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Data segmentation and clustering 
•  Given a set of points, separate them into multiple groups 

•  Discriminative methods: learn boundary 
•  Generative methods: learn mixture model, using, e.g. 

Expectation Maximization 



Dimensionality reduction and clustering 
•  In many problems data is high-dimensional: can reduce 

dimensionality using, e.g. Principal Component Analysis 

•  Image compression 
•  Recognition 

–  Faces (Eigenfaces) 
•  Image segmentation    

–  Intensity (black-white) 
–  Texture  



Segmentation problems in dynamic vision 
•  Segmentation of video and dynamic textures 

•  Segmentation of rigid-body motions 



Clustering data on non Euclidean spaces 
•  Clustering data on non Euclidean spaces 

–  Mixtures of linear spaces 
–  Mixtures of algebraic varieties 
–  Mixtures of Lie groups 

•  “Chicken-and-egg” problems 
–  Given segmentation, estimate models 
–  Given models, segment the data 
–  Initialization? 

•  Need to combine 
–  Algebra/geometry, dynamics and statistics 



Dimensionality reduction & clustering 
•  Global techniques 

–  Isomap (Tenenbaum et al. ‘00) 
–  Kernel PCA (Schölkopf-Smola’98) 

•  Local techniques 
–  Locally Linear Embedding (LLE) 

(Roweis-Saul ’00) 
–  Laplacian Eigenmaps (LE) 

(Belkin-Niyogi ‘02) 
–  Hessian LLE (HLLE)  

(Donoho-Grimes ‘03) 
–  Local Tangent Space Alignment 

(Zha-Zhang’05) 
–  Maximum Variance Unfolding 

(Weinberger-Saul ‘04) 
–  Conformal Eigenmaps  

(Sha-Saul’05) 

–  Structure Preserving Embedding  
(Shaw-Jebara’09) 

•  Clustering based on geometry 
–  LLE+Spectral clustering  

(Polito-Perona ’02) 
–  Spectral embedding and 

clustering (Brand-Huang’03) 
–  Isomap+EM (Souvenir-Pless’05) 

•  Clustering based on dimension 
–  Fractal dimension  

(Barbara-Chen’00) 
–  Tensor voting  

(Mordohai-Medioni’05) 
–  Dimension induced clustering 

(Gionis et al. ’05) 
–  Translated Poisson mixtures  

(Haro et al.’08) 



Talk outline 
•  Part I: Clustering Linear Manifolds 

–  Generalized Principal Component Analysis (GPCA)  
(Vidal-Ma-Sastry ’03, ‘04, ‘05) 

–  Sparse Subspace Clustering (SCC) (Elhamifar-Vidal ’09) 

•  Part II: Clustering Nonlinear Manifolds 
–  Linear/nonlinear manifolds of Euclidean space (Goh-Vidal ‘07) 
–  Submanifolds of a Riemannian manifold (Goh-Vidal ‘08) 

•  Part III: Applications 
–  Segmentation of rigid body motions (Vidal-Tron-Hartley’08) 
–  Segmentation of dynamic textures (Ghoreyshi-Vidal’06) 
–  Segmentation of video shots (Vidal’08) 
–  Segmentation of diffusion tensor images (Goh-Vidal’08) 
–  Segmentation of probability density functions (Goh-Vidal’08) 
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Principal Component Analysis (PCA) 
•  Given a set of points x1, x2, …, xN 

–  Geometric PCA: find a subspace S passing through them 
–  Statistical PCA: find projection directions that maximize the variance 

•  Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36) 

•  Applications: data compression, regression, computer 
vision (eigenfaces), pattern recognition, genomics 

Basis for S 

x1

x2
xN

U Σ V � = [x1,x2, . . . ,xN ] ∈ RD×N



Extensions of PCA 
•  Higher order SVD (Tucker’66, Davis’02) 

•  Independent Component Analysis (Common ‘94) 

•  Probabilistic PCA (Tipping-Bishop ’99) 
–  Identify subspace from noisy data 
–  Gaussian noise: standard PCA 
–  Noise in exponential family (Collins et al.’01) 

•  Nonlinear dimensionality reduction 
–  Multidimensional scaling (Torgerson’58) 
–  Locally linear embedding (Roweis-Saul ’00) 
–  Isomap (Tenenbaum ’00) 

