
Homework 1 Solution: Mathematics of Deep Learning
(EN 580.745)

Instructor: René Vidal, Biomedical Engineering, Johns Hopkins University

1. Properties of the `1 norm. Let x ∈ Rn and recall the `1 norm ‖x‖1 ,
∑
i |xi|.

(a) (10 points) The subdifferential ∂f(x) of a convex function f : Rn → R at x is defined to be

∂f(x) , {z ∈ Rn | f(y) ≥ f(x) + 〈z,y − x〉 for all y ∈ Rn}. (1)

Prove that

∂‖x‖1 = {sign(x) + w | supp(w) ⊆ supp(x)c, max
i
|wi| ≤ 1}, (2)

where sign: Rn → {−1, 0, 1} denotes the sign function, and supp(x) ⊆ [n] denotes the support of x, that is
the set of indices where x is non-zero.

(b) (10 points) Define the proximal operator proxf : Rn → Rn of a convex function f to be

proxf (x) , arg min
a∈Rn

1

2
‖a− x‖22 + f(a). (3)

Let τ > 0. Prove that proxτ‖·‖1(x) = Sτ (x), where Sτ is the elementwise soft-thresholding operator

Sτ (xi) , sign(xi) max(|xi| − τ, 0). (4)

Solution.

(a) We’ll first prove the statement for the special case n = 1. Fix x ∈ R and suppose z = sign(x) + w, with w as
in (2). Choose an arbitrary y and note that

|x|+ (sign(x) + w)(y − x) = (sign(x) + w)y ≤ |y|, (5)

where in the first equality we used sign(x)x = |x| and wx = 0, and in the second inequality we used | sign(x)+
w| ≤ 1. This proves the ⊇ containment in (2) using the definition of the subdifferential.

For the other direction, note first that if x 6= 0, then | · | is differentiable at x with d
dx |x| = sign(x). So suppose

that x = 0 and assume z ∈ ∂|x|. Then by definition we must have |y| ≥ zy for all y, which implies |z| ≤ 1.

This completes the proof for the case n = 1. To show the general case, note that ‖x‖1 =
∑n
i=1 |e>i x|, where

ei is the ith standard basis element. Then by the summation and affine transformation rules of subdifferential
calculus1, we know

∂‖x‖1 =

n∑
i=1

ei∂|e>i x|. (6)

By the special case n = 1, the RHS of (6) is equal to the RHS of (2).

(b) The objective in (3) is the sum of a convex and strongly convex function, hence is strongly convex and a unique
minimizer exists. Denote this minimizer a∗. The (necessary and sufficient) first order optimality condition
states that a∗ must satisfy x − a∗ ∈ τ∂‖a∗‖1. By part (a), this implies x − a∗ = τ(sign(a∗) + w), for w as
in (2). We can now check that setting a∗ = Sτ (x) satisfies this condition

xi − Sτ (xi) =

{
τ sign(Sτ (xi)) |xi| > τ

xi o.w.
(7)

1https://web.stanford.edu/class/ee364b/lectures/subgradients_slides.pdf
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2. Properties of the nuclear norm. Let X ∈ RD×N be a matrix of rank r. Recall the nuclear norm ‖X‖∗ ,∑r
i=1 σi(X), where σi(X) denotes the ith singular value of X . Let X = UΣV > be the compact SVD, so that

U ∈ RD×r, Σ ∈ Rr×r, and V ∈ RN×r. Recall also the spectral norm ‖X‖2 = σ1(X).

(a) (10 points) Prove that 2

∂‖X‖∗ = {UV > + W |U>W = 0, WV = 0, ‖W ‖2 ≤ 1}. (8)

(b) (10 points) Let τ > 0. Prove that proxτ‖·‖∗(X) = USτ (Σ)V >, where Sτ is as in (4). Note that when
generalizing (3) to matrices, the squared Frobenius norm 1

2‖A −X‖2F is used in place of the squared `2 norm
(‖X‖F , (

∑
ij X

2
ij)

1
2 ).

Solution.

