Homework 1 Solution: Mathematics of Deep Learning
(EN 580.745)

Instructor: René Vidal, Biomedical Engineering, Johns Hopkins University

1. Properties of the /; norm. Let x € R and recall the ¢; norm ||z £ 3, |z4.
(a) (10 points) The subdifferential J f (x) of a convex function f : R™ — R at « is defined to be
Of(x) 2 {z € R" | f(y) > f(x) + {2,y — @) forall y € R"}. M)
Prove that
Ollz|, = {sign(x) + w | supp(w) C supp(z)®, max w;| <1}, 2
where sign: R™ — {—1,0,1} denotes the sign function, and supp(z) C [n] denotes the support of «, that is
the set of indices where @ is non-zero.

(b) (10 points) Define the proximal operator prox: R™ — R™ of a convex function f to be
1
prose;(2) £ argmin o la — 3 + f(a). 3)
acR”

Let 7 > 0. Prove that prox (x) = S (x), where S- is the elementwise soft-thresholding operator

al R

S, (z;) £ sign(z;) max(|z;| — 7,0). “4)

Solution.

(a) We'll first prove the statement for the special case n = 1. Fix « € R and suppose z = sign(z) + w, with w as
in (2). Choose an arbitrary y and note that

2| + (sign(x) + w)(y — z) = (sign(z) + w)y < |yl 5)

where in the first equality we used sign(x)z = |z| and wz = 0, and in the second inequality we used | sign(x)+
w| < 1. This proves the O containment in (2) using the definition of the subdifferential.

For the other direction, note first that if = # 0, then | - | is differentiable at z with - |z| = sign(z). So suppose
that z = 0 and assume z € O|z|. Then by definition we must have |y| > zy for all y, which implies |z| < 1.

This completes the proof for the case n = 1. To show the general case, note that ||z|; = Y-, |e; x|, where
e; is the ith standard basis element. Then by the summation and affine transformation rules of subdifferential
calculus', we know

Ozl = eidle] xl. ©6)
i=1
By the special case n = 1, the RHS of (6) is equal to the RHS of (2).

(b) The objective in (3) is the sum of a convex and strongly convex function, hence is strongly convex and a unique
minimizer exists. Denote this minimizer a*. The (necessary and sufficient) first order optimality condition
states that a* must satisfy x — a* € 79||a*||;. By part (a), this implies x — a* = 7(sign(a*) + w), for w as
in (2). We can now check that setting a* = S, (x) satisfies this condition

o) = {Tsign(ST(a:i)) i > -

T; 0.W.

Ihttps://web.stanford.edu/class/ee364b/lectures/subgradients_slides.pdf
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2. Properties of the nuclear norm. Let X € RP*Y be a matrix of rank r. Recall the nuclear norm || X||. £
S 04(X), where 0;(X) denotes the ith singular value of X. Let X = UXV ' be the compact SVD, so that
U € RP*" 3 € R™", and V € RV*", Recall also the spectral norm || X ||z = o (X).

(a) (10 points) Prove that >
INX|, ={UV'+ W |U"W=0,WV =0, |W|, <1}. (8)

(b) (10 points) Let 7 > 0. Prove that prox, . (X) = US,(X)V'T, where S, is as in (4). Note that when
generalizing (3) to matrices, the squared Frobenius norm %HA — X ||% is used in place of the squared ¢ norm

(1 XNr 2 (325 X252

Solution.
(@) Let Z=UV " + W with W as in (8), and fix an arbitrary Y. Then we have
X +(2,Y = X) =(Z,Y) < | Z|2[Y [l <Y1, )
where the first equality uses (Z, X) = || X||«, the second inequality uses the Von-Neumann trace inequality

and Holder’s inequality, and the last inequality uses || Z||2 < 1, which holds by the definition (8). This proves
the O containment.

For the other direction, fix Z € 0|| X ||.. Let || - ||* denote the convex conjugate of || - ||.
1212 £ sup {Z.Y) ~[|¥].. (10)
Note that again by the Von-Neumann trace inequality and Holder’s inequality, we can say
. oo [Z]]2>1
1Z]]x Ssup(llzlzl)lYll*{ (1D)
Y 0 ow

Furthermore, the upper bound can always be achieved by choosing Y to be rank one with top-1 left and right
singular vectors equal to those of Z. So, (11) is in fact an equality. Now by a fundamental property of the
convex conjugate, we know that (Z, X) = || X||. + || Z||, which implies || Z]||Z = 0, hence ||Z]|2 < 1 and
(Z,X) = || X||s. Applying the trace inequality once more, we know (Z, X) = || X ||, onlyif Z = UV "+ W
as in (8).

(b) Asin problem 1(b), we know the unique minimizer A™ of the proximal optimization problem uniquely satisfies
the optimality condition X — A* € 78||A*|,. Indeed, US,(X)V | satisfies this condition

™I O

0o >

where U = [Ug U,|, V = [V V], diag(X)" = [diag(Xo)" diag(¥1) "] with ¢ containing all singular
values greater than 7.

