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Chapter 2
Data Modeling with a Single Subspace

“Principal component analysis is probably the oldest and best
known of the techniques of multivariate analysis.”

– I. T. Jolliffe

In this chapter, we give a brief review of principal component analysis (PCA),
i.e., the method for finding an optimal (affine) subspace to fit a set of data points.
The solution to PCA has been well established in the literature and it has become
one of the most useful tools for data modeling, compression, and visualization.
We introduce both the statistical and geometric formulation of PCA and establish
their equivalence. Specifically, we show that the singular value decomposition
(SVD) provides an optimal solution to PCA. We also establish the similarities
and differences between PCA and two generative subspace models, namely Fac-
tor Analysis (FA) and Probabilistic PCA (PPCA). When the dimension of the
subspace is unknown, we introduce some conventional model selection methods
to determine the number of principal components. When the data points are in-
complete or contain outliers, we review some robust statistical techniques that
help resolve these difficulties. Finally, some nonlinear extensions to PCA such as
nonlinear PCA and kernel PCA are also reviewed.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S to a set of points {x1,x2, . . . ,xN} in a
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high-dimensional space RD, the ambient space. Mathematically, this problem can
be formulated as either a statistical problem or a geometric one, and they both lead
to the same solution, as we will show in this section.

2.1.1 A Statistical View of PCA
Historically, PCA was first formulated in a statistical setting to estimate the prin-
cipal components of a multivariate random variable x [Pearson, 1901, Hotelling,
1933]. Specifically, given a multivariate random variable x ∈ RD and any integer
d < D, the d “principal components” of x are defined as the d uncorrelated linear
components of x:

yi = u�i x ∈ R, ui ∈ RD, i = 1, 2, . . . , d, (2.1)

such that the variance of yi is maximized subject to

u�i ui = 1 and Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd). (2.2)

For example, to find the first principal component, y1, we seek a vector u∗1 ∈ RD

such that

u∗1 = arg max
u1∈RD

Var(u�1 x), s.t. u�1 u1 = 1. (2.3)

Without loss of generality, in what follows, we will assume x has zero-mean.

Theorem 2.1 (Principal Components of a Random Variable). The first d principal
components of a multivariate random variable x are given by yi = u�i x, where
{ui}

d
i=1 are the d leading eigenvectors of its covariance matrix Σx

.= E[xx�].

Proof. Notice that for any u ∈ RD,

Var(u�x) = E[(u�x)2] = E[u�xx�u] = u�Σxu. (2.4)

Therefore, the optimization in problem in (2.3) for finding the first principal
component is equivalent to

max
u1∈RD

u�1 Σxu1, s.t. u�1 u1 = 1. (2.5)

In order to solve the above constrained minimization problem, we use the
Lagrange multiplier method. The Lagrangian is given by

L = u�1 Σxu1 + λ(1− u�1 u1) (2.6)

for some Lagrange multiplier λ ∈ R. The necessary condition for u1 to be an
extrema is

Σxu1 = λu1, (2.7)

and the associated extremum value is u�1 Σxu1 = λ. It follows that the optimal
solution u∗1 is exactly the eigenvector of Σx associated with the largest eigenvalue.
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To find the remaining principal components, since u�1 x and u�i x (i > 1) need
to be uncorrelated, we have

E[(u�1 x)(u�i x)] = E[u�1 xx�ui] = u�1 Σxui = λ1u
�
1 ui = 0. (2.8)

That is, u2, . . . , ud are all orthogonal to u1. More generally, u�i uj = 0 for all
i �= j = 1, . . . d. To find u2 we define the Lagrangian

L = u�2 Σxu2 + λ2(1− u�2 u2) + γu�1 u2. (2.9)

The necessary condition for u2 to be an extrema is

Σxu2 + γu1 = λ2u2, (2.10)

from which it follows that u�1 Σxu2 + γu�1 u1 = λ1u�1 u2 + γ = λ2u�1 u2, and so
γ = 0. Since the associated extremum value is u�2 Σxu2 = λ2, u∗2 is the leading
eigenvector of Σx restricted to the orthogonal complement of u1.1 Assuming that
Σx does not have repeated eigenvalues, u∗2 is the eigenvector of Σx associated
with the second largest eigenvalue. Inductively, one can show that u3, u4, . . . , ud

are the top third, fourth, . . . , dth eigenvectors of Σx and that the corresponding
eigenvalues give the variance of the principal components, i.e., λi = Var(yi).

