have
significant calcium transients. Additionally, at one point
during the dataset the animal moves, generating a large
artifact in the data. Nevertheless, by optimizing (32) under
the various regularization conditions, we observe that, as ex-
pected, the spatial features recovered by sparse regulariza-

tion alone are highly noisy (Fig. 5, row 2). Adding low-rank
regularization improves the recovered spatial features, but
the features are still highly pixelated and contain numerous
pixels outside of the desired regions (Fig. 5, row 3). Finally,
by incorporating TV regularization, our method produces
coherent spatial features which are highly similar to the
desired manual labellings (Fig. 5, rows 1 and 4), noting again
that these features are found directly from the alternating
minimization of (32) without the need to solve a secondary
matrix factorization. For comparison purposes, the top 5
spatial components recovered via PCA along with example
image frames reconstructed using the top 20 principal com-
ponents are shown in Figure 6. Note that while the PCA
spatial components have a rough correspondence to the
neural structures in the data, a significant amount of post-
processing would be required to recover the segmentation
of a specific neural structure from the PCA representation.
Likewise, the example image frames recovered via PCA still
contain a very large amount of noise.

In the application of our structured matrix factorization
algorithm to the in vivo dataset, U was initialized to be
100 uniformly sampled columns from a 599 × 599 identity
matrix, and V was initialized as V = 0, demonstrating
the potential to reduce the problem size and achieve good
results despite a very trivial initialization. Similar to the
phantom experiments, choosing U to be initialized as ran-
dom variables in [0, 1] produced nearly identical results
(not shown). The regularization parameters were tuned
manually to produce good qualitative performance for each
regularization condition, and the specific values of the pa-
rameters are given in Table 2.

We conclude by noting that while TV regularization can
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TABLE 2
Regularization parameters for in vivo calcium imaging experiments. σ

denotes the standard deviation of all of the voxels in the data matrix, Y .

λ [νu1 , νuTV , νu2 ] [νv1 , νvTV , νv2 ]
Sparse 2σ [1, 0, 0] [1, 0, 0]

Sparse + Low-Rank 1.75σ [1, 0, 1] [1, 0, 1]
Sparse + Low-Rank + TV 0.5σ [1, 0, 2.5] [1, 0.5, 1]

improve performance for a segmentation task, it also can
cause a dilative effect when reconstructing the estimated
calcium signal (e.g., distorting the size of the thin dendritic
processes in the left two columns of the example frames in
Figure 5). As a result, in a denoising task it might instead
be desirable to only impose sparse and low-rank regulariza-
tion. The fact that we can easily and efficiently adapt our
model to account for many different features of the data
depending on the desired task highlights the flexible nature
and unifying framework of our proposed formulation (32).

6.2 Hyperspectral Compressed Recovery
The second application we considered is recovering a hy-
perspectral image volume from a set of compressed mea-
surements. Hyperspectral imaging (HSI) is similar to regular
digital photography, but instead of recording the intensities
of light at just 3 wavelengths (red, green, blue) as in a typical
camera, HSI records images for a very large number of
wavelengths (typically hundreds or more).

Due to the nature of hyperspectral imaging the data
often display a low-rank structure. For example, consider
hyperspectral images taken during aerial reconnaissance. If
one was given the spectral signatures of various materials
in the hyperspectral image volume (trees, roads, buildings,
dirt, etc.), as well as the spatial distributions of those mate-
rials, then one could construct a matrix U ∈ Rt×r , whose
ith column, Ui, contains the spectral signature of the ith

material (recorded at t wavelengths) along with a matrix
V ∈ Rp×r which contains the spatial distribution of the ith

material in its ith column Vi (where p denotes the number of
pixels in the image). Then, r corresponds to the number of
materials present in the given HSI volume, and since typi-
cally r � min{t, p} the overall HSI volume can be closely
approximated by the low-rank factorization Y ≈ UV T .
This fact, combined with the large data sizes typically en-
countered in HSI applications, has led to a large interest in
developing compressed sampling and recovery techniques
to compactly collect and reconstruct HSI datasets.

