
STOCHASTIC GRADIENT DESCENT, ENTROPY-SGD

PRATIK CHAUDHARI
UNIVERSITY OF PENNSYLVANIA

NOVEMBER 1, 2019

Reading

• “Stochastic gradient descent tricks” by Bottou (2012). Great paper with lots of little
tricks of how to use SGD in practice.
• Till Section 4.2 of “Optimization methods for large-scale machine learning” by Bot-

tou et al. (2018).
• “Entropy-SGD: Biasing gradient descent into wide valleys” by Chaudhari et al.

(2016)

1. STOCHASTIC GRADIENT DESCENT

SGD has its roots in stochastic optimization (Robbins and Monro, 1951). A stochastic
optimization problem looks like

x∗ = argmin
x

E
ξ
[f(x; ξ)]

where ξ is a random variable. This is a very old and rich area, there was lots of action in it
already in the 1950s, e.g., (Kushner and Yin, 2003, Robbins and Monro, 1951). It is also a
highly relevant problem: for instance, when a plane goes from Los Angeles to Philadelphia,
the route that the plane takes depends on the local weather conditions along its path and
airlines will optimize this route using a stochastic optimization problem of the above form.
The variable x will be the trajectory of the plane and ξ are the weather conditions which we
do not know exactly but may perhaps have estimated a distribution for them.

In machine learning today, we solve a slightly different problem, namely the finite-sum
problem. Given a finite dataset D = {(ξi, yi)}i=1,...,n we minimize

f(x) :=
1

n

n∑
i=1

`(x; ξi, yi).

The variable x denotes the weights/parameters of the model and ξi denotes the ith datum.
As we have discussed before, the number of data n can be very large in modern machine

1

learning (why?). It is difficult to do gradient descent in this case because the gradient

∇f(x) = 1

n

n∑
i=1

∇`(x; ξi, yi).

involves a sum of the entire dataset. Note that the convergence rate of optimization algorithms
we have look at is independent of the dimension; this is true for most gradient-based
optimization algorithms.

Stochastic gradient descent for the finite-sum case performs the following iterations

x(t+1) = x(t) − α∇`(x(t); ξωt , yωt) (1)

The datum (xωt , yωt) over which we compute the gradient before updating the weights is
picked randomly from the dataset D. So each iteration of SGD is a factor of n times faster
than that of gradient descent. Is this the direction of steepest descent though?

Example 1. Play with the step-size at
http://fa.bianp.net/teaching/2018/eecs227at/gradient descent.html.

Example 2. Let us take a quadratic loss function with scalar data {(ai, bi)}.

f(x) =
1

2n

n∑
i=1

(aix− bi)2 .

Discuss the solution of this problem and the fact that SGD will find solutions that try to fit
each datum at each iteration but bounce around.

• Very fast speed outside the region of confusion.
• Once you get close to the optimum, the gradients keep fighting at successive itera-

tions.

Remark 3. Sampling with and without replacement.

Remark 4 (Mini-batch version of SGD).

x(t+1) = x(t) − η

b

b∑
k=1

∇`(x(t); ξωk
t
, yωk

t
). (2)

Samples in the mini-batch
{
(ξωk

t
, yωk

t
)
}
k=1,...,b

are picked randomly from the dataset at

each iteration. Note that if b = n, this is exactly gradient descent.

Let us denote the mini-batch gradient with a batch-size of size b to be

∇fb(x(t)) :=
1

b

b∑
k=1

∇`(x(t); ξωk
t
, yωk

t
).

This will help us write SGD in short-form as

x(t+1) = x(t) − η∇fb(x(t)).
2

http://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html

This looks very similar to gradient descent, except that there is a b at the subscript. To make
our notation in the following a bit clearer, we will also use SGD with a batch-size of b = 1

but denote it as
∇fω(x(t)) := ∇`(x(t); ξωt , yωt).

In other words∇fω is simply the stochastic gradient∇fb with b = 1.

2. CONVERGENCE RATE FOR SGD

We will only consider strongly convex functions for analyzing SGD. The proofs are much
more tedious for the others. Remember that gradient descent requires O(n) operations each
iteration. For strongly convex functions, gradient descent converges at a rate

f(x(t))− f(x∗) ≤ O(ct).

The number of steps required to reach an error ε is O(log(1/ε)). Each step needs O(n)
operations and therefore the total computation used by GD is

O(n log(1/ε)).

