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Data segmentation and clustering

* Given a set of points, separate them into multiple groups
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« Discriminative methods: learn boundary

« (Generative methods: learn mixture model, using, e.g.
Expectation Maximization
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Dimensionality reduction and clustering

* In many problems data is high-dimensional: can reduce
dimensionality using, e.g. Principal Component Analysis

* Recognition
— Faces (Elgenfaces)

* Image segmentation
— Intensity (black-white)
— Texture




Segmentation problems in dynamic vision

Segmentation of video and dynamic textures

LVE™QUESTION: DEMOCRATIC DEBATE

SHOULD VOTERS WORRY CLINTON'S STANCE ON IRAQ
PULLOUT WOULD BECOME AN OPEN-ENDED COMMITMENT?
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Clustering data on non Euclidean spaces

» Clustering data on non Euclidean spaces
— Mixtures of linear spaces
— Mixtures of algebraic varieties
— Mixtures of Lie groups

« “Chicken-and-egg” problems
— Given segmentation, estimate models
— Given models, segment the data
— Initialization?

* Need to combine
— Algebra/geometry, dynamics and statistics




Dimensionality reduction & clustering

» Global techniques » Clustering based on geometry
— Isomap (Tenenbaum et al. ‘00) — LLE+Spectral clustering

— Kernel PCA (Schélkopf-Smola’98) (Polito-Perona "02)
« Local techniques — Spectral embedding and

_ _ clustering (Brand-Huang’03)
B I(_Rg)c\ivaelils}fsl;lﬂ’eoao; Embedding (LLE) — Isomap+EM (Souvenir-Pless’05)

— Laplacian Eigenmaps (LE)

(Belkin-Niyogi ‘02) » Clustering based on dimension

— Hessian LLE (HLLE) — Fractal dimension
(Donoho-Grimes ‘03) (Barbara-Chen’00)

— Local Tangent Space Alignment — Tensor voting
(Zha-Zhang'05) (Mordohai-Medioni’05)

— Maximum Variance Unfolding — Dimension induced clustering
(Weinberger-Saul ‘04) (Gionis et al. ‘05)

— %ﬁn?rrpg Eigenmaps — Translated Poisson mixtures
(Sha-Saul'05) (Haro et al.’08)

— Structure Preserving Embedding
(Shaw-Jebara’09)



Talk outline

* Part |: Clustering Linear Manifolds

— Generalized Principal Component Analysis (GPCA)
(Vidal-Ma-Sastry '03, ‘04, ‘05)

— Sparse Subspace Clustering (SCC) (Elhamifar-vidal '09)

« Part ll: Clustering Nonlinear Manifolds
— Linear/nonlinear manifolds of Euclidean space (Goh-vidal ‘07) gl

.........

— Submanifolds of a Riemannian manifold (Gon-vidal ‘08) Submanifold 2
Submanifold 1

« Part lll: Applications W

— Segmentation of rigid body motions (vidal-Tron-Hartley'08) ‘

— Segmentation of dynamic textures (Ghoreyshi-Vidal'06)

— Segmentation of video shots (vidaros)

— Segmentation of diffusion tensor images (Goh-Vidal'08)

— Segmentation of probability density functions (Goh-vidal'0s)
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Principal Component Analysis (PCA)

» Given a set of points x,, x,, ..., Xy
— Geometric PCA: find a subspace S passing through them
— Statistical PCA: find projection directions that maximize the variance
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* Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36)
@E VT w17m27'°'7m]\7] GRDXN
[Tasisfors } [dim(S) — rank(U)]

« Applications: data compression, regression, computer
vision (eigenfaces), pattern recognition, genomics




Extensions of PCA

« Higher order SVD (Tucker'e66, Davis’02)

* Independent Component Analysis (Common ‘94)

T213
* Probabilistic PCA (Tipping-Bishop '99) Ji
— ldentify subspace from noisy data