•  Nonlinear PCA (Scholkopf-Smola-Muller ’98) 
–  Identify nonlinear manifold by applying PCA to  

data embedded in high-dimensional space 

•  Principal Curves and Principal Geodesic Analysis 
(Hastie-Stuetzle’89, Tishbirany ‘92, Fletcher ‘04) 

�x

x = �x+noise

x



Generalized Principal Component Analysis 
•  Given a set of points lying in multiple subspaces, identify 

–  The number of subspaces and their dimensions 
–  A basis for each subspace 
–  The segmentation of the data points 

•  “Chicken-and-egg” problem 
–  Given segmentation, estimate subspaces 
–  Given subspaces, segment the data 



Prior work on subspace clustering 
•  Iterative algorithms  

–  RANSAC (Leonardis et al. ’02, Haralik-Harpaz ’07) 
–  K-subspaces (Kamhalta-Leen ‘94, Ho et al. ’03)  

•  Probabilistic approaches 
–  Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04) 
–  Multi-Stage Learning (Kanatani ’04) 
–  Agglomerative Lossy Compression (Ma et al. ’07) 

•  Initialization 
–  Geometric approaches: 2 planes in R3 (Shizawa-Maze ’91) 
–  Factorization-based approaches for independent subspaces of 

equal dimension (Boult-Brown ‘91, Costeira-Kanade ‘98, Gear ’08, Kanatani ’01) 
–  Spectral clustering based approaches (Zelnik-Manor ‘03, Yan-Pollefeys ’06, 

Govindu’05, Agarwal et al. ’05, Fan-Wu ’06, Chen-Lerman’08) 



Spectral clustering-based approaches 
•  Spectral clustering 

–  Build a similarity matrix between pairs of points 
–  Use eigenvectors to cluster data 

•  How to define a similarity for subspaces? 
–  Want points in the same subspace to be close 
–  Want points in different subspace to be far 

•  Local subspace affinity (LSA) (Yan-Pollefeys ‘06) 
–  Use the angles between locally fitted subspaces as similarity 
–  Has problems with intersecting subspaces 

•  Spectral curvature clustering (SCC) (Chen-Lerman ’08) 
–  Define multiway similarity as normalized volume of d+1 points 
–  Suffers from curse of dimensionality 



Basic ideas behind GPCA 
•  Towards an analytic solution to subspace clustering 

–  Can we estimate ALL models simultaneously using ALL data? 
–  When can we do so analytically? In closed form? 
–  Is there a formula for the number of models? 

•  Will consider the most general case 
–  Subspaces of unknown and possibly different dimensions 
–  Subspaces may intersect arbitrarily (not only at the origin) 

•  GPCA is an algebraic geometric approach to data segmentation 
–  Number of subspaces  = degree of a polynomial 
–  Subspace basis   = derivatives of a polynomial 
–  Subspace clustering is algebraically equivalent to 

•  Polynomial fitting  
•  Polynomial differentiation 



Representing one subspace 
•  One plane 

•  One line 

•  One subspace can be represented with 
–  Set of linear equations 
–  Set of polynomials of degree 1 



De Morgan’s rule 

Representing n subspaces 
•  Two planes 

•  One plane and one line 
–  Plane: 
–  Line: 

•  A union of n subspaces can be represented with a set of 
homogeneous polynomials of degree n 



Veronese map 

Fitting polynomials to data points 
•  Polynomials can be written linearly in terms of the vector of coefficients 

by using polynomial embedding 

•  Coefficients of the polynomials can be computed from nullspace of 
embedded data 
–  Solve using least squares 
–  N = #data points 



Finding a basis for each subspace 
•  Case of hyperplanes:  

–  Only one polynomial 

–  Number of subspaces 

–  Basis are normal vectors  

•  Problems 
–  Computing roots may be sensitive to noise 
–  The estimated polynomial may not perfectly factor with noisy 
–  Cannot be applied to subspaces of different dimensions 

•  Polynomials are estimated up to change of basis, hence they may not factor, 
even with perfect data 

Polynomial Factorization (GPCA-PFA) [CVPR 2003] 
•  Find roots of polynomial of degree     in one variable 
•  Solve                linear systems in     variables 
•  Solution obtained in closed form for 



Finding a basis for each subspace 

•  To learn a mixture of subspaces we just need one positive 
example per class 

Polynomial Differentiation (GPCA-PDA) [CVPR’04] 



Choosing one point per subspace 
•  With noise and outliers  

–  Polynomials may not be a perfect union of subspaces 

–  Normals can estimated correctly by choosing points optimally 

•  Distance to closest subspace without knowing 
segmentation? 