The updates of SGD are stochastic so

f(x(t))− f(x∗)

is a random variable. It depends on the initial condition and the random data that were
chosen in the first t iterations to compute the gradients. How should we understand the
convergence of SGD then? SGD clearly does not “converge” in the zone of confusion in the
sense of iterates stopping to move. Every time we pick a new example or a new mini-batch,
you get some gradient and you move. There are many notions of convergence for a sequence
of random variables X1, X2, . . . , Xn, for SGD, we will use convergence in the first moment

E [|Xn −X∗|]→ 0.

As ususal let’s use L-smooth and m-strongly convex function f(x) (we do not need strong
convexity for the following two lemmas but will use it later). Note this is f(x), not `(x, ξ, y).
We can get a descent-lemma style result now.

Lemma 5 (Descent lemma for stochastic updates). The next update for SGD satisfies

E
ωt

[
f(x(t+1))

]
− f(x(t)) ≤ −α∇f(x(t))> E

ωt

[
∇fωt(x

(t))
]
+
Lα2

2
E
ωt

[
‖∇fωt(x

(t))‖2
]
.

Compare this with the descent lemma for gradient descent

f(x(t+1)) ≤ f(x(t))− α∇f(x(t))>∇f(x(t)) + Lα2

2
‖∇f(x(t))‖2.

Proof. Use the descent lemma for GD, substitute the iterates of SGD and take an expectation
on both sides over the index of the datum ωt.

3

Typical assumptions in SGD analysis. Based on the previous lemma, we can construct
a set of assumptions. Remember that if we can bound the right hand side of the above
inequality using some deterministic quantity, we should be good to prove the convergence of
SGD and obtain a rate. This is similar to what we did for gradient descent.

• Assume that the stochastic gradient is unbiased

∇f(x) = E
ω
[∇fω(x)]

for all x in the domain. This is akin to assuming that the way we sample images in
the mini-batch is such that the average is always pointing towards the true gradient
with a similar magnitude. This is a natural condition and you will change it only if
you are doing tricks with the sampling distribution, e.g., boosting.
• The second condition is important. There exist scalars σ0 and σ such that

E
ωt

[
‖∇fω(x)‖2

]
≤ σ0 + σ‖∇f(x)‖2.

This condition assumes something about the second term in the descent lemma for
SGD. It assumes that the stochastic gradient is not too bad: near a critical point
(locations where∇f(x) = 0), it is allowed to grow in a similar fashion as the true
gradient except with a scaling factor σ > 0 and a constant σ0.

Lemma 6. Under the above assumptions on the loss function in SGD, we have

E
ωt

[
f(x(t+1))

]
− f(x(t)) ≤ −α‖∇f(x(t))‖2 + Lα2

2
E
ωt

[
‖∇fωt‖2

]
≤ −

(
1− Lασ

2

)
α‖∇f(x(t))‖2 + α2Lσ0

2
.

To prove this simply substitute the assumptions into Lemma 5. Compare this to the corre-
sponding result we derived for gradient descent in Lecture 9

f(x(t+1))− f(x(t)) ≤ −α
2
‖∇f(x(t))‖2.

For strongly convex functions, you can pick a larger step-size in gradient descent α < 2/L

and obtain a similar expression as Lemma 6.

Notice that the full objective at the next step depends only on the index of the datum we
picked at this iteration and the step-size α. It does not depend on any of the past iterates. We
have essentially achieved our goal. We upper bounded the left hand side using a deterministic
quantity. Notice that for small α, the first term is strictly negative. However the second term
might be quite large if σ0 is large. Picking the step-size α in such a way that it balances of
these two terms in SGD is critical to get good performance in practice.

Theorem 7 (Convergence rate of SGD for smooth, strongly-convex functions). If we pick a
step-size

α ≤ 1

Lσ
4

then the expected optimality gap satisfies

E
ω1,ω2,...,ωt

[
f(x(t+1))

]
− f(x∗) ≤ αLσ0

2m
+ (1− αm)t

(
f(x0)− f(x∗)− αLσ0

2m

)
.

Proof. The proof follows by a direct application of Lemma 6, see Bottou et al. (2018)
Theorem 4.6 for the proof.