— Gaussian noise: standard PCA —
— Noise in exponential family (Collins et al.’01) €T — a:—|—n01se

* Nonlinear dimensionality reduction ® ™~
— Multidimensional scaling (Torgerson’58) o0 @0 e o
— Locally linear embedding (Roweis-Saul '00) e o © |:>/0..'. /
— Isomap (Tenenbaum ’00) NV
* Nonlinear PCA (Scholkopf-Smola-Muller '98) W .
— ldentify nonlinear manifold by applying PCA to . ° ° :>/. ® '/
data embedded in high-dimensional space /\'./ o0 @

* Principal Curves and Principal Geodesic Analysis
(Hastie-Stuetzle’89, Tishbirany ‘92, Fletcher ‘04)



Generalized Principal Component Analysis

« Given a set of points lying in multiple subspaces, identify
— The number of subspaces and their dimensions
— A basis for each subspace
— The segmentation of the data points

« “Chicken-and-egg” problem
— Given segmentation, estimate subspaces
— Given subspaces, segment the data




Prior work on subspace clustering

 lterative algorithms
— RANSAC (Leonardis et al. ‘02, Haralik-Harpaz ’07)
— K-subspaces (Kamhalta-Leen ‘94, Ho et al. ’03)

* Probabilistic approaches
— Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’'04)

— Multi-Stage Learning (Kanatani '04)
— Agglomerative Lossy Compression (Ma et al. '07)

 |nitialization
— Geometric approaches: 2 planes in R3 (Shizawa-Maze '91)

— Factorization-based approaches for independent subspaces of
equal dimension (Boult-Brown ‘91, Costeira-Kanade ‘98, Gear '08, Kanatani '01)

— Spectral clustering based approaches (zelnik-Manor ‘03, Yan-Pollefeys 06,
Govindu’05, Agarwal et al. ‘05, Fan-Wu '06, Chen-Lerman’08)



Spectral clustering-based approaches

» Spectral clustering blx =0
— Build a similarity matrix between pairs of points S
— Use eigenvectors to cluster data

 How to define a similarity for subspaces?
— Want points in the same subspace to be close
— Want points in different subspace to be far

bgaz=0

« Local subspace affinity (LSA) (Yan-Pollefeys ‘06)
— Use the angles between locally fitted subspaces as similarity
— Has problems with intersecting subspaces

« Spectral curvature clustering (SCC) (Chen-Lerman '08)
— Define multiway similarity as normalized volume of d+1 points
— Suffers from curse of dimensionality



Basic ideas behind GPCA

« Towards an analytic solution to subspace clustering
— Can we estimate ALL models simultaneously using ALL data?
— When can we do so analytically? In closed form?
— Is there a formula for the number of models?

* Will consider the most general case
— Subspaces of unknown and possibly different dimensions
— Subspaces may intersect arbitrarily (not only at the origin)

« GPCA is an algebraic geometric approach to data segmentation
— Number of subspaces = degree of a polynomial
— Subspace basis = derivatives of a polynomial

— Subspace clustering is algebraically equivalent to
* Polynomial fitting
* Polynomial differentiation



Representing one subspace

* One plane b
bl'e = biz1 + boxs + byzz =0 Ao o ..%

e One line b1

b:far; — b1331 62332 b3:133 =0

bgw — b4x1 T b55132 T b65133 =0

* One subspace can be represented with

— Set of linear equations T
S={x . B'x=0
— Set of polynomials of degree 1 { }
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Representing n subspaces

 Two planes
(bipw = 0)|or (bga} = 0)

pa(z) = (biz)(byz) = O
 One plane and one line

— Plane: S1={x: blx = O} W t

_ Line: So = {x: b{a: = bgaz = 0}
S1USy ={x: (blz=0)or (b:fa: = bgaz = 0}
De Morgan’s rule l

$1USy = {a :|(672) (b] ) = 0| and| (b"z) (b x) = O}

* A union of n subspaces can be represented with a set of
homogeneous polynomials of degree n
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CCCCCCC



