First, recall the definition of the convex conjugate (also known as the Fenchel dual) of an arbitrary function f.

Definition 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be an arbitrary function. Define the convex conjugate $f^* : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$

$$f^*(\boldsymbol{z}) \triangleq \sup_{\boldsymbol{x} \in \mathbb{R}^n} \langle \boldsymbol{z}, \boldsymbol{x} \rangle - f(\boldsymbol{x}).$$
 (1)

Note that f^* can take the value $+\infty$ if the difference in (1) can always be made larger. (E.g. consider f(x) = |x|.) Also, f^* is always convex regardless of f, since it is the pointwise supremum of affine functions. However, for convex f there is also a close connection between the convex conjugate and the subdifferential, which could be useful for the homework.

Proposition 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex, and f^* its conjugate. Then for any x, z we have

$$\langle \boldsymbol{x}, \boldsymbol{z} \rangle \leq f(\boldsymbol{x}) + f^*(\boldsymbol{z}),$$
(2)

with equality if and only if $z \in \partial f(x)$.

Intuitively, looking at Figure 1, you can see that the conjugate represents the maximum amount you can shift an affine function $x \mapsto \langle z, x \rangle$ down, while still remaining above or equal to *f* somewhere. Moreover, Proposition 1 tells us that for those x achieving the supremum in (1) for $f^*(z)$, we must have $z \in \partial f(x)$. I.e., z is a subgradient for points x that are the last to lose contact as you shift $x \mapsto \langle z, x \rangle$.

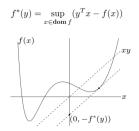


Figure 1: Illustration of the convex conjugate.

An unrelated but possibly also useful property from linear algebra is the Von-Neumann trace inequality.

Proposition 2 (Von-Neumann trace inequality). Let $X, Y \in \mathbb{R}^{D \times N}$. Assume without loss of generality that $r = \operatorname{rank}(X) \ge \operatorname{rank}(Y) = r'$. Let $X = U_X \Sigma_X V_X^{\top}$ and $Y = U_Y \Sigma_Y V_Y^{\top}$ be their respective compact rank-r SVDs. Also let $U'_X \Sigma'_X V'_X^{\top}$ and $U'_Y \Sigma'_Y V'_Y^{\top}$ contain just the top r' singular vectors. Then

$$\langle \boldsymbol{X}, \boldsymbol{Y} \rangle \leq \langle \Sigma_X, \Sigma_Y \rangle,$$
 (3)

with equality if and only if $U_Y^{\prime \top} U_X^{\prime} = V_Y^{\prime \top} V_X^{\prime} = \Pi \in \mathbb{R}^{r' \times r'}$, for a permutation matrix Π satisfying $\langle \Pi^\top \Sigma_X^{\prime} \Pi, \Sigma_Y^{\prime} \rangle = \langle \Sigma_X, \Sigma_Y \rangle$. If all singular values are unique, $\Pi = I$.

Proof. Let $\boldsymbol{P} = \boldsymbol{U}_Y^\top \boldsymbol{U}_X$, $\boldsymbol{Q} = \boldsymbol{V}_Y^\top \boldsymbol{V}_X$, and $\widehat{\boldsymbol{X}} = \boldsymbol{P} \Sigma_X \boldsymbol{Q}^\top$. Note that both \boldsymbol{P} and \boldsymbol{Q} are $r \times r$ orthogonal matrices. By the cyclic property of trace, we have $\langle \boldsymbol{X}, \boldsymbol{Y} \rangle = \langle \widehat{\boldsymbol{X}}, \Sigma_Y \rangle$. Furthermore, note that

$$\langle \widehat{\boldsymbol{X}}, \Sigma_{\boldsymbol{Y}} \rangle = \sum_{i=1}^{r'} \sigma_{\boldsymbol{Y}_i} \boldsymbol{p}_i^\top \Sigma_{\boldsymbol{X}} \boldsymbol{q}_i, \tag{4}$$

where the p_i , q_i are rows of P, Q respectively. Now consider the optimization problem

$$\max_{\boldsymbol{P},\boldsymbol{Q}} \quad \sum_{i=1}^{r'} \sigma_{Y_i} \boldsymbol{p}_i^\top \boldsymbol{\Sigma}_X \boldsymbol{q}_i \quad \text{s.t.} \quad \boldsymbol{P}^\top \boldsymbol{P} = \boldsymbol{Q}^\top \boldsymbol{Q} = \boldsymbol{I}, \tag{5}$$

whose optimal value is an (achievable) upper bound for (4). By induction on r', one can show that the maximizers $(\boldsymbol{P}^*, \boldsymbol{Q}^*)$ of (5) satisfy $\boldsymbol{p}_i^* = \boldsymbol{q}_i^* = \boldsymbol{e}_{\pi(i)} \in \mathbb{R}^r$ for $i = 1, \ldots, r'$ and some permutation $\pi : [r'] \to [r']$ such that $\sigma_{Y_i} \boldsymbol{p}_i^{\top} \Sigma_X \boldsymbol{q}_i^* = \sigma_{Y_i} \sigma_{X_{\pi(i)}} = \sigma_{Y_i} \sigma_{X_i}$. Taking $\Pi = [\boldsymbol{e}_{\pi(1)} \cdots \boldsymbol{e}_{\pi(r')}] \in \mathbb{R}^{r' \times r'}$, this also means $\langle \Pi^\top \Sigma'_X \Pi, \Sigma'_Y \rangle = \langle \Sigma_X, \Sigma_Y \rangle$. Moreover, note that if all singular values are unique, π must be the identity.