This theorem beautifully demonstrates the interplay between the step-size and and the
variance of stochastic gradients. If σ, σ0 = 0, we get the same result as that of gradient
descent, namely, the function value f(x(t+1)) converges at a linear rate (1− αm)t. Some
points to notice

• When gradient computation is noisy, we have a non-zero σ0 we can no longer get to
the global minimum, there is a first term which does not decay with time.
• If we pick a small α, we get closer to the global minimum but go there quite slowly.

On the other hand, we can pick a large α and get to a neighborhood of the global
minimum quickly but we will then have a large error leftover at the end.

We should therefore pick the step-size to decay with time if we actually want to converge.
But we do not want to decay too quickly, which might slow down the progress. A good
schedule to pick is such that

∞∑
t=1

αt =∞ and
∞∑
t=1

α2
t <∞.

Theorem 8 (SGD convergence with decaying step-size). If we pick a step-size schedule

αt =
α0

(t+ t0)
where α0 > 1/m, t0 is such that α1 <

1

Lσ
<

1

L
.

then the expected optimality gap satisfies

E
ω1,...,ωt

[
f(x(t+1))− f(x∗)

]
≤ O

(
1

t+ t0

)
.

We will not do the proof. If you are interested, see Theorem 4.7 in Bottou et al. (2018).
Notice that by decaying the step-size we converge only at a sub-linear rate even for strongly
convex loss functions.

Remark 9 (Mini-batching in SGD). Does mini-batching provide an improvement in the
number of iterations? If we use the gradient

∇fb
instead of ∇fωt to make updates, the variance of the stochastic gradients decreases by a
factor of b. The constants σ and σ0 therefore decrease by a factor of b as well (remember
that we want as tight an inequality as we can get when we want to analyze the converge rate

5

of an algorithm). This modifies the theorem for expected optimality gap to

E
ω1,ω2,...,ωt

[
f(x(t+1))

]
− f(x∗) ≤ αLσ0

2mb
+ (1− αm)t

(
f(x0)− f(x∗)− αLσ0

2mb

)
.

Compare to the convergence rate for single-sample SGD update and notice that if we
use a step-size α/b in single-sample SGD, we obtain a similar expression expect that the
contraction rate (1− αm)t for single-sample SGD with this step-size is

1− α

mb
.

This roughly indicates that if we were to use single-sample SGD, we need to run O(b) more
iterations to achieve the same optimality gap as mini-batch SGD with a batch-size of b. Each
iteration of mini-batch SGD is b times more expensive than one iteration of single-sample
SGD. We do not gain anything by using mini-batch SGD. Then why do we use it in practice?

Remark 10. First show using the arithmetic-mean greater than or equal to geometric-mean
inequality that σ ≥ 1. It is reasonable to imagine that if we use mini-batch SGD, we
could use b times larger step-size than the single-sample SGD. Is this correct? Notice that
the condition in Theorem 7 indicates that the largest initial step-size we are allowed is 1

L .
Effectively, we could imagine increasing the step-size with time if we are using mini-batch
SGD, we just need to careful not to use too large a step-size at the beginning.

Remark 11. Compare the number of computations of GD with SGD. If the average sub-
optimality you desire on every sample in the dataset is less than O(1/n) then you should
use stochastic gradient descent. If you want better accuracy, gradient descent is faster. This
explains in a very simple way why stochastic gradient descent is so powerful for machine
learning. We do not care about getting a very low error on the training set.

6

3. SGD AS A MARKOV PROCESS

The continuous-time point of view for gradient descent gives very quick and clean results as
compared to using the discrete-time update equations. The analysis of stochastic gradient
descent is quite new (most advancements like SAG, SVRG, proximal terms to control the
covariance etc. are within the last 10 years). The fashion of using continuous-time analysis
for stochastic algorithms is much newer, within the past 3 years, but it gives an equally
powerful understanding of these algorithms.

The big problem however is that continuous-time stochastic processes are difficult to handle
mathematically and involve different kinds of calculi (you may have heard of names like Ito
calculus or Stratonovich calculus). Further, mathematically stochastic differential equations
do not allow us to talk about one trajectory of optimization (like we always did for gradient
descent). So this style of analysis does not easily give a convergence rate but it is a great
mental picture and is useful for other kinds of analyses.

3.1. How do our convergence results change if the function is not convex? (picture of a
convex loss function, sgd bounces around. What happens if we never decrease the step-size?)