Fitting polynomials to data points

« Polynomials can be written linearly in terms of the vector of coefficients
by using polynomial embedding

(b{w)(bgw) = cla:% + cox1ao + 03513% = clvp(x) =0

~.| RE  Veronese map ¢= Sym(bi®b®bs)

* . . : . Sl ‘ M
® : - | R™Mn
. . 53 LT I?:>M O'OO e o,
‘ L Up @ R™ — RY7 /Oo ®°® o
R - 22 vn ()
: - 1
Lo =S K -1
()= | s ()
”® x5 n

« Coefficients of the polynomials can be computed from nullspace of

embedded data vn (1)
— Solve using least squares Lpc = E c=20
— N = #data points _I/n(CDN)T |




Finding a basis for each subspace

b1

Case of hyperplanes:
— Only one polynomial

— Number of subspaces

c'vn(z) = (biz) - (b x)

n =min{i: rank(L;)=M,;—1}

— Basis are normal vectors b1, b2, -+ bp
4 )
C & RMn Polynomial Factorization (GPCA-PFA) [CVPR 2003]
‘/\ « Find roots of polynomial of degree 77 in one variable
« Solve K — 2 linear systems in 70 variables
bo> ceo bn - Solution obtained in closed form forn < 4
- j
Problems

— Computing roots may be sensitive to noise
— The estimated polynomial may not perfectly factor with noisy

— Cannot be applied to subspaces of different dimensions
« Polynomials are estimated up to change of basis, hence they may not factor,

even with perfect data



Finding a basis for each subspace

C & RM” Polynomial Differentiation (GPCA-PDA) [CVPR’04]
/\
by bs ... b bi = Dpn(x)|p—y, Yi € Si

bo ~ Dpn(yz)

b1 ~ Dpn(yl)

| To learn a mixture of subspaces we just need one positive
example per class
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Choosing one point per subspace

« With noise and outliers
— Polynomials may not be a perfect union of subspaces

b{az =0
by ~ Dpn(y2)

pn(x) = 0— b1 ~ Dpn(y1)

bgaz =0
— Normals can estimated correctly by choosing points optimally
» Distance to closest subspace without knowing
segmentation? Ipn ()]
~1 — ~ 112
|z — &|| = FO(|lx — 2?)
\ |1 Dpn(2)|
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GPCA for hyperplane segmentation

« Coefficients of the polynomial can be computed from null

space of embedded data matrix Con ()T ]
— Solve using least squares Lpc = ; c=20
— N = #data points vn(en)t

 Number of subspaces can be computed from the rank of
embedded data matrix

n =min{: : rank(L;)=M,;—1}

 Normal to the subspaces b1,b2,---bn can be computed

from the derivatives of the polynomial
c € RMn

by b, ... bn
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GPCA for subspaces of different dimensions

* There are multiple polynomials
fitting the data

 The derivative of each
polynomial gives a different
normal vector

e« (Can obtain a basis for the
subspace by applying PCA to
normal vectors

p1(z) = (b'x)(biz) =0
pa(x) = (b x)(bhx) =0

b= Dpi1(y1) = Dp2(y1)

Yo b1 = Dp1(y>)

{Bi = PCA(DPn(y;)) }i=1
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Dealing with high-dimensional data

*  Minimum number of points Mn(K) = ( n+K-1 )
— K= dimension of ambient space n
— n = number of subspaces R

* In practice the dimension of
each subspace ki is much
smaller than K

k, << K
— Number and dimension of the
subspaces is preserved by a kmax—1
linear projection onto a R
subspace of dimension

maxik; 1 K
axiki} +1 << « Open problem: how to choose

— Can remove outliers by robustly projection?
fitting the subspace — PCA?