GPCA for hyperplane segmentation 
•  Coefficients of the polynomial can be computed from null 

space of embedded data matrix 
–  Solve using least squares 
–  N = #data points 

•  Number of subspaces can be computed from the rank of 
embedded data matrix 

•  Normal to the subspaces       can be computed 
from the derivatives of the polynomial 



GPCA for subspaces of different dimensions 
•  There are multiple polynomials 

fitting the data 

•  The derivative of each 
polynomial gives a different 
normal vector 

•  Can obtain a basis for the 
subspace by applying PCA to 
normal vectors 



Dealing with high-dimensional data 
•  Minimum number of points 

–  K = dimension of ambient space 
–  n = number of subspaces 

•  In practice the dimension of 
each subspace ki is much 
smaller than K 

–  Number and dimension of the 
subspaces is preserved by a 
linear projection onto a  
subspace of dimension 

–  Can remove outliers by robustly 
fitting the subspace 

•  Open problem: how to choose 
projection? 
–  PCA? 

Subspace 1 

Subspace 2 



GPCA with spectral clustering 
•  Spectral clustering 

–  Build a similarity matrix between pairs of points 
–  Use eigenvectors to cluster data 

•  How to define a similarity for subspaces? 
–  Want points in the same subspace to be close 
–  Want points in different subspace to be far 

•  Use GPCA to get basis 

•  Distance: subspace angles 



Extensions of GPCA to nonlinear manifolds 
•  Segmentation of quadratic forms (Rao-Yang-Ma ’05, ‘06) 

•  Segmentation of bilinear surfaces (Vidal-Ma-Soatto-Sastry ’03, ‘06) 

•  Segmentation of mixed linear and bilinear (Singaraju-Vidal ‘06) 

•  Segmentation of trilinear surfaces (Hartley-Vidal ’05, ’08) 

n�

i=1

(x�2 Fix1) = νn(x2)Fνn(x1) = 0 Fi ∈ so(3)× SO(3)

n�

i=1

(b�i x1)
m�

j=1

(x�2 Ajx1) = νn(x2)�Aνn+m(x1) = 0

n�

i=1

(x1x2x3Ti) = νn(x1)νn(x2)νn(x3)T = 0

n�

i=1

(x�Ax) = νn(x)�Aνn(x) = 0
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Basic ideas behind SSC 
•  We propose a subspace clustering algorithm based on 

sparse representation theory 
–  Obtain a sparse representation of a point using convex optimization 
–  Use sparse representation to define similarity matrix 
–  Obtain segmentation using spectral clustering 

•  Main contribution 
–  Extend sparse representation results from one to multiple subspaces 

•  The Sparse Subspace Clustering (SSC) algorithm 
–  Is provably correct with perfect and noisy data 
–  Can handle data corrupted by noise, outliers and missing entries 
–  Significantly outperforms state-of-the-art algorithms for segmenting 

videos with multiple moving objects 



Sparse representation: motivation 
•  Underdetermined system of linear equations: 

•  Many more unknowns than observation,  
thus the solution is not unique 

•  Classical solution:      norm, 

? 

? 

? 

…
 

min�c�2 subject to y = Ac�2

y = Ac

A ∈ RD×N ;D � Ny ∈ RD

c ∈ RN



Sparse representation: L0 versus L1 
•  What if we know that the solution is sparse? 

–  Look for the sparsest solution: 

–           : number of nonzero elements 

•  Convex relaxation 

•  P0 and P1 are equivalent under some conditions on A   
–  mutual coherence (Tropp’04),  
–  cumulative coherence (Tropp’04),  
–  restricted isometry constant (Candes & Tao’05), … 

�c�0

Intractable!(P0) min�c�0 subject to y = Ac

Efficient!(P1) min�c�1 subject to y = Ac



Sparse subspace clustering: intuition 
•  Idea: a point              from subspace     of dimension          

can write itself as a linear combination of     points in the 
same subspace             sparse representation! (Ma et al.) 