3.2. Markov process for SGD. (picture of a discrete-state, discrete-time version of SGD)

The updates of SGD are given by

x(t+1) = x(t) − α∇fωt(x
(t)).

The iterate x(t+1) is independent of the previous iterate x(t−1) given the current iterate x(t).

Let us imagine a Markov chain with a trajectoryX(0), X(1), . . . , X(t). It proceeds as follows:

X(0) = X0

X(t+1) ∼ P(X(t+1)|X(t)).

This trajectory depends both on the initial condition X0 and the sample from the transition
kernel P(· |X(t)). What is the transition kernel

P
(
X(t+1)|X(t)

)
for SGD? If you take the expectation with respect to ωt conditioned on x(t) in the update
equation we have

E
ωt

[
X(t+1) |X(t)

]
= X(t) − α∇f(X(t)),

7

as expected the update of SGD is the update of gradient descent in expectation. What is the
second moment?

Varωt

(
X(t+1) |X(t)

)
= Varωt

(
X(t+1) −X(t) |X(t)

)
= Varωt

(
−α∇fω(X(t))

)
= α2 E

ω

[(
∇fω(x(t))−∇f(X(t))

)(
∇fω(X(t))−∇f(X(t))

)>]
.

Again as expected the variance of the stochastic update is proportional to α2. The standard
deviation is this proportional to α and we have seen this before: there is a factor of α in the
first term for the expression of the convergence rate of SGD.

Assumption 12. The function f(x) is smooth.

Assumption 13. We are sampling with replacement, so the two gradients ∇fω and ∇fω′

are independent, i.e.,

E
ω,ω′

[(
∇fω(x(t))−∇f(x(t))

)(
∇fω′(x(t))−∇f(x(t))

)>]
= 0.

Using the second assumption above we can obtain the variance for mini-batch SGD as

Var
(
X(t+1) −X(t) |X(t)

)
= α2Varω1,...,ωb

[
1

b

b∑
i=1

∇fωi(X(t))

]

=
α2

b2

b∑
i=1

Var(∇fωi(X(t)))

=
α2

b
Var(∇fω(X(t))).

The last equality follows because we are sampling with replacement, each of the ωi are
identically distributed. Next we will assume something quite brutal. We will assume that the
matrix Var(∇fω(X(t))) does not depend on X(t), and moreover, that it is simply identity.

Assumption 14. The variance of the SGD update at time t is such that

Var
(
X(t+1) −X(t) |X(t)

)
=
α2

b
Id×d.

We are now ready to approximate the updates of SGD.

X(t+1) = X(t) − α∇f(X(t))︸ ︷︷ ︸
mean

+ noise︸ ︷︷ ︸
standard deviation

= X(t) − α∇f(X(t)) +

√
α

b
ζ(t).

(3)

8

where ζ(t) ∼ N(0, αId×d) is a Gaussian random variable which is zero mean and variance
α.

Remark 15. The above equation is a discrete-time equation but the state of the Markov
chain X(t) is no longer finite. Simulating this equation is easy. Notice that if we have a
gradient flow

Ẋ = −∇f(X)

we simulate it by discretizing time as

x(t+1) = x(t) − α∇f(x(t)).

We can think of the step-size α in our standard gradient descent update as the discretization
interval of the time variable. We can also simulate this stochastic update equation by taking
the full-gradient ∇f(X(t)) and adding Gaussian noise to it of variance α2/b. This is not
exactly SGD but only a model for it.

3.3. Gibbs distribution. We now have a model for SGD as a discrete-time Markov chain.
What is the steady-state distribution of this Markov chain? The answer is given by what is
known as the Gibbs distribution. If we have a Markov chain where each successive update is
given by

X(t+1) = X(t) − α∇f(X(t)) +

√
2

β
ζ(t) (4)

and ζ(t) is a Gaussian random variable with mean zero and variance αI , the Gibbs distribution
is

ρ∞(x) := lim
t→∞

P(X(t+1) = x) =
1

Z(β)
e−βf(x).

The normalization constant Z(β) ensures that the Gibbs distribution is a legitimate probabil-
ity density, i.e.,

∫
ρ∞(x) dx = 1. We therefore have

Z(β) =

∫
e−βf(x) dx.

This distribution exists uniquely under certain technical conditions on f(x) which we will
implicitly assume. None of these conditions however require that f(x) be convex. For our
model of SGD notice that we have

β−1 =
α

2b
.