GPCA with spectral clustering

» Spectral clustering
— Build a similarity matrix between pairs of points
— Use eigenvectors to cluster data

 How to define a similarity for subspaces?
— Want points in the same subspace to be close
— Want points in different subspace to be far

« Use GPCA to get basis
B; = PCA(DPy(y;))
Bj = PCA(DPa(y;))

- Distance: subspace angles D;; = (B;, B;)
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Extensions of GPCA to nonlinear manifolds

« Segmentation of quadratic forms (Rao-Yang-Ma 05, ‘06)
n
[[(@"Az) = vn(2) T Avyp(z) = 0
i=1
« Segmentation of bilinear surfaces (vidal-Ma-Soatto-Sastry 03, ‘06)
mn
H(w;szl) — Vn(mg)}"un(azl) =0 F; e 80(3) X SO(S)
i=1

« Segmentation of mixed linear and bilinear (singaraju-vidal ‘06)
mn m

1[0 =) ][ (=3 Ajz1) = vn(2) T Avpn (1) = 0

i=1 j=1
« Segmentation of trilinear surfaces (Hartley-vidal '05, '08)
mn
H(Jflwgngi) — Vn(wl)yn(wg)yn(wg)’f = (
i=1
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Basic ideas behind SSC

» We propose a subspace clustering algorithm based on
sparse representation theory
— Obtain a sparse representation of a point using convex optimization
— Use sparse representation to define similarity matrix
— Obtain segmentation using spectral clustering

« Main contribution
— Extend sparse representation results from one to multiple subspaces

 The Sparse Subspace Clustering (SSC) algorithm
— |Is provably correct with perfect and noisy data
— Can handle data corrupted by noise, outliers and missing entries

— Significantly outperforms state-of-the-art algorithms for segmenting
videos with multiple moving objects



Sparse representation: motivation

 Underdetermined system of linear equations: y = Ac
o

[I-I

= ?
: : ﬁ'! .Er
LI somEe

y € RP AeRP*N.D <« N

?

« Many more unknowns than observation, c e RV
thus the solution is not unique

« Classical solution: ¢2 norm, min||c||2 subject to y = Ac
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Sparse representation: LO versus L1

« What if we know that the solution is sparse?
— Look for the sparsest solution:

(Pg) minl/c|lg subject to y = Ac Intractable!

— ||c]|o : number of nonzero elements

« Convex relaxation
(P1) min||c||[; subject to y = Ac  Efficient!

 P,and P, are equivalent under some conditions on A
— mutual coherence (Tropp’04),
— cumulative coherence (Tropp’04),
— restricted isometry constant (Candes & Tao’05), ...



Sparse subspace clustering: intuition

« Idea: a point ¥ € R” from subspace S of dimension d < D
can write itself as a linear combination of d points in the
same subspace =P sparse representation! (Ma et al.)

N
Sl BN
VAN

« Under what conditions on the subspaces does the sparsest
representation of a point come from points in the same
subspace?
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Sparse subspace clustering

* nlinear subspaces {S: € R”}}_, are called independent if

dim(@ S;i) = Z dim(S;)
1=1 =1

Theorem (Elhamifar & Vidal CVPR '09)

For data points drawn from a union of independent linear

subspaces, the sparsest representation of a point comes

from points in the same subspace. This representation can

be recovered by solving a convex program.

Sketch of proof: Let Ypoxn = [V1,Y2,...,Y,]T' be the data matrix.
Let y € Y7. We can write y = Yic; + [Ys,...,Y,]c’. Now, since
Range(Y7) N Range([Ys,...,Y,]) ={0} = [Y3,...,Y,]c =0

¢’ does not contribute to Y
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Sparse Subspace Clustering Algorithm

* Project D-dim data onto m-dim space, using
random projection matrix with i.i.d. entries
— Symmetric Bernoulli distribution
— Zero-mean Normal distribution with variance 1M

