
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL., NO., NOVEMBER 2018 1

On Multi-Layer Basis Pursuit, Efficient
Algorithms and Convolutional Neural Networks

Jeremias Sulam, Member, IEEE, Aviad Aberdam, Amir Beck, Michael Elad, Fellow, IEEE

Abstract—Parsimonious representations are ubiquitous in modeling and processing information. Motivated by the recent Multi-Layer
Convolutional Sparse Coding (ML-CSC) model, we herein generalize the traditional Basis Pursuit problem to a multi-layer setting,
introducing similar sparse enforcing penalties at different representation layers in a symbiotic relation between synthesis and analysis
sparse priors. We explore different iterative methods to solve this new problem in practice, and we propose a new Multi-Layer Iterative
Soft Thresholding Algorithm (ML-ISTA), as well as a fast version (ML-FISTA). We show that these nested first order algorithms
converge, in the sense that the function value of near-fixed points can get arbitrarily close to the solution of the original problem.
We further show how these algorithms effectively implement particular recurrent convolutional neural networks (CNNs) that generalize
feed-forward ones without introducing any parameters. We present and analyze different architectures resulting unfolding the iterations
of the proposed pursuit algorithms, including a new Learned ML-ISTA, providing a principled way to construct deep recurrent CNNs.
Unlike other similar constructions, these architectures unfold a global pursuit holistically for the entire network. We demonstrate the
emerging constructions in a supervised learning setting, consistently improving the performance of classical CNNs while maintaining
the number of parameters constant.

Index Terms—Multi-Layer Convolutional Sparse Coding, Network Unfolding, Recurrent Neural Networks, Iterative Shrinkage
Algorithms.

F

1 INTRODUCTION

Sparsity has been shown to be a driving force in a myriad
of applications in computer vision [30], [42], [43], statistics
[38], [39] and machine learning [23], [24], [26]. Most often,
sparsity is often enforced not on a particular signal but
rather on its representation in a transform domain. Formally,
a signal x ∈ Rn admits a sparse representation in terms
of a dictionary D ∈ Rn×m if x = Dγ, and γ ∈ Rm is
sparse. In its simplest form, the problem of seeking for a
sparse representation for a signal, possibly contaminated
with noise w as y = x + w, can be posed in terms of the
following pursuit problem:

min
γ
‖γ‖0 s.t. ‖y −Dγ‖22 ≤ ε,

where the `0 pseudo-norm counts the number of non-zero
elements in γ. The choice of the (typically overcomplete)
dictionary D is far from trivial, and has motivated the
design of different analytic transforms [9], [16], [27] and
the development of dictionary learning methods [2], [30],
[36]. The above problem, which is NP-hard in general, is
often relaxed by employing the `1 penalty as a surrogate for
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the non-convex `0 measure, resulting in the celebrated Basis
Pursuit De-Noising (BPDN) problem1:

min
γ

λ‖γ‖1 +
1

2
‖y −Dγ‖22. (1)

The transition from the `0 to the relaxed `1 case is by
now well understood, and the solutions to both problems
do coincide under sparse assumptions on the underlying
representation (in the noiseless case), or have shown to be
close enough in more general settings [17], [41].

This traditional model was recently extended to a multi-
layer setting [1], [34], where a signal is expressed as x =
D1γ1, for a sparse γ1 ∈ Rm1 and (possibly convolutional)
matrix D1, while also assuming that this representation sat-
isfies γ1 = D2γ2, for yet another dictionary D2 ∈ Rm1×m2

and sparse γ2 ∈ Rm2 . Such a construction can be cascaded
for a number of L layers2. Under this framework, given the
measurement y, this multi-layer pursuit problem (or Deep
Coding Problem, as first coined in [34]), can be expressed as

min
{γi}
‖y −D1γ1‖22 s.t. {γi−1 = Diγi, ‖γi‖0 ≤ si}Li=1 ,

(2)

with x = γ0. In this manner, one searches for the closest
signal to y while satisfying the model assumptions. This can

1. This problem is also known in the statistical learning community as
Least Absolute Shrinkage and Selection Operator (LASSO) [38], where
the matrix D is given by a set of measurements or descriptors, in the
context of a sparse regression problem.

2. In the convolutional setting [35], [37], the notion of sparsity is
better characterized by the `0,∞ pseudo-norm, which quantifies the
density of non-zeros in the convolutional representations in a local sense.
Importantly, however, the BPDN formulation (i.e., employing an `1
penalty), still serves as a proxy for this `0,∞ norm. We refer the reader
to [35] for a thorough analysis of convolutional sparse representations.
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be understood and analyzed as a projection problem [37],
providing an estimate such that x̂ = D1γ̂1 = D1D2γ̂2 =
· · · = D(1,L)γ̂L, while forcing all intermediate representa-
tions to be sparse. Note the notation D(i,L) = Di . . .DL for
brevity. Remarkably, the forward pass of neural networks
(whose weights at each layer, Wi, are set as the transpose
of each dictionary Di) yields stable estimations for the
intermediate features or representations γ̂i provided these
are sparse enough [34]. Other generative models have also
been recently proposed (as the closely related probabilistic
framework in [?], [?]), but the multi-layer sparse model pro-
vides a convenient way to study deep learning architectures
in terms of pursuit algorithms [?].

As an alternative to the forward pass, one can address
the problem in Equation (1) by adopting a projection in-
terpretation and develop an algorithm based on a global
pursuit, as in [37]. More recently, the work in [1] showed
that this problem can be cast as imposing an analysis prior
on the signal’s deepest sparse representation. Indeed, the
problem in (1) can be written concisely as:

min
{γi}

‖y −D(1,L)γL‖22 (3)

s.t. ‖γL‖0 ≤ sL,
{
‖D(i,L)γL‖0 ≤ si−1

}L
i=1

.

This formulation explicitly shows that the intermediate dic-
tionaries D(i,L) play the role of analysis operators, resulting
in a representation γL which should be orthogonal to as
many rows from D(i,L) as possible – so as to produce zeros
in γi. Interestingly, this analysis also allows for less sparse
representations in shallower layers while still being con-
sistent with the multi-layer sparse model. While a pursuit
algorithm addressing (1) was presented in [1], it is greedy
in nature and does not scale to high dimensional signals.
In other words, there are currently no efficient pursuit algo-
rithms for signals in this multi-layer model that leverage this
symbiotic analysis-synthesis priors. More importantly, it is
still unclear how the dictionaries could be trained from real
data under this scheme. These questions are fundamental
if one is to bridge the theoretical benefits of the multi-layer
sparse model with practical deep learning algorithms.

