Locally Linear Manifold Clustering (LLMC)

Nonlinear manifolds in a Euclidean space
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Nonlinear sub-manifolds in a Riemannian space
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Goals

Develop framework for
simultaneous clustering &
dimensionality reduction

Reduce manifold clustering
to central clustering

Contributions

Extend NLDR from one
sub-manifold to multiple
sub-manifolds

Extend NLDR from
Euclidean spaces to
Riemannian spaces

Show that when sub-
manifolds are separated, all
points in one sub-manifold
are mapped to single point



Nonlinear dimension reduction & clustering

» Global techniques

Isomap (Tenenbaum et al. ‘00)
Kernel PCA (Schélkopf-Smola’98)

» Local techniques

Locally Linear Embedding (LLE)
(Roweis-Saul '00)

Laplacian Eigenmaps (LE)
(Belkin-Niyogi ‘02)

Hessian LLE (HLLE)
(Donoho-Grimes ‘03)

Local Tangent Space Alignment
(Zha-Zhang’05)

Maximum Variance Unfolding
(Weinberger-Saul ‘04)

Conformal Eigenmaps
(Sha-Saul’'05)

« Clustering based on geometry

— LLE+Spectral clustering
(Polito-Perona ’02)

— Spectral embedding and
clustering (Brand-Huang’03)

— Isomap+EM (Souvenir-Pless’05)

* Clustering based on dimension

— Fractal dimension
(Barbara-Chen’00)

— Tensor voting
(Mordohai-Medioni’05)

— Dimension induced clustering
(Gionis et al. '05)

— Translated Poisson mixtures
(Haro et al.’08)



Locally linear embedding (LLE)

(a) Original manifold (b) Learning matrix of weights (c) Low-dimensional embedding

« Find the k-nearest neighbors of each data point according to the Euclidean
distance.

« Compute a matrix W that represents the local neighborhood as the affine
subspace spanned by a point and its k-nearest neighbors

Y1 1 225=1 Wigxj — x|

+ Find y; € R? which minimize the error 71 [ly; — X7—1 Wiyl
Solve a sparse eigenvalue problem on matrix M = (I — W) (I —W).
The first eigenvector is the constant vector corresponding to eigenvalue 0.



Locally linear manifold clustering

 Nonlinear manifolds

— If the manifolds are k-separated
« M is block-diagonal and dim(null(M)) = m
» Vectors in the null space are of the form

1 if pointi belongs to group j

o otherwise

Vij —

— |f the manifolds are not k-separated

Vw%]_ VZ]%O

 Linear and nonlinear manifolds
— dim(null(M)) = m + >_d;
— Mv=0and Me =20

— If B is a basis for null(M) , membership
vectors can be found as v = Bx, where

x = arg min Y;; w;; (b x — ¢;)?



Extending LLE to Riemannian manifolds

Submanifold 2

Submanifold 1
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Table 1: Comparison of operations in Euclidean and Riemannian spaces.
Operation Euclidean Riemannian
Subtraction x;x; xTj—x; log,. (x;)
Addition x; T+ T, expy, (x; ;)
Distance dist(z;, ;) lzizjl| = llzj — 2| 11084, (%)) [z, = \/(l0gg, (;), 1084, (%)),
Mean X X=13" x,=>" Xu,=0 oy logg(x;) =0
Sample covariance matrix cov(x) AN (i —X)(x; —X) T LS (logg(w;)) (logg(x;))
Linear interpolation & x; +wT,T; exp,, (wx;x;)

« Manifold geometry essential only in first two steps of each algorithm.
— How to select the KNN?
- by incorporating the Riemannian distance [I109x;(x;)llx;
— How to compute the matrix M representing the local geometry?



Extending LLE to Riemannian manifolds

 LLE involves writing each data point as a linear combination

of its neighbors.

— Euclidean case: need to solve a least-squares problem.
— Riemannian case: interpolation problem on the manifold.

« How should the data points be interpolated?

n
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X Rriem.i 18 the geodesic linear interpolation of ; by its kNN and is given by,

 What cost function should be minimized?

The Riemannian reconstruction error
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