* Represent data points as nodes in graph G
— Find the sparse coefficient vectors {c;};_,
— Connect nodes 7 and J by an edge with weight
cij| + |¢jl
— Each node connects itself to nodes in the same
subspace => get a perfect block-diagonal matrix

« Spectral clustering: apply K-means to the
smallest eigenvectors of the Laplacian of G




Extensions of SSC: affine, noise, missing

 Theorem (Elhamifar & Vidal'09)
For data points drawn from a union of independent affine
subspaces, the sparsest representation of a point comes
from points in the same subspace. The SR can be found as

(P2) minl[c;|[; subjectto y; =Yc;andc,1=1

 When the data are corrupted with noise
~ minl/c;||; subject to |ly; — Yc;|2 <€ .
- minf/c;|l1 + plly;: — Yeill2 (LASSO)

 When the data have missing entries (Rao et. al '08)
— Let I C {1,..., D} be the indices of the missing entries in y € R”

— Form y € RP~lland v € RP~IIXN by eliminating rows of Y
and Y indexed by [, and solve the same optimization problems



Extensions of SSC: outliers (Rao et. al '08)

« Let y =y +e be a corrupted vector with e € R” being a
sparse vector of outlying entries
-« Wecanwrite: y=Yc+e=1[Y Ip] [Z]

. The coefficient vector [¢" e']"

IS still sparse!

» Perfect data: recover the sparse coefficients from
. C . ~ C
min H[e]\\l subject to y=|Y Ip| [e]

* Noisy data: recover the sparse coefficients from

min ||l + 19 = 1V 0]

ccccccccc
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GPCA versus SCC

Type of subspaces

Number of subspaces

Subspace dimensions

Noise

Outliers

Missing entries

Complexity

Arbitrary

Can be estimated

Can be unknown and
different, but ... noise

Moderate

No

No

Exponential in the
number of subspaces

Independent, disjoint

Handled by spectral
clustering

Can be unknown and
different, but ...

Yes

Yes

Yes

One LASSO per point +
Spectral clustering
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3-D motion segmentation problem

Given a set of point correspondences in multiple views, determine

— Number of motion models

— Motion model: affine, homography, fundamental matrix, trifocal tensor
— Segmentation: model to which each pixel belongs

Motion of one rigid-body
lives in a 4-D linear

subspace
(Boult and Brown 91,
Tomasi and Kanade '92)

— P = #points
— F =#frames

eege f0 te e, 8t et

D™ :.“'::' . :.:.:-0.:. y
W
11 - XL1p
|ZF1 " ZTFp
DEX P

i
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2F x4



* Collected 155 sequences (Tron-Vidal 07)
— 120 with 2 motions
— 35 with 3 motions

« Types of sequences

— Checkerboard sequences: mostly full
dimensional and independent motions

— Traffic sequences: mostly degenerate (linear,
planar) and partially dependent motions

— Articulated sequences: mostly full dimensional
and partially dependent motions

« Point correspondences _ |
— In few cases, provided by Kanatani & Pollefeys ¢ . ST

— In most cases, extracted semi-automatically
with OpenCV



Results on the Hopkins 155 database

« 2 motions, 120 sequences, 266 points, 30 frames

GPCA|LLMC|LSA |RANSAC|MSL | SCC| ALC |SSC-B|SSC-N
78 Checkerboard| 6.09 | 3.96 |2.57 6.52 4.46(1.30] 1.55 |1 0.83 | 1.12
31 Traffic 1.41 | 3.53 |5.43| 2.55 [2.23(1.07| 1.59 | 0.23 | 0.02
11 Articulated 2.88 | 6.48 (4.10] 7.25 (7.2313.68({10.70| 1.63 | 0.62
All 4.59 | 4.08 [3.45| 5.56 4.14(1.46| 2.40 | 0.75 | 0.82
Time 0.32s 7.58s 0.18s 11h4m 65s
* 3 motions, 35 sequences, 398 points, 29 frames
GPCA |LLMC| LSA |RANSAC| MSL | SCC | ALC |SSC-B|SSC-N
Checkerboard | 31.95 | 8.48 | 5.80 25.78 110.38] 5.68 | 5.20 | 4.49 | 2.97
Traffic 19.83 | 6.04 |25.07] 12.83 | 1.80| 2.35 | 7.75| 0.61 | 0.58
Articulated 16.85 ] 9.38 | 7.25 21.38 2.71 110.94121.08| 1.60 | 1.42
All 28.66| 8.04 | 9.73 | 2294 | 823 | 5.31]|6.69 | 3.55 | 2.45