In this work we propose a relaxation of the problem
in Equation (1), turning this seemingly complex pursuit
into a convex multi-layer generalization of the Basis Pur-
suit (BP) problem3. Such a formulation, to the best of our
knowledge, has never before been proposed nor studied,
though we will comment on a few particular and related
cases that have been of interest to the image processing
and compressed sensing communities. We explore differ-
ent algorithms to solve this multi-layer problem, such as
variable splitting and the Alternating Directions Method of
Multipliers (ADMM) [6], [8] and the Smooth-FISTA from
[5], and we will present and analyze two new general-
izations of Iterative Soft Thresholding Algorithms (ISTA).
We will further show that these algorithms generalize feed-
forward neural networks (NNs), both fully-connected and
convolutional (CNNs), in a natural way. More precisely:
the first iteration of such algorithms implements a tradi-
tional CNN, while a new recurrent architecture emerges

3. In an abuse of terminology, and for the sake of simplicity, we will
refer to the BPDN problem in Equation (1) as BP.

with subsequent iterations. In this manner, the proposed
algorithms provide a principled framework for the design
of recurrent architectures. While other works have indeed
explored the unrolling of iterative algorithms in terms of
CNNs (e.g. [33], [44]), we are not aware of any work that
has attempted nor studied the unrolling of a global pursuit
with convergence guarantees. Lastly, we demonstrate the
performance of these networks in practice by training our
models for image classification, consistently improving on
the classical feed-forward architectures without introducing
filters nor any other extra parameters in the model.

2 MULTI-LAYER BASIS PURSUIT

In this work we propose a convex relaxation of the problem
in Equation (1), resulting in a multi-layer BP problem. For
the sake of clarity, we will limit our formulations to two
layers, but these can be naturally extended to multiple layers
– as we will effectively do in the experimental section. This
work is centered around the following problem:

(P ) : min
γ

1

2
‖y −D1D2γ‖22 + λ1‖D2γ‖1 + λ2‖γ‖1. (4)

This formulation imposes a particular mixture of syn-
thesis and analysis priors. Indeed, if λ2>0 and λ1 = 0,
one recovers a traditional Basis Pursuit formulation with
a factorized global dictionary. If λ1 > 0, however, an
analysis prior is enforced on the representation γ by means
of D2, resulting in a more regularized solution. Note that
if λ2 = 0, λ1 > 0 and kerD2 is not empty, the problem
above becomes ill-posed without a unique solution4 since
kerD(1,2) ∩ kerD2 6= {0}. In addition, unlike previous
interpretations of the multi-layer sparse model ( [1], [34],
[37]), our formulation stresses the fact that there is one
unknown variable, γ, with different priors enforced on it.
Clearly, one may also define and introduce γ1 = D2γ,
but this should be interpreted merely as the introduction of
auxiliary variables to aid the derivation and interpretation
of the respective algorithms. We will expand on this point
in later sections.

Other optimization problems similar to (P ) have in-
deed been proposed, such as the Analysis-LASSO [10], [28],
though their observation matrix and the analysis operator
(D(1,2) and D2, in our case) must be independent, and the
latter is further required to be a tight frame [10], [28]. The
Generalized Lasso problem [40] is also related to our multi-
layer BP formulation, as we will see in the following section.
On the other hand, and in the context of image restoration,
the work in [7] imposes a Total Variation and a sparse prior
on the unknown image, as does the work in [21], thus being
closely related to the general expression in (2).

2.1 Algorithms

From an optimization perspective, our multi-layer BP prob-
lem can be expressed more generally as

min
γ

F (γ) = f(D2γ) + g1(D2γ) + g2(γ), (5)

4. It is true that also in Basis Pursuit one can potentially obtain infinite
solutions, as the problem is not strongly convex.
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Algorithm 1 ADMM algorithm for a two-layer ML-CSC
model.
Input: signal y, dictionaries Di and parameters λi

1: while not converged do

2:
γ2 ← argminγ2 ‖y −D1D2γ2‖22

+ ρ
2‖γ1 −D2γ2 + u‖22 + λ2‖γ2‖1

3: γ1 ← argminγ1

ρ
2‖γ1 −D2γ2 + u‖22 + λ1‖γ1‖1

4: u← u+ ρ(γ1 −D2γ2)

where f is convex and smooth, and g1 and g2 are convex
but non-smooth. For the specific problem in (2), f(z) =
1
2‖y − D1z‖22, g1(z) = λ1‖z‖1 and g2(z) = λ2‖z‖1. Since
this problem is convex, the choice of available algorithms
is extensive. We are interested in high-dimensional set-
tings, however, where interior-point methods and other
solvers depending on second-order information might have
a prohibitive computational complexity. In this context, the
Iterative Soft Thresholding Algorithm (ISTA), and its Fast
version (FISTA), are appealing as they only require matrix-
vector multiplications and entry-wise operations. The for-
mer, originally introduced in [15], provides convergence (in
function value) of order O(1/k), while the latter provides
an improved convergence rate with order of O(1/k2) [4].

Iterative shrinkage algorithms decompose the total loss
into two terms: f(γ), convex and smooth (with Lipschitz
constant L), and g(γ), convex and possibly non smooth.
The central idea of ISTA, as a proximal gradient method for
finding a minimizer of f + g, is to iterate the updates given
by the proximal operator of g(·) at the forward-step point:

γk+1 = prox 1
L g

(
γk − 1

L
∇f(γk)

)
. (6)

Clearly, the appeal of ISTA depends on how effectively the
proximal operator can be computed. When g(γ) = λ‖γ‖1
(as in the original BP formulation), such a proximal mapping
becomes separable, resulting in the element-wise shrink-
age or soft-thresholding operator. However, this family of
methods cannot be readily applied to (P ) where g(γ) =
λ1‖D2γ‖1+λ2‖γ‖1. Indeed, computing proxg(γ) when g(·)
is a sum of `1 composite terms is no longer directly separable,
and one must resort to iterative approaches, making ISTA
lose its appeal.

The problem (P ) is also related to the Generalized Lasso
formulation [40] in the compressed sensing community,
which reads

min
γ

1

2
‖y −Xγ‖22 + ν‖Aγ‖1. (7)

Certainly, the multi-layer BP problem we study can be seen
as a particular case of this formulation5. With this insight,
one might consider solving (P ) through the solution of the
generalized Lasso [40]. However, such an approach also
becomes computationally demanding as it boils down to
an iterative algorithm that includes the inversion of linear
operators. Other possible solvers might rely on re-weighted
`2 approaches [11], but these also require iterative matrix
inversions.

5. One can rewrite problem (2) as in (2.1) by making X = D(1,L) and
A = [λ1/νDT

2 , λ2/νI]
T .

A simple way of tackling problem (P ) is the popular Al-
ternating Directions Method of Multipliers (ADMM), which
provides a natural way to address these kind of problems
through variable splitting and auxiliary variables. For a
two layer model, one can rewrite the multi-layer BP as a
constrained minimization problem:

min
γ1,γ2

1

2
‖y −D1D2γ2‖22 + λ1‖γ1‖1 + λ2‖γ2‖1

s.t. γ1 = D2γ2.