•  Under what conditions on the subspaces does the sparsest 
representation of a point come from points in the same 
subspace? 

y ∈ RD S d� D
d



Sparse subspace clustering 
•  n linear subspaces                    are called independent if 

•  Theorem (Elhamifar & Vidal CVPR ’09) 
For data points drawn from a union of independent linear 
subspaces, the sparsest representation of a point comes 
from points in the same subspace. This representation can 
be recovered by solving a convex program. 

•  Sketch of proof: Let        be the data matrix. 
Let           . We can write                . Now, since  

     does not contribute to 

YD×N = [Y1, Y2, . . . , Yn]Γ

y ∈ Y1 y = Y1c1 + [Y2, . . . , Yn]c�

Range(Y1) ∩ Range([Y2, . . . , Yn]) = {0} ⇒ [Y2, . . . , Yn]c� = 0
c� y

{Si ⊂ RD}n
i=1

dim(
n�

i=1

Si) =
n�

i=1

dim(Si)



Sparse Subspace Clustering Algorithm 
•  Project    -dim data onto    -dim space, using 

random projection matrix with i.i.d. entries  
–  Symmetric Bernoulli distribution 
–  Zero-mean Normal distribution with variance 

•  Represent data points as nodes in graph 
–  Find the sparse coefficient vectors                
–  Connect nodes    and    by an edge with weight  

–  Each node connects itself to nodes in the same  
subspace => get a perfect block-diagonal matrix 

•  Spectral clustering: apply K-means to the 
smallest eigenvectors of the Laplacian of 

i j
{ci}N

i=1

G

G

|cij | + |cji|

D m

m



Extensions of SSC: affine, noise, missing 
•  Theorem (Elhamifar & Vidal’09) 

For data points drawn from a union of independent affine 
subspaces, the sparsest representation of a point comes 
from points in the same subspace. The SR can be found as 

•  When the data are corrupted with noise 
-                                                                    . 
-                                             (LASSO) 

•  When the data have missing entries (Rao et. al ’08) 
–  Let                          be the indices of the missing entries in 
–  Form                    and                           by eliminating rows of       

and      indexed by   , and solve the same optimization problems 

(P2) min�ci�1 subject to yi = Y ci and c�i 1 = 1

min�ci�1 subject to �yi − Y ci�2 < �

min�ci�1 + µ �yi − Y ci�2

I ⊂ {1, . . . , D} y ∈ RD

ỹ ∈ RD−|I| Ỹ ∈ RD−|I|×N

Y
y

I



Extensions of SSC: outliers (Rao et. al ’08) 
•  Let                   be a corrupted vector with              being a 

sparse vector of outlying entries 

•  We can write: 

•  The coefficient vector                is still sparse! 

•  Perfect data: recover the sparse coefficients from 

•  Noisy data: recover the sparse coefficients from 

ỹ = y + e

ỹ = Y c + e =
�
Y ID

� �
c
e

�

�
c� e�

��

min �
�
c
e

�
�1 subject to ỹ =

�
Y ID

� �
c
e

�

min �
�
c
e

�
�1 + µ �ỹ −

�
Y ID

��c
e

�
�2

e ∈ RD



GPCA versus SCC 
GPCA SCC 

Type of subspaces Arbitrary Independent, disjoint 

Number of subspaces Can be estimated Handled by spectral 
clustering 

Subspace dimensions Can be unknown and 
different, but … noise 

Can be unknown and 
different, but …  

Noise Moderate Yes 

Outliers No Yes 

Missing entries No Yes 

Complexity Exponential in the 
number of subspaces 

One LASSO per point + 
Spectral clustering 
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3-D motion segmentation problem 
•  Given a set of point correspondences in multiple views, determine 

–  Number of motion models 
–  Motion model: affine, homography, fundamental matrix, trifocal tensor  
–  Segmentation: model to which each pixel belongs 

•  Motion of one rigid-body  
lives in a 4-D linear  
subspace  
(Boult and Brown ’91,  
Tomasi and Kanade ’92) 
–  P = #points 
–  F = #frames 



Hopkins 155 motion segmentation database 
•  Collected 155 sequences (Tron-Vidal ‘07) 

–  120 with 2 motions 
–  35 with 3 motions 

•  Types of sequences 
–  Checkerboard sequences: mostly full  

dimensional and independent motions 

–  Traffic sequences: mostly degenerate (linear, 
planar) and partially dependent motions 

–  Articulated sequences: mostly full dimensional  
and partially dependent motions 