X -US,EZ)\V'=U ( ) VI =U(rI)V] + U V], (12)

O

3. Low rank matrix factorization. Let Y € R”*¥ be of rank r. Consider the matrix factorization problem

L 1 .
minimize  F(U,V) = S[|Y — Uv'|%+ SIUIE + VIR, (13)

3

where U € RP*" V € RN*" and 7 > 0. This is in fact a regularized variant of the problem studied in (Baldi
& Hornik, 1989). It is also closely related to the nuclear norm proximal operator from Problem 2(b), as we will
see.

(a) (10 points) LetY = PEQ—r be the compact SVD. Define
U=PS.(2): V=QS8 (%), (14)

where the square root of a diagonal matrix is applied elementwise. Prove that (IA] , ‘A/) is a critical point of (13).

2Hint: the Von-Neumann trace inequality could be useful.



(b)

(bonus) Prove that (Ij’ , ‘7) is in fact a global minimizer.

Problem (13) and the nuclear norm proximal operator are therefore closely related, in the sense that the global mini-
o~ o~ ~ ~T
mizer (U, V) satisfies UV = prox . (Y).

Solution.

(a)

(b)

First, compute the gradients with respect to U, V to find the first order optimality conditions
VuFU,V)=UV'-Y)V4+7U=0 VyFU,V)=UV'-Y)'U+7V =0 (15

=UWV'V4+rI)=YV =VU'U+I)=Y'U. (16)
Now, note that
UV 'V +1I) = PS.(2)(S, () + 7I) = PSS, (£)} =YV, (17)
where the middle equality holds because
max(o; — 7,0) (max(o; — 7,0) + 7) = 0; max(o; — 7,0)%. (18)
Similarly,
VO U +11) = QS,(2)¥(S,() + 7I) = QS,(£)} = YT U. (19)

Thus, U, V satisfy the first order optimality conditions.
We first prove the equivalence of the nuclear norm with its so-called “variational form”.

Lemma 1 (Variational form of the nuclear norm). Let Y be as defined above. Then

. 1
1Yl = min SUUNE + VIR (20)
UGRDX’V‘7V€RNX7‘ 2
Y=Uv"

In particular, the minimum in (20) exists.

Proof. Let P, ¥, @Q also be as defined above. Then note that setting U = PY: and V = QZ% satisfies

Y =UV and ||Y|, = 1(1U1% + [[V||%). This proves
. 1
Yl.> inf SUUIE +IVIE). @21
Y=uvT

It remains to show the corresponding upper bound. So choose any U, V suchthatY = U Vi LetU =P'U
and V' = Q'V. Then ¥ = U'V’". Moreover, since P and Q have orthonormal columns, |U % > ||U’||%
and [|[V[|% > ||[V'||%. Now, let o; be the jth singular value, and let u/, v’; be the jth rows of U’, V. Then we
have

1
.
o; = wj v < |ujlal|vfllz < 55113+ 0513), (22)

where the first upper bound is Cauchy-Schwarz, the second is the AM-GM inequality. It follows that

Y|l =) o5 < %Z(IIH}H% +1v513) = %(HU’II% +IV'II%), (23)
J J
completing the proof of the lemma. O
By Lemma 1, we now know that for all U, V'
%||Y—UVT||%+T||UVT|\* < F(U,V). (24)
Thus,

.1 2 .
- — < .
min 5 Y — X% + 7| X« < min FU,V) (25)



T
Since the LHS of (25) is the nuclear norm proximal optimization problem, and by construction U v o=

prox. ., (Y), it follows that (U, V) is a global minimizer of (13).
O
Proposition 1 (Von-Neumann trace inequality). Let X,Y € RP*N_ Assume without loss of generality that r =
rank(X) > rank(Y) = /. Let X = UxXxV x and Y = Uy Xy V5. be their respective compact rank-r SVDs.
Also let Uy S V'Y and US4, VY contain just the top v singular vectors. Then
<X’Y> < <EX,EY>7 (26)

with equality ifand only if U} U’y = VI V' =11 € R” %", for a permutation matrix 11 satisfying (MY, %) =
(X x,Xy). If all singular values are unique, I1 = I.

Proof. Let P = U;UX, Q= V;VX, and X = PY Q" Note that both P and Q are r X 7 orthogonal matrices.
By the cyclic property of trace, we have (X,Y) = (X, Xy). Furthermore, note that
(X,Zy) =Y ovip{ xq; @7)
i=1
where the p,, g, are rows of P, Q respectively. Now consider the optimization problem

’

T T T
iD; ¥xq; st. P P= =1 28
IIIDI%( Z; Oy;P; 2x4; S Q Q ) ( )
whose optimal value is an (achievable) upper bound for (27). By induction on 7/, one can show that the maximizers
(P*,Q") of (28) satisfy p; = q; = er(;) € R" fori = 1,...,7’ and some permutation 7: [r'] — [r’] such that
oy Pl Exql = OYiOX r(i) = Oy i0x;. Taking IT = [er(1) - €x()] € R” %" this also means (IT" X4 IT, X)) =
(¥x,Xy). Moreover, note that if all singular values are unique, 7 must be the identity. O