ADMM minimizes this constrained loss by constructing an
augmented Lagrangian (in normalized form) as

min
γ1,γ2,u

1

2
‖y −D1D2γ2‖22 + λ1‖γ1‖1

+ λ2‖γ2‖1 +
ρ

2
‖γ1 −D2γ2 + u‖22,

which can be minimized iteratively by repeating the updates
in Algorithm 1. This way, and after merging both `2 terms,
the pursuit of the inner-most representation (γ2 in this case)
is carried out in terms of a regular BP formulation that
can be tackled with a variety of convex methods, including
ISTA or FISTA. The algorithm then updates the interme-
diate representations (γ1) by a simple shrinkage operation,
followed by the update of the dual variable, u. Note that this
algorithm is guaranteed to converge (at least in the sequence
sense) to a global optimum of (P ) due to the convexity of
the function being minimized [6], [8].

A third alternative, which does not incur in an addi-
tional inner iteration nor inversions, is the Smooth-FISTA
approach from [5]. S-FISTA addresses cost functions of the
same form as problem (P ) by replacing one of the non-
smooth functions, g1(γ) in Eq. (2.1), by a smoothed version
in terms of its Moreau envelope. In this way, S-FISTA con-
verges with order O(1/ε) to an estimate that is ε-away from
the solution of the original problem in terms of function
value. We will revisit this method further in the following
sections.

Before moving on, we make a short intermission to note
here that other Basis Pursuit schemes have been proposed in
the context of multi-layer sparse models and deep learning.
Already in [34] the authors proposed the Layered Basis
Pursuit, which addresses the sequence of pursuits given by

γ̂i ← argmin
γi

‖γ̂i−1 −Diγi‖22 + λi‖γi‖1,

from i = 1 to L, where γ0 = y. Clearly, each of these can be
solved with any BP solver just as well. A related idea was
also recently proposed in [?], showing that cascading basis
pursuit problems can lead to competitive deep learning con-
structions. However, the Layered Basis Pursuit formulation,
or other similar variations that attempt to unfold neural
network architectures [33], [44], do not minimize (P ) and
thus their solutions only represent sub-optimal and heuristic
approximations to the minimizer of the multi-layer BP. More
clearly, such a series of steps never provide estimates γ̂i that
can generate a signal according to the multi-layer sparse
model. As a result, one cannot reconstruct x̂ = D(1,L)γ̂L,
because each representation is required to explain the next
layer only approximately, so that γ̂i−1 6= Diγ̂i.
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2.2 Towards Multi-Layer ISTA

We now move to derive the proposed approach to efficiently
tackle (P ) while relying on the concept of the gradient
mapping (see for example [3, Chapter 10]), which we briefly
review next. Given a function F (γ) = f(γ) + g(γ), where
f is convex and smooth with Lipschitz constant L and g is
convex, the gradient mapping is the operator given by

Gf,gL (γ) = L

[
γ − prox 1

L g

(
γ − 1

L
∇f(γ)

)]
.

Naturally, the ISTA update step in Equation (2.1) can be
seen as a “gradient-mapping descent” step, since it can be
rewritten as γk+1 = γk − 1

LG
f,g
L (γ). Moreover, Gf,gL (γ)

provides a sort of generalization of the gradient of F (γ),
since

1) Gf,gL (γ) = ∇F (γ) = ∇f(γ) if g(γ) ≡ 0,
2) Gf,gL (γ) = 0 if and only if γ is a minimizer of F (γ).

We refer the reader to [3, Chapter 10] for further details on
gradient mapping operators.

Returning to the problem in (2.1), our first attempt to
minimize F (γ2) = f(D2γ2) + g1(D2γ2) + g2(γ2) is a
proximal gradient-mapping method, and it takes an update
of the following form:

γk+1
2 = proxtg2

(
γk2 − t G

f(·),g1(D2·)
1/µ (γk2 )

)
,

for constants µ > 0 and t > 0 that will be specified
shortly. This expression, however, requires the computation
of proxg1(D2·)(·), which is problematic as it involves a
composite term6. To circumvent this difficulty, we propose
the following approximation in terms of γ1 = D2γ2. In the
spirit of the chain rule7, we modify the previous update to

γk+1
2 = proxtg2

(
γk2 − t DT

2 G
f,g1
1/µ (γ

k
1 )
)
. (8)

Importantly, the above update step now involves the prox
of g1(·) as opposed to that of g1(D2·). This way, in the
case of g1(·) = λ1‖ · ‖1, the proximal mapping of g1 be-
comes the soft-thresholding operator with parameter λ1, i.e.
proxg1(γ1) = Tλ1(γ1). An analogous operator is obtained
for proxg2 just as well. Therefore, the proposed Multi-Layer
ISTA update can be concisely written as

γk+1
2 = Ttλ2

(
γk2 − t

µD
T
2

(
γk1 − Tµλ1

(γk1 − µDT
1 (D1γ

k
1 − y))

))
.

(9)
A few comments are in place. First, this algorithm results

in a nested series of shrinkage operators, involving only
matrix-vector multiplications and entry-wise non linear op-
erations. Note that if λ1 = 0, i.e. in the case of a traditional
Basis Pursuit problem, the update above reduces to the
update of ISTA. Second, though seemingly complicated at
first sight, the resulting operator in (2.2) can be decomposed
into simple recursive layer-wise operations, as presented in
Algorithm 2. Lastly, because the above update provides a
multi-layer extension to ISTA, one can naturally suggest a

6. The proximal of a composition with an affine map is only available
for unitary linear transformations. See [3, Chapter 10] and [13] for
further details.

7. The step taken to arrive at Equation (2.2) is not actually the chain
rule, as the gradient mapping Gf,gL is not necessarily a gradient of a
smooth function.

“fast version” of it by including a momentum term, just as
done by FISTA. In other words, ML-FISTA will be given by
the iterations

γk+1
2 = proxtg2

(
zk − tDT

2G
f,g1
1/µ (D2z

k)
)
, (10)

zk+1 = γk+1
2 + ρk(γk+1

2 − γk2 ),

where ρk = tk−1
tk+1

, and the tk parameter is updated accord-

ing to tk+1 =
1+
√

1+4t2k
2 . Clearly, one can also write this

algorithm in terms of layer-wise operations, as described in
Algorithm 3.

Algorithm 2 Multi-Layer ISTA.
Input: signal y, dictionaries Di and parameters λi.

Init: Set γk0 = y ∀ k and γ1
L = 0.

1: for k = 1 : K do % for each iteration

2: γ̂i ← D(i,L)γ
k
L ∀i ∈ [0, L− 1]

3: for i = 1 : L do % for each layer

4: γk+1
i ← Tµiλi

(
γ̂i − µiDT

i (Diγ̂i − γk+1
i−1 )

)

Algorithm 3 Multi-Layer FISTA.
Input: signal y, dictionaries Di and parameters λi.

Set γk0 = y ∀ k and z = 0.