(picture of Gibbs distribution)

Remark 16. Let us list a few properties of the Gibbs distribution that are apparent simply
by looking at the formula.

• The probability that the iterates of SGD are found at a location x is proportional to
e−βf(x). If the training loss f(x) is high, this probability is low and if the training
loss is low, the probability is high. The Gibbs distribution therefore shows that if

9

we let SGD run until it equilibriates, i.e., the limit t → ∞ is achieved, we have a
high chance of finding the iterates that have a small training loss. This observation
is powerful because it does not require us to assume that f(x) is convex. However
this statement does require the assumption that the steps-size α of SGD does not go
to zero.
• The term β−1 is quite common in physics where it is called the “temperature”. The

temperature β−1 = α
b

governs fundamentally how the Gibbs distribution looks.
Higher the temperature, more the noise in the iterates and vice-versa. As you can
imagine, if there is lots of noise in the SGD updates, if the learning rate α is large or
the batch-size b is small, it is easy for SGD to jump over hills. This is the reason
why the Gibbs distribution will be spread around the entire energy landscape at
high temperatures. The Gibbs distribution is essentially uniform over the entire
state-space and does not care what the loss f(x) at a location is in this case. On the
other hand, if the temperature is very small, the Gibbs distribution cares a lot about
the training loss and the probability of finding SGD at other places diminishes. In
particular, if β →∞, the Gibbs distribution only puts non-zero probability on the
global minima of the loss function f(x).
• Written in another way, if we want the Gibbs distribution to remain the same we

should ensure that
β−1 =

α

2b
is a constant.

If you increased the batch-size by two times, you should also double the learning
rate if you desire that the solutions of SGD are qualitatively similar.
• We have achieved something remarkable by looking at the Gibbs distribution. We

have an algorithm to find the global minimum of a non-convex loss function.
– Start from some initial condition x0

– Take lots of steps of SGD with some fixed step-size α until SGD equilibriates
– Reduce the step-size α, and take lots of steps of SGD again until it equilibriates;
– Repeat the previous step

This is a formal algorithm but it will converge to the global minimum of a non-
convex function f(x). The catch of course is that at each step we have to wait until
SGD equilibriates. Remember that the Gibbs distribution is defined as the limit as
t → ∞, it may take an inordinately long amount of time to SGD to equilibriate.
How much time does it take to equilibriate for a convex loss function?

10

4. ENTROPY-SGD

4.1. Topology of the energy landscape of neural networks. You have probably seen in
previous lectures of this course how the energy landscape of deep networks looks like. Some
key points about the energy landscape.

• Linear neural networks have a unique “valley” even though the shape of this valley
is non-convex (Baldi and Hornik, 1989, Kawaguchi, 2016). If you want to draw
a mental picture of the energy landscape, it kind of looks like the Colorado river
flowing through a gorge

• We know that regularization in general breaks these connected regions. For example,
weight decay will create bias SGD into regions that are closer to the origin.
• For two-layer neural networks, one can show that adding weight decay does not

destroy this connectedness property. This is however quite a special property of the
`2 norm.
• Nonlinear models are generally disconnected. In the case of ReLU non-linearities

with one hidden layer, we can show that if the dimensionality of the hidden layer is
large enough, i.e., if the neural network is fat enough, the level set becomes more
and more connected. More precisely, a path inside Lf (ε + τ) exists between any
two points x1, x2 ∈ Lf (τ) if

ε ≈ p−1/d.

In other words, one has to climb a tiny hill (the height of the hill becomes tinier if p
is large) to go from any point to any other point in the level set. This has not been
shown for deeper networks although it is expected that it is true (Freeman and Bruna,
2016, Venturi et al., 2018).

11

• Neural networks with polynomial activation functions lie somewhere in between
linear neural networks and ones with ReLU non-linearities. We essentially use the
kernel trick to understand this. If the hidden layers of the network are wide enough,
we again have a connected global minimum. Roughly, the bounds indicate that the
number of hidden neurons should be twice the dimensionality of the data.

p ≥ 2d.

