
Locally Linear Manifold Clustering (LLMC) 
•  Nonlinear manifolds in a Euclidean space 

•  Nonlinear sub-manifolds in a Riemannian space 

•  Goals 
–  Develop framework for 

simultaneous clustering & 
dimensionality reduction  

–  Reduce manifold clustering 
to central clustering 

•  Contributions 
–  Extend NLDR from one 

sub-manifold to multiple 
sub-manifolds 

–  Extend NLDR from  
Euclidean spaces to 
Riemannian spaces 

–  Show that when sub-
manifolds are separated, all 
points in one sub-manifold 
are mapped to single point 



Nonlinear dimension reduction & clustering 
•  Global techniques 

–  Isomap (Tenenbaum et al. ‘00) 
–  Kernel PCA (Schölkopf-Smola’98) 

•  Local techniques 
–  Locally Linear Embedding (LLE) 

(Roweis-Saul ’00) 
–  Laplacian Eigenmaps (LE) 

(Belkin-Niyogi ‘02) 
–  Hessian LLE (HLLE)  

(Donoho-Grimes ‘03) 
–  Local Tangent Space Alignment 

(Zha-Zhang’05) 
–  Maximum Variance Unfolding 

(Weinberger-Saul ‘04) 
–  Conformal Eigenmaps  

(Sha-Saul’05) 

•  Clustering based on geometry 
–  LLE+Spectral clustering  

(Polito-Perona ’02) 
–  Spectral embedding and 

clustering (Brand-Huang’03) 
–  Isomap+EM (Souvenir-Pless’05) 

•  Clustering based on dimension 
–  Fractal dimension  

(Barbara-Chen’00) 
–  Tensor voting  

(Mordohai-Medioni’05) 
–  Dimension induced clustering 

(Gionis et al. ’05) 
–  Translated Poisson mixtures  

(Haro et al.’08) 



Locally linear embedding (LLE) 

•  Find the k-nearest neighbors of each data point according to the Euclidean 
distance.   

•  Compute a matrix      that represents the local neighborhood as the affine 
subspace spanned by a point and its k-nearest neighbors 

•  Find                 which minimize the error 
 Solve a sparse eigenvalue problem on matrix                                       . 
The first eigenvector is the constant vector corresponding to eigenvalue 0. 



Locally linear manifold clustering 
•  Nonlinear manifolds 

–  If the manifolds are k-separated 
•      is block-diagonal and 
•  Vectors in the null space are of the form 

                   if point i belongs to group j 
                   otherwise 

–  If the manifolds are not k-separated 

•  Linear and nonlinear manifolds 
–    
–                  and 
–  If     is a basis for               , membership 

vectors can be found as               , where 



Extending LLE to Riemannian manifolds 

•  Manifold geometry essential only in first two steps of each algorithm. 
–  How to select the kNN? 

•  by incorporating the Riemannian distance 
–  How to compute the matrix      representing the local geometry? 



Extending LLE to Riemannian manifolds 
•  LLE involves writing each data point as a linear combination 

of its neighbors.  
–  Euclidean case: need to solve a least-squares problem. 
–  Riemannian case: interpolation problem on the manifold.  

•  How should the data points be interpolated?  

•  What cost function should be minimized? 