1: for k = 1 : K do % for each iteration

2: γ̂i ← D(i,L)z ∀i ∈ [0, L− 1]

3: for i = 1 : L do % for each layer

4: γk+1
i ← Tµiλi

(
γ̂i − µiDT

i (Diγ̂i − γk+1
i−1 )

)
5: tk+1 ←

1+
√

1+4t2
k

2

6: z← γk+1
L + tk−1

tk+1
(γk+1
L − γkL)

2.3 Convergence Analysis of ML-ISTA
One can then inquire – does the update in Equation (2.2)
provide convergent algorithm? Does the successive itera-
tions minimize the original loss function? Though these
questions have been extensively studied for proximal gradi-
ent methods [4], [13], algorithms based on a proximal gradi-
ent mapping have never been proposed – let alone analyzed.
Herein we intend to provide a first theoretical analysis of
the resulting multi-layer thresholding approaches.

Let us formalize the problem assumptions, recalling that
we are interested in

(P ) : min
γ

F (γ) = f(D2γ) + g1(D2γ) + g2(γ),

where f : Rm1 → R is a quadratic convex function,
g1 : Rm1 → R is a convex and Lipschitz continuous function
with constant `g1 and g2 : Rm2 → (−∞,∞] is a proper
closed and convex function that is `g2 -Lipschitz continuous
over its domain. Naturally, we will assume that both g1
and g2 are proximable, in the sense that proxαg1(γ) and
proxαg2(γ) can be efficiently computed for any γ and α > 0.
We will further require that g2 has a bounded domain8.

8. This can be easily accommodated by adding to g2 a norm bound
constraint in the form of an indicator function δB[0,R], for some large
enough R > 0.
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More precisely, dom(g2) ⊆ {γ2 : ‖γ2‖2 ≤ R}. We denote
R1 = ‖D2‖2R, so that γ2 ∈ dom(g2) =⇒ γ1 = D2γ2

satisfies ‖γ1‖2 ≤ R1.
Note also that the convex and smooth function f can be

expressed as f(γ1) = 1
2γ

T
1 Qγ1 + bTγ1 + c, for a positive

semi-definite matrix Q = DT
1 D1. The gradient of f can then

easily be bounded by

‖∇f(γ1)‖2 ≤M ≡ ‖Q‖2R1 + ‖b‖2, (11)

for any γ1 = D2γ2 with γ2 ∈ dom(g2).
It is easy to see that the algorithm in Equation (2.2)

does not converge to the minimizer of the problem (P ) by
studying its fixed point. The point γ?2 is a fixed point of
ML-ISTA if

∃ w2 ∈ ∂g2(γ?2 ),w1 ∈ ∂g1(γ̂1)

such that DT
2∇f(D2γ

?
2 ) +DT

2 w1 +w2 = 0,

where γ̂1 = proxg1µ(D2γ
?
2 − µ∇f(D2γ

?
2 )). We extend on

the derivation of this condition in Section 5.1. This is clearly
different from the optimality conditions for problem (P ),
which is

∃ w2 ∈ ∂g2(γ?2 ),w1 ∈ ∂g1(D2γ
?
2 )

such that DT
2∇f(D2γ

?
2 ) +DT

2 w1 +w2 = 0.

Nonetheless, we will show that the parameter µ controls the
proximity of “near”-fixed points to the optimal solution in
the following sense: as µ gets smaller, the objective function
of a fixed-point of the ML-ISTA method gets closer to Fopt,
the minimal value of F (γ). In addition, for points that
satisfy the fixed point equation up to some tolerance ε > 0,
the distance to optimality in terms of the objective function
is controlled by both µ and ε.

We first present the following lemma, stating that the
norm of the gradient mapping operator is bounded. For
clarity, we defer the proof of this lemma, as well as that
of the following theorem, to Section 5.

Lemma 2.1. For any µ > 0 and γ1 ∈ Rm1 ,∥∥Gf,g11/µ (γ1)
∥∥
2
≤M + `g1 .

We now move to our main convergence result. In a
nutshell, it states that the distance from optimality in terms
of the objective function value of ε-fixed points is bounded
by constants multiplying ε and µ.

Theorem 2.2. Let9 µ ∈
(
0, 1
‖Q‖2

)
, t ∈

(
0, 4µ

3‖D2‖2

)
, and

assume γ̃2 ∈ dom(g2) and γ̃1 = D2γ̃2. If

1

t

∥∥∥γ̃2 − proxtg2
(
γ̃2 − t DT

2G
f,g1
1/µ (γ̃1)

)∥∥∥
2
≤ ε,

then
F (α)− Fopt ≤ ηε+ (β + κt)µ,

where Fopt ≡ minγ2
F (γ2),

α = proxtg2
(
γ̃2 − tDT

2G
f,g1
1/µ (γ̃1)

)
,

9. For a matrix A, ‖A‖2 denotes the spectral norm of A: ‖A‖2 =√
λmax(ATA), where λmax(·) stands for the maximal eigenvalue of

its argument.

and

η = 2R, (12)

β = 2R‖D2‖2‖Q‖2(M + `g1) + ‖Q‖22R2
1

+ 2‖b‖2‖Q‖2R1 + `2g1 + 2`g1M,

κ = ‖D2‖2 (‖D2‖2(M + `g1) + `g2) ‖Q‖2(M + `g1).

A consequence of this result is the following.

Corollary 2.2.1. Suppose {γk2 } is the sequence generated by ML-
ISTA with µ ∈

(
0, 1
‖D1‖22

)
and t ∈

(
0, 4µ

3‖D2‖2

)
. If ‖γk+1

2 −
γk2 ‖2 ≤ tε, then

F (γk+1
2 )− Fopt ≤ ηε+ (β + κt)µ,

where η, β and κ are those given in (2.2).

An additional consequence of Theorem 2.2 is an analo-
gous result for ML-FISTA. Recall that ML-FISTA introduces
a momentum term to the update provided by ML-ISTA, and
can be written as

γk+1
2 = proxtg2

(
zk − tDT

2G
f,g1
1/µ (D2z

k)
)
, (13)

zk+1 = γk+1
2 + ρk(γk+1

2 − γk2 ).

We have the following result.

Corollary 2.2.2. Let µ ∈
(
0, 1
‖Q‖2

)
and t ∈

(
0, 4µ

3‖D2‖2

)
, and

assume that {γk2 } and {zk} are the sequences generated by ML-
FISTA according to Equation (2.3). If

‖zk − γk+1
2 ‖2 ≤ tε,

then
F (γk+1

2 )− Fopt ≤ ηε+ (β + κt)µ,

where the constants η, β and κ are defined in (2.2).

Before moving on, let us comment on the significance
of these results. On the one hand, we are unaware of any
results for proximal gradient-mapping algorithms, and in
this sense, the analysis above presents a first result of its
kind. On the other hand, the analysis does not provide a
convergence rate, and so they do not reflect any benefits
of ML-FISTA over ML-ISTA. As we will see shortly, the
empirical convergence of these methods significantly differ
in practice.