•  Point correspondences 
–  In few cases, provided by Kanatani & Pollefeys 
–  In most cases, extracted semi-automatically 

with OpenCV 



Results on the Hopkins 155 database 
•  2 motions, 120 sequences, 266 points, 30 frames 

•  3 motions, 35 sequences, 398 points, 29 frames 

78 
31 
11 

Time             0.32s         7.58s     0.18s     11h 4m     65s 

GPCA LLMC LSA RANSAC MSL SCC ALC SSC-B SSC-N

Checkerboard 6.09 3.96 2.57 6.52 4.46 1.30 1.55 0.83 1.12
Traffic 1.41 3.53 5.43 2.55 2.23 1.07 1.59 0.23 0.02
Articulated 2.88 6.48 4.10 7.25 7.23 3.68 10.70 1.63 0.62
All 4.59 4.08 3.45 5.56 4.14 1.46 2.40 0.75 0.82

GPCA LLMC LSA RANSAC MSL SCC ALC SSC-B SSC-N

Checkerboard 31.95 8.48 5.80 25.78 10.38 5.68 5.20 4.49 2.97
Traffic 19.83 6.04 25.07 12.83 1.80 2.35 7.75 0.61 0.58
Articulated 16.85 9.38 7.25 21.38 2.71 10.94 21.08 1.60 1.42
All 28.66 8.04 9.73 22.94 8.23 5.31 6.69 3.55 2.45



Hopkins 155 database 
•  Misclassification rates for 2 and 3 motions 
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Results with missing entries & outliers 
•  Misclassifications rates on 12 motion sequences with 

missing data 

•  Misclassifications rates on 12 motion sequences with 
corrupted data 

Method PF+ ALC5 PF+ALCsp �1+ALC5 �1+ALCsp SSC-N
Average 1.89% 10.81% 3.81% 1.28% 0.13%
Median 0.39% 7.85% 0.17% 1.07% 0.00%

Method �1 + ALC5 �1 + ALCsp SSC-N
Average 4.15% 3.02% 1.05%
Median 0.21% 0.89% 0.43%



Modeling dynamic textures 
•  Examples of dynamic textures:  

•  Model temporal evolution as the output of a linear 
dynamical system (LDS): Soatto et al. ‘01 

dynamics 

appearance 

images 

z t + 1 = A z t + v t 
y t = C z t + w t 



Segmentation of dynamic textures 
•  Model intensity at each pixel as 

the output of an AR model 

•  Define regressors & parameters  

•  Regressors with same texture 
live in a hyperplane 

•  Multiple dynamic textures 
live in multiple hyperplanes  

•  Can cluster the regressors 
using GPCA 

yt(x) =
n�

j=1

ajyt−j(x) + wt(x) water 

steam 

A hyperplane 

b

z1

z2
zt

zt(x) = [yt(x), yt−1(x), · · · , yt−n(x)]�

b = [1, − a1, − a2, · · · ,−an]�



Segmentation of dynamic textures 



Segmentation of dynamic textures 



Segmentation of dynamic textures 



Variational segmentation of dynamic textures 

•  Moving boundary segmentation results 

Ocean-fire Raccoon on River 



Temporal video segmentation 



Temporal video segmentation by GPCA 
•  Empty living room 
•  Middle-aged man enters 
•  Woman enters 
•  Young man enters, introduces 

the woman and leaves 
•  Middle-aged man flirts with 

woman and steals her tiara 

•  Middle-aged man checks the 
time, rises and leaves 

•  Woman walks him to the door 
•  Woman returns to her seat 
•  Woman misses her tiara 
•  Woman searches her tiara 
•  Woman sits and dismays 



Temporal video segmentation by SSC 
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Conclusions 
•  Many computer vision problems can be posed as subspace 

clustering problems 
–  2-D and 3-D motion segmentation 
–  Dynamic texture segmentation 
–  Temporal video segmentation 

•  These problems can be solved using 
–  Generalized Principal Component Analysis (GPCA): algebraic 

method based on polynomial fitting and differentiation 
–  Sparse Subspace Clustering (SSC): algorithm based on sparse 

representation theory and spectral clustering 

•  Future work 
–  Extending SCC to disjoint subspaces: what are the conditions on 

the subspace angles that allow for a sparse recovery? 
–  Extending SCC to nonlinear manifolds 
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Slides, MATLAB code, papers 
http://perception.csl.uiuc.edu/gpca 
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