
HW 1: Advanced Topics in Machine Learning

Instructor: René Vidal, E-mail: rvidal@cis.jhu.edu

Due 2/17/10 in class

1. If S ∈ Rn×n is a real symmetric matrix then prove that:

(a) All eigenvalues of S Are real, i.e., σ(S) ⊂ R.

(b) Let (λ, v) be an eigenvalue-eigenvector pair. If λi 6= λj , then vi ⊥ vj ; i.e., eigenvectors corresponding to
distinct eigenvalues are orthogonal.

(c) There always exist n orthonormal eigenvectors of S, which form a basis of Rn.

(d) S > 0 (S ≥ 0) if λi > 0 (λi ≥ 0) ∀i = 1, 2, . . . , n; i.e., S is positive (semi-)definite if all eigenvalues are
positive (non-negative).

(e) If S ≥ 0 and λ1 ≥ λ2 ≥ . . . ≥ λn, then max‖x‖2=1 < x, Sx >= λ1 and min‖x‖2=1 < x, Sx >= λn.

2. Prove the following:

(a) Consider the problem Ax = b with A ∈ Rm×n of rank p ≤ r , min{m,n}. Prove that the solution x∗

that minimizes ‖Ax− b‖2 is given by x∗ = A†b, where A† is the generalized (Moore Penrose) inverse.

(b) Let A = UΣV T be the SVD of A. Let B = UΣpV
T , where Σp denotes the matrix obtained from Σ by

setting to zero its elements on the diagonal after the pth entry. Show that ‖A− B‖2F = σ2
p+1 + . . .+ σ2

r ,
where ‖·‖F indicates the Frobenius norm. Furthermore, show that such a norm is the minimum achievable
over all matrices B ∈ Rm×n of rank p, i.e.,

min
B:rank(B)=p

‖A−B‖2F = σ2
p+1 + . . .+ σ2

r .

3. Let x be a random vector with covariance matrix Σx. Consider a linear transformation of x:

y = W>x, (1)

where y ∈ Rd and W is a D × d orthogonal matrix, i.e., W>W = Id. Let Σy = W>ΣxW be the covariance
matrix for y. Show that

(a) The trace of Σy is maximized by W = Ud, where Ud consists of the first d (normalized) eigenvectors of
Σx.

(b) The trace of Σy is minimized by W = Ũd, where Ũd consists of the last d (normalized) eigenvectors of
Σx.

4. Given two d-dimensional subspaces S1 and S2 in RD, define the largest subspace angle θ1 between S1 and S2

to be the largest possible sharp angle (< 90◦) formed by any two vectors u1, u2 ∈ (S1∩S2)⊥ with u1 ∈ S1 and
u2 ∈ S2 respectively. Let U1 ∈ RD×d be an orthogonal matrix whose columns form a basis for S1 and similarly
U2 for S2. Then show that if σ1 is the smallest non-zero singular value of the matrix W = U>1 U2, then we have

cos(θ1) = σ1. (2)

Similarly, one can define the rest of the subspace angles as cos(θi) = σi, i = 2, . . . , d from the rest of the
singular values of W .

Hint: Following the derivation of statistical PCA, find first the smallest angle (largest cosine = largest variance)
and then find the second smallest angle all the way to the largest angle (smallest variance). As your proceed, the
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vectors that achieve the second smallest angle need to be chosen to be perpendicular to the vectors that achieve
the smallest angle and so forth, as we did in statistical PCA. Also, let u1 = U1c1 and u2 = U2c2. Show that you
need to optimize cos(θ) = c>1 U

>
1 U2c2 subject to ‖c1‖ = ‖c2‖ = 1. Show (using Lagrange multipliers) that a

necessary condition for optimality is [
0 U>1 U2

U>2 U1 0

] [
c1
c2

]
= λ

[
c1
c2

]
. (3)

Deduce from here that σ = λ2 is a singular value of U>1 U2 with c2 as singular vector.

5. (a) PowerFactorization can be used to compute the principal components of a zero-mean dataset with missing
entries. How would you modify the method to deal with the case where the data is not zero mean?

(b) Implement PowerFactorization for nonzero mean data with missing entries. Use the following format
Function [x,U,Y] = pf(X,d,W)
Parameters
X D ×N matrix whose columns are the data points
d dimension of low-dimensional representation
W D ×N matrix whose ij entry is equal to 1 if Xij is given and to 0 if Xij is missing
Returned values
x D × 1 vector containing the mean of the data
U D × d matrix containing the basis for the subspace
Y d×N matrix containing the principal components

(c) Generate and plot a dataset X with D = 3; d = 2; N = 100; x=ones(D,1);
[Q,R]=qr(randn(D,d)); U=Q(:,1:d); Y=randn(d,N); Y=Y-mean(Y,2)*ones(1,N);
X=x*ones(1,N)+U*diag(3*(0:d-1)+1)*Y; plot3(X(1,:),X(2,:),X(3,:),’.’)
Compute the mean and principal components of the dataset
x=mean(X,2); [U,S,V]=svd(X-x*ones(1,N)); U=U(:,1:d); Y=S(1:d,1:d)*V(:,1:d)’;
Apply pf with W1=ones(D,N); [x1,U1,Y1]=pf(X,d,W1). Do you get the same results as PCA?
Apply pf with W2=ones(D,N)-eye(D,N); [x2,U2,Y2]=pf(X,d,W2). Do you get the same re-
sults as PCA? Can you reconstruct the missing entries in X perfectly or approximately?
Plot the low-dimensional representations Y,Y1,Y2 and comment on their similarities and differences
figure(1), plot(Y(1,:),Y(2,:),’or’); figure(2), plot(Y1(1,:),Y1(2,:),’xg’);
figure(3), plot(Y2(1,:),Y2(2,:),’sb’); axis(’equal’);
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