2.4 Synthetic Experiments

We now carry a series of synthetic experiments to demon-
strate the effectiveness of the multi-layer Basis Pursuit prob-
lem, as well as the proposed iterative shrinkage methods.

First, we would like to illustrate the benefit of the
proposed multi-layer BP formulation when compared to
the traditional sparse regression problem. In other words,
exploring the benefit of having λ1 > 0. To this end,
we construct a two layer model with Gaussian matrices
D1 ∈ Rn×m1 and D2 ∈ Rm1×m2 , (n = 50,m1 = 70,
m2 = 60). We construct our signals by obtaining represen-
tation γ2 with ‖γ2‖0 = 30 and ‖γ1‖0 = 42, following the
procedure described in [1], so as to provide representations
consistent with the multi-layer sparse model. Lastly, we
contaminate the signals with Gaussian i.i.d. noise creating
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Figure 1. Recovery error for γ1 and γ2 employing BP (λ1 = 0) and Multi-Layer BP (λ1 > 0).
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Figure 2. Comparison of different solvers for Multi-Layer Basis Pursuit in terms of objective value (left) and distance to optimal solution (right).

the measurements y = x + w with SNR=10. We compare
minimizing (P ) with λ1 = 0 (which accounts to solving
a classical BP problem) with the case when λ1 > 0, as a
function of λ2 when solved with ISTA and ML-ISTA. As can
be seen from the results in Figure 1, enforcing the additional
analysis penalty on the intermediate representation can
indeed prove advantageous and provide a lower recovery
error in both γ2 and γ1. Clearly, this is not true for any
value of λ1, as the larger this parameter becomes, the larger
the bias will be in the resulting estimate. For the sake of
this demonstration we have set λ1 as the optimal value
for each λ2 (with grid search). The theoretical study of the
conditions (in terms of the model parameters) under which
λ1 > 0 provides a better recovery, and how to determine
this parameter in practice, are interesting questions that we
defer to future work.

We also employ this synthetic setup to illustrate the
convergence properties of the main algorithms presented
above: ADMM (employing either ISTA or FISTA for the

inner BP problem), the Smooth-FISTA [5] and the proposed
Multi-Layer ISTA and Multi-Layer FISTA. Once again, we
illustrate these algorithms for the optimal choice of λ1 and
λ2 from the previous experiment, and present the results in
Figure 2. We measure the convergence in terms of function
value for all methods, as well as the convergence to the
solution found with ADMM run until convergence.

ADMM converges in relatively few iterations, though
these take a relatively long time due to the inner BP solver.
This time is reduced when using FISTA rather than ISTA (as
the inner solver converges faster), but it is still significantly
slower than any of the other alternatives - even while using
warm-start at every iteration, which we employ in these
experiments.

Both S-FISTA and our multi layer solvers depend on a
parameter that controls the accuracy of their solution and
affect their convergence speed – the ε for the former, and
the µ for the latter approaches. We set these parameters so
as to obtain roughly the same accuracy in terms of recovery
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Figure 3. ML-ISTA (top) and ML-FISTA (bottom) evaluation for different values of the parameter µ.

error, and compare their convergence behavior. We can see
that ML-FISTA is clearly faster than ML-ISTA, and slightly
slightly faster than S-FISTA. Lastly, in order to demonstrate
the effect of µ in ML-ISTA and ML-FISTA, we run the same
algorithms for different values of this parameter (in de-
creasing order and equispaced in logarithmic scale between
10−2.5 and 1) for the same setting, and present the results in
Figure 3 for ML-ISTA (top) and ML-FISTA (bottom). These
numerical results illustrate the theoretical analysis provided
by Theorem 2.2 in that the smaller µ, the more accurate
the solution becomes, albeit requiring more iterations to
converge. These results also reflect the limitation of our
current theoretical analysis, which is incapable of providing
insights into the convergence rate.

3 PRINCIPLED RECURRENT NEURAL NETWORKS

As seen above, the ML-ISTA and ML-FISTA schemes pro-
vide efficient solvers for problem (P ). Interestingly, if one
considers the first iteration of either of the algorithms (with

γ0
L = 0), the update of the inner most representation results

in
γ2 ←

t

µ
Ttλ2

(
DT

2 Tµλ1
(µDT

1 (y))
)
, (14)

for a two-layer model, for instance. If one further imposes
a non-negativity assumption on the representation coeffi-
cients, the thresholding operators Tλ become non-negative
projections shifted by a bias of λ. Therefore, the above soft-
thresholding operation can be equivalently written as

γ2 ← ReLU
(
DT

2 ReLU(DT
1 y + b1) + b2

)
where the biases vectors b1 and b2 account for the corre-
sponding thresholds10. Just as pointed out in [34], this is
simply the forward pass in a neural network. Moreover, all
the analysis presented above holds also in the case of convo-

10. Note that this expression is more general in that it allows for
different thresholds per atom, as opposed the expression in (3). The
latter can be recovered by setting every entry in the bias vector to be
λi.
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lutional dictionaries, where the dictionary atoms are nothing
but convolutional filters (transposed) in a convolutional
neural network. Could we benefit from this observation to
improve on the performance of CNNs?

In this section, we intend to demonstrate how, by in-
terpreting neural networks as approximation algorithms of
the solution to a Multi-Layer BP problem, one can boost
the performance of typical CNNs without introducing any
parameters in the model. To this end, we will first impose a
generative model on the features γL in terms of multi-layer
sparse convolutional representations; i.e., we assume that
y ≈ D(1,L)γL, for convolutional dictionaries Di. Further-
more, we will adopt a supervised learning setting in which
we attempt to minimize an empirical risk over N training
samples of signals yi with labels hi. A classifier ζθ(γ∗), with
parameters θ, will be trained on estimates of said features
γ∗(y) obtained as the solution of the ML-BP problem; i.e.

min
θ,{Di,λi}

1

N

N∑
1=1

L (hi, ζθ(γ∗)) s.t.

γ∗ = argmin
γ
‖y−D(1,L)γ‖22+

L−1∑
i=1

λi‖D(i+1,L)γ‖1+λL‖γ‖1.

(15)

The function L is a loss or cost function to be minimized
during training, such as the cross entropy which we employ
for the classification case. Our approach to address this bi-
level optimization problem is to approximate the solution of
the lower-level problem by k iterations of the ML-ISTA ap-
proaches – effectively implemented as k layers of unfolded
recurrent neural networks. This way, γ∗ becomes a straight-
forward function of y and the model parameters (Di and
λi), which can be plugged into the loss function L. A similar
approach is employed by Task Driven Dictionary Learning
[29] in which the constraint is a single layer BP (i.e. L = 1)
that is solved with LARS [18] until convergence, resulting in
a more involved algorithm.

