Homework 1: Mathematics of Deep Learning (EN 580.745)

Instructor: René Vidal, Biomedical Engineering, Johns Hopkins University

Due Date: 10/24/2019, 11:59PM Eastern Time

Instructions.

- You can discuss the problems with your peers at a high level, but you must write your own solutions.
- You can consult relevant background material, but don't seek out solutions to the problems themselves. Cite the outside material use.
- Submit a single PDF to Blackboard. Typed solutions are nice, but clearly handwritten solutions are also fine.

1. Properties of the ℓ_1 **norm.** Let $x \in \mathbb{R}^n$ and recall the ℓ_1 norm $||x||_1 \triangleq \sum_i |x_i|$.

(a) (10 points) The subdifferential $\partial f(x)$ of a convex function $f : \mathbb{R}^n \to \mathbb{R}$ at x is defined to be

$$\partial f(\boldsymbol{x}) \triangleq \{ \boldsymbol{z} \in \mathbb{R}^n \mid f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \langle \boldsymbol{z}, \boldsymbol{y} - \boldsymbol{x} \rangle \text{ for all } \boldsymbol{y} \in \mathbb{R}^n \}.$$
(1)

Prove that

$$\partial \|\boldsymbol{x}\|_{1} = \{\operatorname{sign}(\boldsymbol{x}) + \boldsymbol{w} \mid \operatorname{supp}(\boldsymbol{w}) \subseteq \operatorname{supp}(\boldsymbol{x})^{c}, \max_{i} |w_{i}| \leq 1\},$$
(2)

where sign: $\mathbb{R}^n \to \{-1, 0, 1\}$ denotes the sign function, and supp $(x) \subseteq [n]$ denotes the support of x, that is the set of indices where x is non-zero.

(b) (10 points) Define the proximal operator $\operatorname{prox}_f \colon \mathbb{R}^n \to \mathbb{R}^n$ of a convex function f to be

$$\operatorname{prox}_{f}(\boldsymbol{x}) \triangleq \underset{\boldsymbol{a} \in \mathbb{R}^{n}}{\operatorname{arg\,min}} \ \frac{1}{2} \|\boldsymbol{a} - \boldsymbol{x}\|_{2}^{2} + f(\boldsymbol{a}).$$
(3)

Prove that $\operatorname{prox}_{\tau \parallel \cdot \parallel_1}(\boldsymbol{x}) = \mathcal{S}_{\tau}(\boldsymbol{x})$, where \mathcal{S}_{τ} is the elementwise soft-thresholding operator

$$\mathcal{S}_{\tau}(x_i) \triangleq \operatorname{sign}(x_i) \max(|x_i| - \tau, 0).$$
(4)

2. Properties of the nuclear norm. Let $X \in \mathbb{R}^{D \times N}$ be a matrix of rank r. Recall the nuclear norm $||X||_* \triangleq \sum_{i=1}^r \sigma_i(X)$, where $\sigma_i(X)$ denotes the *i*th singular value of X. Let $X = U\Sigma V^{\top}$ be the compact SVD, so that $U \in \mathbb{R}^{D \times r}, \Sigma \in \mathbb{R}^{r \times r}$, and $V \in \mathbb{R}^{N \times r}$. Recall also the spectral norm $||X||_2 = \sigma_1(X)$.

(a) (10 points) Prove that 1

$$\partial \|\boldsymbol{X}\|_* = \{\boldsymbol{U}\boldsymbol{V}^\top + \boldsymbol{W} \mid \boldsymbol{U}^\top \boldsymbol{W} = \boldsymbol{0}, \, \boldsymbol{W}\boldsymbol{V} = \boldsymbol{0}, \, \|\boldsymbol{W}\|_2 \le 1\}.$$
(5)

- (b) (10 points) Let τ > 0. Prove that prox_{τ ||·||*}(X) = US_τ(Σ)V^T, where S_τ is as in (4). Note that when generalizing (3) to matrices, the squared Frobenius norm ¹/₂ || A − X ||²_F is used in place of the squared ℓ₂ norm (||X||_F ≜ (∑_{ij} X²_{ij})^{1/2}).
- **3.** Low rank matrix factorization. Let $Y \in \mathbb{R}^{D \times N}$ be of rank r. Consider the matrix factorization problem

minimize
$$F(\boldsymbol{U}, \boldsymbol{V}) = \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{U} \boldsymbol{V}^{\top} \|_{F}^{2} + \frac{\tau}{2} (\| \boldsymbol{U} \|_{F}^{2} + \| \boldsymbol{V} \|_{F}^{2}),$$
 (6)

where $U \in \mathbb{R}^{D \times r}$, $V \in \mathbb{R}^{N \times r}$. This is in fact a regularized variant of the problem studied in (Baldi & Hornik, 1989). It is also closely related to the nuclear norm proximal operator from Problem 2(b), as we will see.

(a) (10 points) Let $Y = P \Sigma Q^{\top}$ be the compact SVD. Define

$$\widehat{\boldsymbol{U}} = \boldsymbol{P} \mathcal{S}_{\tau}(\Sigma)^{\frac{1}{2}} \qquad \widehat{\boldsymbol{V}} = \boldsymbol{Q} \mathcal{S}_{\tau}(\Sigma)^{\frac{1}{2}},\tag{7}$$

¹*Hint:* the Von-Neumann trace inequality could be useful.

where the square root of a diagonal matrix is applied elementwise. Prove that (\hat{U}, \hat{V}) is a critical point of (6).

(b) (bonus) Prove that $(\widehat{U}, \widehat{V})$ is in fact a global minimizer.

Problem (6) and the nuclear norm proximal operator are therefore closely related, in the sense that the global minimizer (\hat{U}, \hat{V}) satisfies $\hat{U}\hat{V}^{\top} = \text{prox}_{\tau \parallel \cdot \parallel_*}(Y)$.