
First, recall the definition of the convex conjugate (also known as the Fenchel dual) of an arbitrary function f .

Definition 1. Let f : Rn → R be an arbitrary function. Define the convex conjugate f∗ : Rn → R ∪ {+∞}
f∗(z) , sup

x∈Rn

〈z,x〉 − f(x). (1)

Note that f∗ can take the value +∞ if the difference in (1) can always be made larger. (E.g. consider f(x) = |x|.)
Also, f∗ is always convex regardless of f , since it is the pointwise supremum of affine functions. However, for convex
f there is also a close connection between the convex conjugate and the subdifferential, which could be useful for the
homework.

Proposition 1. Let f : Rn → R be convex, and f∗ its conjugate. Then for any x, z we have

〈x, z〉 ≤ f(x) + f∗(z), (2)

with equality if and only if z ∈ ∂f(x).

Intuitively, looking at Figure 1, you can see that the conjugate represents the maximum amount you can shift an affine
function x 7→ 〈z,x〉 down, while still remaining above or equal to f somewhere. Moreover, Proposition 1 tells us that
for those x achieving the supremum in (1) for f∗(z), we must have z ∈ ∂f(x). I.e., z is a subgradient for points x
that are the last to lose contact as you shift x 7→ 〈z,x〉.

Figure 1: Illustration of the convex conjugate.

An unrelated but possibly also useful property from linear algebra is the Von-Neumann trace inequality.

Proposition 2 (Von-Neumann trace inequality). Let X,Y ∈ RD×N . Assume without loss of generality that r =
rank(X) ≥ rank(Y ) = r′. Let X = UXΣXV >X and Y = UY ΣY V

>
Y be their respective compact rank-r SVDs.

Also let U ′XΣ′XV ′>X and U ′Y Σ′Y V
′>
Y contain just the top r′ singular vectors. Then

〈X,Y 〉 ≤ 〈ΣX ,ΣY 〉, (3)

with equality if and only if U ′>Y U ′X = V ′>Y V ′X = Π ∈ Rr′×r′ , for a permutation matrix Π satisfying 〈Π>Σ′XΠ,Σ′Y 〉 =
〈ΣX ,ΣY 〉. If all singular values are unique, Π = I .

Proof. Let P = U>YUX , Q = V >Y V X , and X̂ = PΣXQ>. Note that both P and Q are r× r orthogonal matrices.
By the cyclic property of trace, we have 〈X,Y 〉 = 〈X̂,ΣY 〉. Furthermore, note that

〈X̂,ΣY 〉 =

r′∑
i=1

σY i p
>
i ΣXqi, (4)

where the pi, qi are rows of P , Q respectively. Now consider the optimization problem

max
P ,Q

r′∑
i=1

σY i p
>
i ΣXqi s.t. P>P = Q>Q = I, (5)

whose optimal value is an (achievable) upper bound for (4). By induction on r′, one can show that the maximizers
(P ∗,Q∗) of (5) satisfy p∗i = q∗i = eπ(i) ∈ Rr for i = 1, . . . , r′ and some permutation π : [r′] → [r′] such that
σY i p

∗
i
>ΣXq∗i = σY iσXπ(i) = σY iσXi. Taking Π = [eπ(1) · · · eπ(r′)] ∈ Rr′×r′ , this also means 〈Π>Σ′XΠ,Σ′Y 〉 =

〈ΣX ,ΣY 〉. Moreover, note that if all singular values are unique, π must be the identity.
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