Importantly, if only one iteration is employed for the
ML-ISTA, and a linear classifier11 is chosen for ζθ(γ∗), the
problem in (3) boils down exactly to training a CNN to
minimize the classification loss L. Naturally, when consid-
ering further iterations of the multi-layer pursuit, one is
effectively implementing a recurrent neural network with
“skip connections”, as depicted in Figure 4 for a two-layer
model. These extended networks, which can become very
deep, have exactly as many parameters as their traditional
forward-pass counterparts – namely, the dictionaries Di,
biases λi and classifier parameters θ. Notably, and unlike
other popular constructions in the deep learning community
(e.g., Residual Neural Networks [22], DenseNet [25], and
other similar constructions), these recurrent components
and connections follow a precise optimization justification.

The concept of unfolding an iterative sparse coding
algorithm is clearly not new. The first instance of such
an idea was formalized by the Learned ISTA (LISTA)
approach [20]. LISTA decomposes the linear operator of
ISTA in terms of 2 matrices, replacing the computation of

11. Or, in fact, any other neural-network-based classifier acting on the
obtained features.

Tλ
(
γ − ηDT (Dγ − y)

)
by

Tλ (Wγ +By) , (16)

following the equivalences W = I − ηDTD and B = DT .
Then, it adaptively learns these new operators instead of
the initial dictionary D in order to provide estimates γ̂
that approximate the solution of ISTA. Interestingly, such
a decomposition allows for the acceleration of ISTA [32],
providing an accurate estimate in very few iterations. A
natural question is, then, could we propose an analogous
multi-layer Learned ISTA?

There are two main issues that need to be resolved if one
is to propose a LISTA-like decomposition in the framework
of our multi-layer pursuits. The first one is that the decom-
position in (3) has been proposed and analyzed for general
matrices (i.e., fully-connected layers in a CNN context), but
not for convolutional dictionaries. If one was to naively
propose to learn such an (unconstrained) operator W, this
would result in an enormous amount of added parameters.
To resolve this point, in the case where D is a convolutional
dictionary (as in CNNs) we propose a decomposition of the
form

Tλ
(
(I−WTW)γ +By

)
,

where W is also constrained to be convolutional, thus
controlling the number of parameters12. In fact, the number
of parameters in a layer of this ML-LISTA is simply twice as
many parameters as the conventional case, since the number
of convolutional filters in W and B (and their dimensions)
are equal to those in D.

The second issue is concerned with the fact that LISTA
was proposed as a relaxation of ISTA – a pursuit tackling a
single layer pursuit problem. To accommodate a similar de-
composition in our multi-layer setting, we naturally extend
the update to:

γ̂1 ← Tλ1

(
(I−WT

1 W1)γ
k
1 +B1y

)
, (17)

γk+1
2 ← Tλ2

(
(I−WT

2 W2)γ
k
2 +B2γ̂1

)
,

for a two-layer model for simplicity. In the context of the
supervised classification setting, the learning of the dictio-
naries Di is replaced by learning the operators Wi and Bi.
Note that this decomposition prevents us from obtaining the
dictionaries Di, and so we use13 γk1 = BT

2 γ
k
2 in Equation (3).

4 EXPERIMENTS

In this final section, we show how the presented algorithms
can be used for image classification on three common
datasets: MNIST, SVHN and CIFAR10, while improving
the performance of CNNs without introducing any extra
parameters in the model. Recalling the learning formulation
in Equation (3), we will compare different architectures
resulting from different solvers for the features γ∗. As
employing only one iteration of the proposed algorithms

12. For completeness, we have also tested the traditional decompo-
sition proposed in Equation (3), resulting in worse performance than
that of ML-ISTA – likely due to the significant increase in the number
of parameters discussed above.

13. An alternative is to employ γk1 = W2γk2 , but this choice was
shown to perform slightly worse in practice.
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Figure 4. ML-ISTA graph interpretation for a two layer model as a recurrent neural network (top), and its unfolded version for 2 iterations (bottom).

recovers a traditional feed-forward network, we will employ
such a basic architecture as our baseline and compare it with
the Multi Layer ISTA and FISTA, for different number of
iterations or unfoldings. Also for this reason, we deliberately
avoid using training “tricks” popular in the deep learning
community, such as batch normalization, drop-out, etc., so
as to provide clear experimental setups that facilitate the
understanding and demonstration of the presented ideas.

For the MNIST case, we construct a standard (LeNet-
style) CNN with 3 convolutional layers (i.e., dictionaries)
with 32, 64 and 512 filters, respectively14, and a final fully-
connected layer as the classifier ζ(γ∗). We also enforce non-
negativity constraints on the representations, resulting in
the application of ReLUs and biases as shrinkage operators.
For SVHN we use an analogous model, though with three
input channels and slightly larger filters to accommodate
the larger input size. For CIFAR, we define a ML-CSC model
with 3 convolutional layers, and the classifier function ζ(γ∗)
as a three-layer CNN. This effectively results in a 6 layers
architecture, out of which the first three are unfolded in the
context of the multi-layer pursuits. All models are trained
with SGD with momentum, decreasing the learning rate
every so many iterations. In particular, we make use of a
PyTorch implementation, and training code is made avail-
able15 online.

In order to demonstrate the effect of the ML-ISTA it-
erations (or unfoldings), we first depict the test error as a
function of the training epochs for different number of such
iterations in Figure 5. Recall that the case of 0 unfoldings cor-
responds to the typical feed-forward CNN, while the case
with 6 unfoldings effectively implements a 18-layers-deep
architecture, alas having the same number of parameters.
As can be seen, further unfoldings improve on the resulting
performance.

Moving to a more complete comparison, we demonstrate
the ML-ISTA and ML-FISTA architectures when compared
to some of the models mentioned above; namely:

14. Kernel sizes of 6× 6, 6× 6 and 4× 4, respectively, with stride of
2 in the first two layers.

15. Available through the first author’s website.
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Figure 5. Training ML-ISTA for different number of unfoldings, on CI-
FAR10. The case of 0 unfoldins corresponds to the traditional feed-
forward convolutional network. All networks have the same number of
parameters.

• ML-LISTA: replacing the learning of the convolu-
tional dictionaries (or filters) by the learning of the
(convolutional) factors Wi and Bi, as indicated in
Equation (3).

• Layered Basis Pursuit: the approach proposed in [34],
which unrolls the iteration of ISTA for a single-layer
BP problem at each layer. In contrast, the proposed
ML-ISTA/FISTA unrolls the iterations of the entire
Multi-Layer BP problem.

• An “All-Free” model: What if one ignores the genera-
tive model (and the corresponding pursuit interpre-
tation) and simply frees all the filters to be adaptively
learned? In order to study this question, we train a
model with the same depth and an analogous re-
current architecture as the unfolded ML-ISTA/FISTA
networks, but where all the filters of the different
layers are free to be learned and to provide the best
possible performance.

