
HW 3: Advanced Topics in Machine Learning

Instructor: René Vidal, E-mail: rvidal@cis.jhu.edu

Due 3/31/10 in class

1. Robust PCA. Consider the problem of decomposing a given matrix X into the sum of a low rank matrix L and
a sparse matrix E by solving the following optimization problem

min ‖L‖∗ + λ‖E‖1 (1)
s.t. X = L+ E (2)

The augmented Lagrangian method for solving this problem is given by

max
Λ

min
L,E

‖L‖∗ + λ‖E‖1 + trace(Λ>(X − L− E)) +
µ

2
‖X − L− E‖2F . (3)

where Λ is a matrix of Lagrange multipliers and µ > 0 is a fixed user-specified parameter. Show that this
optimization problem can be solved using the following (coordinate ascent/descent) iterative procedure

• Initialize E0 = Λ0 = 0.

• While not converged do

– Lk+1 = Dµ−1(X − Ek − µ−1Λk)
– Ek+1 = Sλµ−1(X − Lk+1 + µ−1Λk)
– Λk+1 = Λk + µ(X − Lk+1 − Ek+1)

• end while

Here Sτ (x) = sign(x) max(|x| − τ, 0) is the shrinkage operator (which extends to matrices by applying it
to each entry) and Dτ (X) is the singular value thresholding operator given by Dτ (X) = USτ (Σ)V >, where
X = UΣV > is the SVD of X .

2. Properties of the Veronese map. Consider the Veronese map νn : [x1, . . . , xD]> 7→ [. . . ,xn, . . .]> where

xn = xn1
1 xn2

2 . . . xnD

D ranges over all monomials of degree n =
D∑
i=1

ni in the variables x1, x2, . . . , xD, sorted

in the degree-lexicographic order, and let x,y ∈ RD.

(a) Number of monomials: Show that the number of linearly independent monomials is given by

Mn(D) =
(
n+D − 1

n

)
(b) Inner product invariance: Show that the polynomial kernel k(x,y) = (y>x)n can be written in terms

of the Veronese map as k(x,y) = νn(y)>Mνn(x), where M ∈ RMn(D)×Mn(D) is a diagonal matrix,
and its (n1, n2, . . . , nD)th entry is n!

n1!n2!...nD! with
∑D
i=1 ni = n.

Hint: Use the Multinomial Theorem.

(c) Linear invariance:

i. Show that νn(αx+y) =
∑n
i=0 α

ifi(x,y) where fi(x,y) ∈ RMn(D) is a bi-homogenous polynomial
of degree i in x and (n− i) in y for i = 0, . . . , n.

ii. Let Sn be the space of homogeneous polynomials of degree n in D variables. Define the transforma-
tion T : Sn → Sn, such that T (pn(x)) = pn(Ax), where A ∈ RD×D. Show that the transformation
T is linear.

iii. Show that for all A ∈ RD×D there exists an Ã ∈ RMn(D)×Mn(D) such that for all x, νn(Ax) =
Ãνn(x).

(d) Rotation invariance: Show that for D = 3 and all R ∈ SO(3), there exists R̃ ∈ SO(Mn(D)) such that
for all x, νn(Rx) = R̃νn(x).
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3. Joint Central and Subspace Clustering. Let {xi ∈ RD}Pi=1 be a collection of points lying in n affine sub-
spaces

Sj = {x : x = xj0 + U jdj
y} j = 1, . . . , n

of dimensions dj , where xj0 ∈ RD, U jdj
∈ RD×dj has orthonormal columns, and y ∈ Rdj . Assume that within

each subspace Sj the data is distributed around mj cluster centers {µjk ∈ RD}k=1...mj

j=1...n .

(a) Assume that n, dj and mj are known and propose a clustering algorithm similar to K-means and K-
subspaces to estimate the model parameters xj0, U jd , yji and µjk, and the segmentation of the data according
to the

∑n
j=1mj groups . More specifically, write down the cost function to be minimized, the constraints

among the model parameters (if any), and use Lagrange optimization to find the optimal model parameters
given the segmentation.

(b) Assume that n, dj and mj are unknown. How would you modify the cost function of part a)?

4. Implementation of Subspace Clustering Algorithms

(a) Investigate the function kmeans in MATLAB, that implements the K-means algorithm for clustering data
distributed around n cluster centers.

(b) Write a function to cluster data drawn from n subspaces using the K-Subspaces algoritm. The format of
the function should be

Function [group,x0,U,Y] = ksubspaces(x,n,d,group0)
Parameters

x D ×N matrix whose columns are the data points
n number of groups
d 1× n vector containing the dimension of each subspace

group0 1×N vector with initial group membership of each point (optional argument)
Returned values
group 1×N vector with group membership of each point

x0 D × n matrix whose columns are the cluster centers
U n-dimensional structure whose j-th entry, U(j).matrix, is the matrix U jdj

∈ RD×dj ,
whose columns form a basis for the j-th subspace

Y n-dimensional structure whose j-th entry, Y(j).matrix, is the low-dimensional repre-
sentations Y j ∈ Rdj×Nj

Description
Computes the clustering of points using K-Subspaces.

If group0 is not given, then the algorithm should generate a random initial segmentation.
(c) Implement the GPCA algorithm for hyperplanes using the following format

Function [b,group] = gpca(x,n)
Parameters

x D ×N matrix whose columns are the data points
n number of groups

Returned values
b D × n matrix whose columns are the normal vectors

group 1×N vector with group membership of each point
Description
Hyperplane clustering using GPCA.

(d) Generate data with 100 points in the XY plane and 100 points in the Y Z plane. For example,
x = [randn(2,100);zeros(1,100)]; x = [x [zeros(1,100); randn(2,100)]];
Add Gaussian noise to the data. For example x = x + 0.01*randn(3,200);
Plot the data with different colors for the two different groups. Run the K-Subspaces algorithm with
random initialization. Report percentage of misclassified points. Run the GPCA algorithm and report
percentage of misclassified points. Run the K-subspaces algorithm starting from the segmentation of
GPCA and report the percentage of misclassified points.
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