Does this hold in practice? The answer is more or less yes for well-performing
networks. The All-CNN network you used in your problem set has some layers that
are wider than d = 3 × 32 × 32 = 3072. One may draw the level set for the loss
function of a deep nonlinear neural network as

• Roughly speaking, the way to understand the energy landscape consists of convexi-
fying the problem and mapping the parameters of the neural network to some other
space where we can use techniques from convexity, e.g., connectedness of the level
sets at all energy levels (remember the over-parametrized one-dimensional example).
• This is what theory tells us. In practice, it seems essentially impossible to detect

local minima. Beware of any sentence in any paper that says “we have an algorithm
for jumping of local minima/we believe the competitor’s algorithm does not work
because it is stuck in local minima and ours is not, etc.”.
• Among the many conjectures in deep learning is that these level sets are quite regular

if the energy/loss is high. They are expected to become more and more irregular as
we approach the global minimum. So effectively, if one were to draw a picture of the
energy landscape of a nonlinear deep neural network, it looks like lakes descending

12

all the way down. The ones at the top are the largest, the ones at the bottom are the
most disconnected.
• It is very important to remember that such a study of over-parametrization does not

tell us anything about the generalization performance of the network. We are simply
making statements about the training error.

4.2. Geometry of the energy landscape of neural networks. We only want to develop an
intuitive understanding of the material here.

Let us consider a simple model: that of a binary perceptron. We are given data xi ∈ {−1, 1}d,
labels yi ∈ {−1, 1} and would like to fit a one layer neural network with sign non-linearities
sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. We want to fit discrete valued weights
w ∈ {−1, 1}d that minimize the errors of the perceptron:

f(w) =

n∑
i=1

1ŷi=yi

where
ŷi = sign(w>xi).

Everything is discrete in this problem. Each weight is ±1, each input neuron is ±1 and so
are the labels yi = ±1. We cannot take the gradient of the loss function f(w) with respect
to w because f(·) is not a continuous function of w. Such problems are called discrete
optimization problems and are typically much harder than continuous optimization problems
which we have seen till now.

Question 17. Can you suggest an algorithm to train a binary perceptron?

Question 18. Are there symmetries in the binary perceptron like those in deep linear
networks?

There are two kinds of questions we are interested in asking for the binary perceptron:

• Given a dataset {xi, yi}i=1,...,n how many different w ∈ {−1, 1}d can fit this dataset.
This is the discrete analog of the size of the lake in the continuous-valued case.
• How different is each of the solution obtained above? Do some solutions generalize

better than others?

In order to understand generalization, we need to first construct a model for the probability
distribution that generates the dataset {xi, yi}i=1,...,n. Here’s a powerful way to think of
generalization. It is called the teacher-student model. We assume that nature, which generates
the data, is also a neural network. Let us say that the neural network that nature uses has
some weights w∗. Nature draws n vectors xi ∈ {−1, 1}d uniformly randomly from this
discrete space and feeds them through its network to get the true labels

yi = sign(w∗>xi).
13

The data is random but the dataset is not random, the labels yi are a function of the specific
w∗ that was chosen by nature

D =
{
xi, sign(w∗>xi)

}
i=1,...,n

.

We are the student, we would like to to fit a binary perceptron w on this dataset. Note that
if we managed to fit w = w∗, we will get perfect generalization, any sample x ∈ {−1, 1}d

will be labeled in exactly the same way by the teacher and the student.

REFERENCES

Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks, 2(1):53–58.

Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade, pages 421–436. Springer.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J.,
Sagun, L., and Zecchina, R. (2016). Entropy-sgd: Biasing gradient descent into wide
valleys. arXiv:1611.01838.

Freeman, C. D. and Bruna, J. (2016). Topology and geometry of half-rectified network
optimization. arXiv preprint arXiv:1611.01540.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in neural
information processing systems, pages 586–594.

Kushner, H. and Yin, G. G. (2003). Stochastic approximation and recursive algorithms and
applications, volume 35. Springer Science & Business Media.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of
mathematical statistics, pages 400–407.

Venturi, L., Bandeira, A. S., and Bruna, J. (2018). Spurious valleys in two-layer neural
network optimization landscapes. arXiv preprint arXiv:1802.06384.

14

	1. Stochastic gradient descent
	2. Convergence rate for SGD
	3. SGD as a Markov process
	3.1. How do our convergence results change if the function is not convex?
	3.2. Markov process for SGD
	3.3. Gibbs distribution

	4. Entropy-SGD
	4.1. Topology of the energy landscape of neural networks
	4.2. Geometry of the energy landscape of neural networks

	References