It is worth stressing that the ML-ISTA, ML-FISTA and Lay-
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Figure 6. Comparison of different architectures on the SVHN dataset, with a feed-forward network as baseline. All networks have the same number
of parameters.

ered BP have all the same number of parameters as the feed-
forward CNN. The ML-LISTA version has twice as many
parameters, while the All-Free version has order O(LK)
more parameters, where L is the number of layers and K
is the number of unfoldings.

The accuracy as a function of the iterations for all models
are presented in Figure 6, and the final results are detailed in
Table 1. A first observation is that most “unrolled” networks
provide an improvement over the baseline feed-forward
architecture. Second, while the Layered BP performs very
well on MNIST, it falls behind on the other two more
challenging datasets. Recall that while this approach unfolds
the iterations of a pursuit, it does so one layer at a time, and
does not address a global pursuit problem as the one we
explore in this work.

Third, the performances of the ML-ISTA, ML-FISTA and
ML-LISTA are comparable. This is interesting, as the LISTA-
type decomposition does not seem to provide an importance
advantage over the unrolled multi-layer pursuits. Forth, and
most important of all, freeing all the parameters in the archi-
tecture does not provide important improvements over the
ML-ISTA networks. Limited training data is not likely to be
the cause, as ML-ISTA/FISTA outperforms the larger model
even for CIFAR, which enjoys a rich variability in the data
and while using data-augmentation. This is noteworthy, and
this result seems to indicate that the consideration of the
multi-layer sparse model, and the resulting pursuit, does
indeed provide an (approximate) solution to the problem
behind CNNs.

5 PROOFS OF MAIN THEOREMS

5.1 Fixed Point Analysis

A vector γ?2 is a fixed point of the ML-ISTA update from
Equation (2.2) iff

γ?2 = proxtg2

(
γ?2 − t DT

2 G
f,g1
1/µ (D2γ

?
2 )
)
.

By the second prox theorem [3, Theorem 6.39], we have that

−t DT
2 G

f,g1
1/µ (D2γ

?
2 ) ∈ t∂g2(γ?2 ),

Model MNIST SVHN CIFAR 10

Feed-Forward 98.78 % 92.44 % 79.00 %
Layered BP 99.19 % 93.42 % 80.73 %
ML-ISTA 99.10 % 93.52 % 82.93 %
ML-FISTA 99.16 % 93.79 % 82.79 %
ML-LISTA 98.81 % 93.71 % 82.68 %
All-Free 98.89 % 94.06 % 81.48 %

Table 1
Classification results for different architectures for MNIST, SVHN and

CIFAR10.

or, equivalently, there exists w2 ∈ ∂g2(γ?2 ) so that

DT
2 G

f,g1
1/µ (D2γ

?
2 ) +w2 = 0.

Employing the definition of Gf,g11/µ (D2γ
?
2 ),

DT
2

1

µ

(
D2γ

?
2 − proxµg1(D2γ

?
2 − µ∇f(D2γ

?
2 ))
)
+w2 = 0.

(18)
Next, denote

γ̂1 = proxµg1(D2γ
?
2 − µ∇f(D2γ

?
2 )). (19)

Employing the second prox theorem on (5.1), we have that
the above is equivalent to the existence of w1 ∈ ∂g1(γ̂1) for
which D2γ

?
2−µ∇f(D2γ

?
2 )−γ̂1 = µw1. Thus, (5.1) amounts

to

DT
2

1

µ
(D2γ

?
2 −D2γ

?
2 + µ∇(D2γ

?
2 ) + µw1) +w2 = 0,

for some w2 ∈ ∂g2(γ?2 ) and w1 ∈ ∂g1(γ̂1). Simplifying the
expression above we arrive at the fixed-point condition of
ML-ISTA, which is

∃ w2 ∈ ∂g2(γ?2 ),w1 ∈ ∂g1(γ̂1)

so that DT
2∇f(D2γ

?
2 ) +DT

2 w1 +w2 = 0.
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5.2 Proof of Lemma 2.1

Proof. Denote Sµ(γ1) = proxµg1(γ1 − µ∇f(γ1)). Then, by
the second prox theorem ( [3, Theorem 6.39]), we have that

γ1 − µ∇f(γ1)− Sµ(γ1) ∈ µ∂g1(Sµ(γ1)).

Dividing by µ and employing the definition of the gradient
mapping, we obtain

Gf,g11/µ (γ1) ∈ ∇f(γ1) + ∂g1(Sµ(γ1)).

By the `g1 -Lipschitz continuity of g1 [3, Theorem 3.61], it
follows that ‖z‖2 ≤ `g1 for any z ∈ ∂g1(Sµ(γ1)). This,
combined with the bound ‖∇f(γ1)‖2 ≤ M from Equation
(2.3), provides the desired claim.

5.3 Proof of Theorem 2.2

Proof. Denote

a1 =
1

t

[
γ̃2 − proxtg2

(
γ̃2 − tDT

2 (I− µQ)Gf,g11/µ (γ̃1)
)]
,

a2 =
1

t

[
γ̃2 − proxtg2

(
γ̃2 − tDT

2G
f,g1
1/µ (γ̃1)

)]
.

By the triangle inequality,

‖a1‖2 ≤ ‖a2‖2 + ‖a1 − a2‖2. (20)

We will upper-bound the right-hand side of this inequality.
First, employing the non-expansiveness property of prox
operators ( [14, Lemma 2.4]), we can write

‖a1 − a2‖2 =
1

t

∥∥∥proxtg2

(
γ̃2 − tDT

2G
f,g1
1/µ (γ̃1)

)
− proxtg2

(
γ̃2 − tDT

2 (I− µQ)Gf,g11/µ (γ̃1)
) ∥∥∥

2

≤
∥∥∥DT

2 (I− µQ)Gf,g11/µ (γ̃1)−DT
2G

f,g1
1/µ (γ̃1)

∥∥∥
2

= µ
∥∥∥DT

2 Q Gf,g11/µ (γ̃1)
∥∥∥
2

≤ µ‖D2‖2‖Q‖2(M + `g1), (21)

where the last inequality follows from the definition of oper-
ator norms and Lemma 2.1. Also, ‖a2‖2 ≤ ε by assumption.
Thus, from (5.3),

‖a1‖2 ≤ ε+ µ‖D2‖2‖Q‖2(M + `g1). (22)

Consider now the function Hµ : Rm1 → R given by

Hµ(γ) =
1

2
γT (Q− µQ2)γ + bT (I− µQ)γ

+Mµ
g1((I− µQ)γ − µb),

where Mµ
g1 is the Moreau envelope of g1 with smoothness

parameter µ [31]. Note that Hµ is convex since µ < 1
‖Q‖2

implies Q− µQ2 � 0 and the Moreau envelope of a convex
function is convex. Recall that the gradient of the Moreau
envelop is given by∇Mµ

g1(γ) =
1
µ (γ−proxµg1(γ)) (see e.g.