Hopkins 155 database

 Misclassification rates for 2 and 3 motions

2 motions 3 motions
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90% | ﬁ e e s
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Results with missing entries & outliers

» Misclassifications rates on 12 motion sequences with

missing data
Method | PF+ ALCs | PF+ALC,, | /' +ALC; | /T4+ALC,, | SSC-N
Average 1.89% 10.81% 3.81% 1.28% | 0.13%
Median 0.39% 7.85% 0.17% 1.07% 0.00%

» Misclassifications rates on 12 motion sequences with
corrupted data

Method | ¢' + ALC5 | ¢ + ALC,, | SSC-N
Average 4.15% 3.02% 1.05%
Median 0.21% 0.89% 0.43%
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Modeling dynamic textures

* Model temporal evolution as the output of a linear
dynamical system (LDS): Soatto et al. ‘01

Zi+ 1 = AZ + vy
images LYt = Cz + w

appearance ]

copy




Segmentation of dynamic textures

* Model intensity at each pixel as « Multiple dynamic textures
the output of an AR model live in multiple hyperplanes
n
vi(@) = 3 aju (@) + wy(@) o o N
j=1 oot
 Define regressors & parameters 8% %
" . 3, (iaam)
zi(x) = [ye(x), ye—1(x), -+ Yr—n()] & 3

-
b=[1, —ai, —az, -, —ay] « Can cluster the regressors

using GPCA
* Regressors with same texture -

live in a hyperplane

b pD

A hyperplane
<2

Zt

<1




Segmentation of dynamic textures

BDE | GCE

DytexMixIC 3.46 | 0.05
DytexMixCS 3.52 | 0.06
Level Sets using Ising | 6.06 | 0.08
LLMC 2.64 | 0.05

PRI | VOI

DytexMixIC 092 | 0.35
DytexMixCS 0.92 | 0.35
Level Sets using Ising | 0.88 | 0.45
LLMC 0.89 | 0.38

Boundary Displacement Error: ranges between [0, co) with 0 being the best
Global Consistency Error: ranges between |0, 1] with 0 being the best
Probabilistic Rand Index: ranges between [0, 1] with 1 being the best

Variation of Information: ranges between [0, co) with 0 being the best



Segmentation of dynamic textures

CDF of Boundary Displacement Error CDF of Global Consistency Error
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Variation of Information

Boundary Displacement Error: ranges between [0, oo) with 0 being the best

Global Consistency Error: ranges between [0, 1] with O being the best Cemter for
Probabilistic Rand Index: ranges between [0, 1] with 1 being the best AGIN G
Variation of Information: ranges between [0, oo) with 0 being the best S CI1 ENCE



Segmentation of dynamic textures

Original sequence Segmentation Polynomial coefficient ¢8
002 :

-D.UQg -
-0.03

-0.035
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Variational segmentation of dynamic textures

* Moving boundary segmentation results

Raccoon on River Ocean-fire
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Temporal video segmentation

The Society Raffles

ODecember 7, 1905
American Mutoscope
& Biograph Company
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Temporal video segmentation by GPCA

« Empty living room « Middle-aged man checks the

» Middle-aged man enters time, rises and leaves

« \Woman enters «  Woman walks him to the door

«  Young man enters, introduces * Woman returns to her seat
the woman and leaves  Woman misses her tiara