(a) Let Z = UV > + W with W as in (8), and fix an arbitrary Y . Then we have

‖X‖∗ + 〈Z,Y −X〉 = 〈Z,Y 〉 ≤ ‖Z‖2‖Y ‖∗ ≤ ‖Y ‖∗, (9)

where the first equality uses 〈Z,X〉 = ‖X‖∗, the second inequality uses the Von-Neumann trace inequality
and Hölder’s inequality, and the last inequality uses ‖Z‖2 ≤ 1, which holds by the definition (8). This proves
the ⊇ containment.

For the other direction, fix Z ∈ ∂‖X‖∗. Let ‖ · ‖∗∗ denote the convex conjugate of ‖ · ‖∗
‖Z‖∗∗ , sup

Y
〈Z,Y 〉 − ‖Y ‖∗. (10)

Note that again by the Von-Neumann trace inequality and Hölder’s inequality, we can say

‖Z‖∗∗ ≤ sup
Y

(‖Z‖2 − 1)‖Y ‖∗ =

{
∞ ‖Z‖2 > 1

0 o.w.
(11)

Furthermore, the upper bound can always be achieved by choosing Y to be rank one with top-1 left and right
singular vectors equal to those of Z. So, (11) is in fact an equality. Now by a fundamental property of the
convex conjugate, we know that 〈Z,X〉 = ‖X‖∗ + ‖Z‖∗∗, which implies ‖Z‖∗∗ = 0, hence ‖Z‖2 ≤ 1 and
〈Z,X〉 = ‖X‖∗. Applying the trace inequality once more, we know 〈Z,X〉 = ‖X‖∗ only if Z = UV >+W
as in (8).

(b) As in problem 1(b), we know the unique minimizer A∗ of the proximal optimization problem uniquely satisfies
the optimality condition X −A∗ ∈ τ∂‖A∗‖∗. Indeed, USτ (Σ)V > satisfies this condition

X −USτ (Σ)V > = U

(
τI 0
0 Σ1

)
V > = U0(τI)V >0 + U1Σ1V

>
1 , (12)

where U = [U0 U1], V = [V 0 V 1], diag(Σ)> = [diag(Σ0)> diag(Σ1)>] with Σ0 containing all singular
values greater than τ .

3. Low rank matrix factorization. Let Y ∈ RD×N be of rank r. Consider the matrix factorization problem

minimize
U ,V

F (U ,V ) =
1

2
‖Y −UV >‖2F +

τ

2
(‖U‖2F + ‖V ‖2F ), (13)

where U ∈ RD×r, V ∈ RN×r, and τ > 0. This is in fact a regularized variant of the problem studied in (Baldi
& Hornik, 1989). It is also closely related to the nuclear norm proximal operator from Problem 2(b), as we will
see.

(a) (10 points) Let Y = PΣQ> be the compact SVD. Define

Û = PSτ (Σ)
1
2 V̂ = QSτ (Σ)

1
2 , (14)

where the square root of a diagonal matrix is applied elementwise. Prove that (Û , V̂ ) is a critical point of (13).
2Hint: the Von-Neumann trace inequality could be useful.
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(b) (bonus) Prove that (Û , V̂ ) is in fact a global minimizer.

Problem (13) and the nuclear norm proximal operator are therefore closely related, in the sense that the global mini-

mizer (Û , V̂ ) satisfies Û V̂
>

= proxτ‖·‖∗(Y ).

Solution.

(a) First, compute the gradients with respect to U , V to find the first order optimality conditions

∇UF (U ,V ) = (UV > − Y )V + τU = 0 ∇V F (U ,V ) = (UV > − Y )>U + τV = 0 (15)

⇒ U(V >V + τI) = Y V ⇒ V (U>U + τI) = Y >U . (16)

Now, note that

Û(V̂
>
V̂ + τI) = PSτ (Σ)

1
2 (Sτ (Σ) + τI) = PΣSτ (Σ)

1
2 = Y V̂ , (17)

where the middle equality holds because

max(σi − τ, 0)
1
2 (max(σi − τ, 0) + τ) = σi max(σi − τ, 0)

1
2 . (18)

Similarly,

V̂ (Û
>
Û + τI) = QSτ (Σ)

1
2 (Sτ (Σ) + τI) = QΣSτ (Σ)

1
2 = Y >Û . (19)

Thus, Û , V̂ satisfy the first order optimality conditions.

(b) We first prove the equivalence of the nuclear norm with its so-called “variational form”.