[3, Theorem 6.60]), and so

∇Hµ(γ) =
1

µ
(I− µQ)

[
γ − proxµg1(γ − µ(Qγ + b))

]
= (I− µQ)Gf,g11/µ (γ).

Consider now γ1 = D2γ2 and H̃µ(γ2) ≡ Hµ(D2γ2).
Applying the chain rule yields

∇H̃µ(γ2) = DT
2 (I− µQ)Gf,g11/µ (γ1).

Thus, we can conclude that a1 is nothing else than the
gradient mapping of H̃µ and g2, and so the inequality in
(5.3) can be rewritten as∥∥∥GH̃µ,g21/t (γ̃2)

∥∥∥
2
≤ ε+ µ‖D2‖2‖Q‖2(M + `g1). (23)

Gradient mapping operators are firmly non-expansive with
constant 3µ

4 ( [3, Lemma 10.11]), from which it follows that
Hµ is 4

3µ -smooth. Denote Fµ(γ2) = Hµ(D2γ2)+g2(γ2), and
one of its minimizers by γ∗µ ∈ argminFµ(γ2). Moreover,
define

γ̂ = proxtg2

(
γ̃2 − tDT

2 (I− µQ)Gf,g11/µ (γ̃1)
)
.

By the fundamental prox-grad inequality ( [3, Theorem
10.16]), and since t ∈

(
0, 4µ

3‖D2‖2

)
, it follows that

Fµ(γ
∗
µ)− Fµ(γ̂) ≥

1

2t
‖γ∗µ − γ̂‖22 −

1

2t
‖γ∗µ − γ̃2‖22.

Then, by the three-points lemma (see [12]), we may rewrite

‖γ∗µ− γ̂‖22−‖γ∗µ− γ̃2‖22 = 2〈γ∗µ− γ̂, γ̃2− γ̂〉−‖γ̃2− γ̂‖22.

Thus,

Fµ(γ̂)− Fµ(γ∗µ) ≤
1

t
〈γ̂ − γ∗µ, γ̃2 − γ̂〉+ 1

2t
‖γ̃2 − γ̂‖22

=
1

t
〈γ̂ − γ̃2, γ̃2 − γ̂〉

+
1

t
〈γ̃2 − γ∗µ, γ̃2 − γ̂〉+ 1

2t
‖γ̃2 − γ̂‖22

= − 1

2t
‖γ̃2 − γ̂‖22 +

1

t
〈γ̃2 − γ∗µ, γ̃2 − γ̂〉

≤ 〈γ̃2 − γ∗µ, G
H̃µ,g2
1/t (γ̃2)〉

≤ 2R‖GH̃µ,g21/t (γ̃2)‖2,

where the last passage uses the Cauchy-Schwarz inequality
along with ‖γ̃2 − γ∗µ‖2 ≤ 2R. Combining the above with
Inequality (5.3) yields

Fµ(γ̂)− Fµ(γ∗µ) ≤ 2Rε+ 2µR‖Q‖2‖D2‖2(M + `g1). (24)

Finally, we will connect between Fµ(γ∗µ), Fµ(γ̃2) and F (γ∗µ),
F (γ̃2), respectively. Note that for any γ2 ∈ dom(g2) and
γ1 = D2γ2,∣∣∣Hµ(γ1)−f(γ1)−g1(γ1)

∣∣∣ = ∣∣∣−µ(1

2
‖Qγ1‖22 + bTQγ1

)
+Mµ

g1 ((I− µQ)γ1 − µb)− g1(γ1)
∣∣∣.

Moreover, this expression can be upper-bounded by(
1

2
‖Q‖22R2

1 + ‖b‖2‖Q‖2R1

)
µ

+
∣∣Mµ

g1 ((I− µQ)γ1 − µb)− g1(γ1)
∣∣ .

Further, from basic properties of the Moreau envelope (in
particular Theorem 10.51 in [3]) and the `g1 -Lipschitz prop-
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erty of g1, we have that∣∣Mµ
g1 ((I− µQ)γ1 − µb)− g1(γ)

∣∣ ≤∣∣Mµ
g1 ((I− µQ)γ1 − µb)− g1((I− µQ)γ1 − b)

∣∣
+
∣∣g1((I− µQ)γ1 − b)− g1(γ1)

∣∣
≤
`2g1
2
µ+ `g1Mµ.

We thus obtain that for any γ2 ∈ dom(g2)∣∣∣Hµ(γ1)−f(γ1)−g1(γ1)
∣∣∣ = ∣∣Fµ(γ2)−F (γ2)

∣∣ ≤ Cµ, (25)

where

C =
R2

1

2
‖Q‖22 + ‖b‖2‖Q‖2R1 +

`2g1
2

+ `g1M.

From this, we have that

F (γ̂) ≤Fµ(γ̂) + Cµ.

Recall now that α = proxtg2

(
γ̃2 − tDT

2G
f,g1
1/µ (γ̃1)

)
. Then,

|F (α)− F (γ̂)| ≤|f(D2α)− f(D2γ̂)|
+ |g1(D2α)− g1(D2γ̂)|
+ |g2(α)− g2(γ̂)|
≤ (‖D2‖2(M + `g1) + `g2) ‖α− γ̂‖2,

where we have used the Lipschitz continuity of g1 and g2.
Next, note that ‖α− γ̂‖2 = t‖a1− a2‖ from (5.3). This way,

F (α) ≤ F (γ̂) + tκµ, (26)

where κ = ‖D2‖2 (‖D2‖2(M + `g1) + `g2) ‖Q‖2(M + `g1).
Returning to (5.3), and because

min
γ2

F (γ2) ≥ min
γ2

Fµ(γ2)− Cµ,

we have that
Fopt ≥ Fµ(γ∗µ)− Cµ. (27)

Finally, combining (5.3), (5.3) and (5.3), we obtain

F (α)−Fopt ≤ 2Rε+tµκ+(2R‖D2‖2‖Q‖2(M+`g1)+2C)µ.

6 CONCLUSION

Motivated by the multi-layer sparse model, we have in-
troduced a multi-layer basis pursuit formulation which
enforces an `1 penalty on the intermediate representations
of the ML-CSC model. We showed how to solve this prob-
lem effectively through multi-layer extensions of iterative
thresholding algorithms, building up on a projected gra-
dient mapping approach. We showed that ε-fixed points
provide approximations that are arbitrarily close, in function
value, to the optimal solution. Other theoretical questions,
such as those of convergence rates, constitute part of ongo-
ing research.

We further showed how these algorithms generalize
feed-forward CNN architectures by principled residual
ones, improving on their performance as subsequent it-
erations are considered. It is intriguing how one could
employ the recent results in [19], [32] to the analysis of

our resulting unfolded networks, or to understand why
the Learned ML-LISTA does not provide further benefits
over ML-ISTA/FISTA in the studied cases. More broadly,
we believe that the study and analysis of these problems
will likely contribute to the further understanding of deep
learning.
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