* Middle-aged man flirts with  Woman searches her tiara
woman and steals her tiara «  Woman sits and dismays

YWoman Woman  Woman
retums misses  searches
to her seat hertiara  hertiara

——r

Middle-aged man firts with woman and steals hertiara

Empty living room

Middle-aged man
checks the time =

Young
man

o ~ _—
P Middle-aged man rises and leaves Wornan sits
3 and crosses lving room enters  Youngman inlroduces woman while vo:\an walks him to the door and dismays
C | | |1 | | | | | | | | | | T
0 90 195 358382 440464 650674 720 1065 1162 1265 1360 1427 1478 1550

Middle-aged man enters

Fig. 5. Temporal segmentation of a scene from the movie The society raffles. The top row shows several key frames from the
scene displaying different events. The bottom row shows the temporal evolution of the parameter ¢; as a function of time.



Temporal video segmentation by SSC
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SHOULD VOTERS WORRY CLINTON'S STANCE ON IRAQ
PULLOUT WOULD BECOME AN OPEN-ENDED COMMITMENT?
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Conclusions

 Many computer vision problems can be posed as subspace
clustering problems
— 2-D and 3-D motion segmentation
— Dynamic texture segmentation
— Temporal video segmentation

 These problems can be solved using

— Generalized Principal Component Analysis (GPCA): algebraic
method based on polynomial fitting and differentiation

— Sparse Subspace Clustering (SSC): algorithm based on sparse
representation theory and spectral clustering
* Future work

— Extending SCC to disjoint subspaces: what are the conditions on
the subspace angles that allow for a sparse recovery?

— Extending SCC to nonlinear manifolds
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Home Page of the GPCA Algorithm W—_E%

E 4 » | u [_] u | A A | &] - €3 http:// perception.csl.uiuc. edu/gpca/ “[Q' Google - E

3@— Apple (72)v Amazon eBay Yahoo! News (376)v —

(/ul(//( s u/ / um/ﬁ(// About GPCA

( /('/7'51'/« nt /° 1///(//\1\

In many scientific and engineering problems, the data of interest can be viewed as drawn from a mixture of geometric or
statistical models instead of a single one. Such data are often referred to in different contexts as ““mixed," or "“multi-modal,"

/ or “'multi-model," or “heterogeneous," or “hybrid." For instances, a natural image normally consists of multiple regions of
l 1/c ONE different texture, a video sequence may contains multiple independently moving objects, and a hybrid dynamical system may
arbitrarily switch among different subsystems.

-

/ . Generalized Principal Component Analysis (GPCA) is a general method for modeling and segmenting such mixed data
/// .LL/ Tdu .CZ.L LA using a collection of subspaces, also known in mathematics as a subspace arrangement. By introducing certain new algebraic
models and techniques into data clustering, traditionally a statistical problem, GPCA offers a new spectrum of algorithms for
data modeling and clustering that are in many aspects more efficient and effective than (or complementary to) traditional

L S‘{Zy K ( ;{/( {é methods (e.g. Expectation Maximization and K-Means).

The goal of this site is to promote the use of the GPCA algorithm to improve segmentation performance in many application
domains. Tutorials and sample code are provided to help researchers and practitioners decide if the algorithm can be applied

/—%ﬁ A]C {[ l‘ (‘ o to their application domain, and to help get their implementation set up quickly and correctly.

Browsing through the links on the left, you will find a brief overview of the fundamental concepts behind GPCA in the
Introduction section; numerical implementations of several variations of the GPCA algorithm in the Sample Code section;
//] . examples of real applications in the areas of computer vision, image processing; and system identification in the Applications
cd t M section; and finally all the related literature in the Publications section.
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For more information,

Vision Lab @ Johns Hopkins University
Thank You!

Ehsan Elhamifar, JHU

Roberto Tron, JHU

Shankar Rao, UIUC

Yi Ma, Microsoft Research China
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