In addition, an HSI volume also displays significant
structure in the spatial domain because neighboring pixels
are highly likely to correspond to the same material [30].
This combination of low-rank structure along with strong
correlation between neighboring pixels in the spatial do-
main of an HSI dataset led the authors of [31] to propose
a combined nuclear norm and TV regularization (NucTV)
method to reconstruct HSI volumes from compressed mea-
surements with the form

min
X

�X�∗+λ
t�

i=1

�(Xi)T �TV s.t. �Y −A(X)�2F ≤ �. (39)

Here X ∈ Rt×p is the desired HSI reconstruction with t
spectral bands and p pixels, Xi denotes the ith row of X
(or the ith spectral band), Y ∈ Rt×m contains the observed

TABLE 3
Hyperspectral imaging compressed recovery error rates.

Our Method NucTV
Sample Sampling SNR (dB) Sampling SNR (dB)
Ratio ∞ 40 20 ∞ 40 20

4:1 0.0209 0.0206 0.0565 0.01 0.02 0.06
8:1 0.0223 0.0226 0.0589 0.03 0.04 0.08
16:1 0.0268 0.0271 0.0663 0.09 0.09 0.13
32:1 0.0393 0.0453 0.0743 0.21 0.21 0.24
64:1 0.0657 0.0669 0.1010
128:1 0.1140 0.1186 0.1400

samples (compressed at a subsampling ratio of m/p), and
A(·) denotes the compressed sampling operator. To solve
(39), [31] implemented a proximal gradient method, which
required solving a TV proximal operator for every spectral
slice of the data volume in addition to solving the proximal
operator of the nuclear norm (singular value thresholding)
at every iteration of the algorithm [32]. For the large data
volumes typically encountered in HSI, this can require sig-
nificant computation per iteration.

Here we demonstrate the use of our structured matrix
factorization method to perform hyperspectral compressed
recovery by optimizing (32), where A(·) is a compressive
sampling function that applies a random-phase spatial con-
volution at each wavelength [31], [33], U contains estimated
spectral features, and V contains estimated spatial abun-
dance features.5 Compressed recovery experiments were
performed on the dataset from [31]6 at various subsampling
ratios and with different levels of sampling noise. We lim-
ited the number of columns of U and V to 15 (the dataset
has 256 × 256 pixels and 180 spectral bands), initialized one
randomly selected pixel per column of V to one and all
others to zero, and initialized U as U = 0.

Figure 7 in Appendix D shows examples of the recov-
ered images at one wavelength (spectral band i = 50)
for various subsampling ratios and sampling noise lev-
els and Table 3 shows the reconstruction recovery rates��Xtrue−UV T

��
F
/ �Xtrue�F , where Xtrue denotes the true

hyperspectral image volume. We note that even though
we optimized over a highly reduced set of variables
([256 × 256 × 15 + 180 × 15]/[256 × 256 × 180] ≈ 8.4%)
with very trivial initializations, we were able to achieve
reconstruction error rates equivalent to or better than those
in [31].7 Additionally, by solving the reconstruction in a
factorized form, our method offers the potential to perform
blind hyperspectral unmixing directly from the compressed
samples without ever needing to reconstruct the full dataset,
an application extension we leave for future work.

7 CONCLUSIONS

We have proposed a highly flexible approach to structured
matrix factorization, which allows specific structure to be
promoted directly on the factors. While our proposed for-
mulation is not jointly convex in all of the variables, we
have shown that under certain criteria a local minimum of

5. For HSI experiments, we set νu = νv1 = 0 in (33) and (34).
6. The data used are a subset of the publicly available AVARIS Moffet

Field dataset. We made an effort to match the specific spatial area and
spectral bands of the data for our experiments to that used in [31] but
note that slightly different data may have been used in our study.

7. The entries for NucTV in Table 3 were adapted from [31, Fig. 1]
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the factorization is sufficient to find a global minimum of
the product, offering the potential to solve the factorization
using a highly reduced set of variables.
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