Lemma 1 (Variational form of the nuclear norm). Let Y be as defined above. Then

‖Y ‖∗ = min
U∈RD×r,V ∈RN×r

Y =UV >

1

2
(‖U‖2F + ‖V ‖2F ). (20)

In particular, the minimum in (20) exists.

Proof. Let P , Σ, Q also be as defined above. Then note that setting U = PΣ
1
2 and V = QΣ

1
2 satisfies

Y = UV > and ‖Y ‖∗ = 1
2 (‖U‖2F + ‖V ‖2F ). This proves

‖Y ‖∗ ≥ inf
U ,V

Y =UV >

1

2
(‖U‖2F + ‖V ‖2F ). (21)

It remains to show the corresponding upper bound. So choose any U , V such that Y = UV >. Let U ′ = P>U
and V ′ = Q>V . Then Σ = U ′V ′>. Moreover, since P and Q have orthonormal columns, ‖U‖2F ≥ ‖U

′‖2F
and ‖V ‖2F ≥ ‖V

′‖2F . Now, let σj be the jth singular value, and let u′j , v
′
j be the jth rows of U ′, V ′. Then we

have

σj = u′>j v′j ≤ ‖u′j‖2‖v′j‖2 ≤
1

2
(‖u′j‖22 + ‖v′j‖22), (22)

where the first upper bound is Cauchy-Schwarz, the second is the AM-GM inequality. It follows that

‖Y ‖∗ =
∑
j

σj ≤
1

2

∑
j

(‖u′j‖22 + ‖v′j‖22) =
1

2
(‖U ′‖2F + ‖V ′‖2F ), (23)

completing the proof of the lemma.

By Lemma 1, we now know that for all U ,V
1

2
‖Y −UV >‖2F + τ‖UV >‖∗ ≤ F (U ,V ). (24)

Thus,

min
X

1

2
‖Y −X‖2F + τ‖X‖∗ ≤ min

U ,V
F (U ,V ). (25)

3



Since the LHS of (25) is the nuclear norm proximal optimization problem, and by construction Û V̂
′>

=
proxτ‖·‖∗(Y ), it follows that (Û , V̂ ) is a global minimizer of (13).

Proposition 1 (Von-Neumann trace inequality). Let X,Y ∈ RD×N . Assume without loss of generality that r =
rank(X) ≥ rank(Y ) = r′. Let X = UXΣXV >X and Y = UY ΣY V

>
Y be their respective compact rank-r SVDs.

Also let U ′XΣ′XV ′>X and U ′Y Σ′Y V
′>
Y contain just the top r′ singular vectors. Then

〈X,Y 〉 ≤ 〈ΣX ,ΣY 〉, (26)

with equality if and only if U ′>Y U ′X = V ′>Y V ′X = Π ∈ Rr′×r′ , for a permutation matrix Π satisfying 〈Π>Σ′XΠ,Σ′Y 〉 =
〈ΣX ,ΣY 〉. If all singular values are unique, Π = I .

Proof. Let P = U>YUX , Q = V >Y V X , and X̂ = PΣXQ>. Note that both P and Q are r× r orthogonal matrices.
By the cyclic property of trace, we have 〈X,Y 〉 = 〈X̂,ΣY 〉. Furthermore, note that

〈X̂,ΣY 〉 =

r′∑
i=1

σY i p
>
i ΣXqi, (27)

where the pi, qi are rows of P , Q respectively. Now consider the optimization problem

max
P ,Q

r′∑
i=1

σY i p
>
i ΣXqi s.t. P>P = Q>Q = I, (28)

whose optimal value is an (achievable) upper bound for (27). By induction on r′, one can show that the maximizers
(P ∗,Q∗) of (28) satisfy p∗i = q∗i = eπ(i) ∈ Rr for i = 1, . . . , r′ and some permutation π : [r′] → [r′] such that
σY i p

∗
i
>ΣXq∗i = σY iσXπ(i) = σY iσXi. Taking Π = [eπ(1) · · · eπ(r′)] ∈ Rr′×r′ , this also means 〈Π>Σ′XΠ,Σ′Y 〉 =

〈ΣX ,ΣY 〉. Moreover, note that if all singular values are unique, π must be the identity.
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