The solution to PCA provided by Theorem 2.1 suggests that we may find the
d principal components of x simultaneously, rather than one by one. Specifically,
we can define a matrix a random vector y = [y1, y2, . . . , yd]� ∈ Rd and a matrix
Ud = [u1, u2, · · · , ud] ∈ RD×d. Since y = U�d x, we have that

Σy = E(yy�) = U�d E(xx�)Ud = U�d ΣxUd. (2.11)

Since were are looking for uncorrelated random variables, the matrix Σy must be
diagonal and the matrix Ud must be orthonormal, i.e., U�d Ud = Id.

Recall that any real, symmetric and positive semi-definite matrix A can be
transformed into a diagonal matrix Λ = V −1AV , where the columns of V are
the eigenvectors of A and the diagonal entries of Λ are the corresponding eigen-
values. Recall also that the eigenvalues are real and nonnegative, i.e., λi ≥ 0,
and that the eigenvectors can be chosen to be orthonormal, so that V −1 = V �.
Since the matrix Σx is real, symmetric and positive semi-definite, the equation
Σy = U�d ΣxUd suggests that the columns of Ud can be chosen as d eigenvectors
of Σx and that the diagonal entries of Σy can be chosen as the corresponding d
eigenvalues. Moreover, since our goal is to maximize the variance of each yi and
λi = Var(yi), we conclude that the columns of Ud are the top d eigenvectors of
Σx and the entries of Σy are the corresponding top d eigenvalues.

This alternative derivation of PCA allows us to understand what happens when
Σx has repeated eigenvalues. When the eigenvalues are different, each eigenvec-
tor ui is unique (up to sign), thus the principal components are unique (up to sign).

1The reason for this is that both u1 and its orthogonal complement u
⊥
1 are invariant subspaces of

Σx.



8 Chapter 2. Data Modeling with a Single Subspace

When an eigenvalue is repeated, Σx still admits a basis of orthonormal eigenvec-
tors. However, the eigenvectors corresponding to the repeated eigenvalue form an
eigensubspace and any orthonormal basis for this eigensubspace gives valid prin-
cipal components. As a consequence, the principal components are not always
uniquely defined.

In practice, we may not know the population covariance matrix, Σx. Instead,
we may be given N i.i.d. samples of x, {xi}

N
i=1. Let X = [x1,x2, · · · ,xN ]

be the sample data matrix. It is well known from statistics that an asymptotically
unbiased estimate of Σx is given by

�ΣN
.=

1
N − 1

N�

i=1

xix
�
i =

1
N − 1

XX�. (2.12)

We define the d “sample principal components” of x as

ŷi = û�i x, i = 1, . . . , d, (2.13)

where {ûi}
d
i=1 are the top d eigenvectors of �ΣN , or equivalently those of XX�.

Notice also that, even though the principal components of x and the sample prin-
cipal components of x are different notions, under certain assumptions on the
distribution of x they can be related to each other. Specifically, one can show that,
if x is Gaussian, then every eigenvector û of �ΣN is an asymptotically unbiased
estimate for the corresponding eigenvector u of Σx [Jolliffe, 1986].

2.1.2 A Geometric View of PCA
An alternative geometric view of PCA, which is very much related to the SVD
[Beltrami, 1873, Jordan, 1874], seeks to find an (affine) subspace S that fits the
given data points {xi}

N
i=1.

Let us assume for now that the dimension of the subspace d is known. Then
every point xi on a d-dimensional affine subspace in RD can be represented as

xi = x0 + Udyi, i = 1, 2, . . . , N (2.14)

where x0 ∈ RD is a(ny) fixed point in the subspace, Ud is a D × d matrix whose
columns form a basis for the subspace, and yi ∈ Rd is simply the vector of new
coordinates of xi in the subspace.

Notice that there is some redundancy in the above representation due to the
arbitrariness in the choice of x0 and Ud. More precisely, for any y0 ∈ Rd, we
can re-represent xi as xi = (x0 + Udy0) + Ud(yi − y0). We call this ambiguity
the translational ambiguity. Also, for any A ∈ Rd×d we can re-represent xi as
xi = x0 +(UdA)(A−1yi). We call this ambiguity the change of basis ambiguity.
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace to for the data.
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A common constraint used to resolve the translational ambiguity is to impose
that the mean of yi is zero:2

ȳ
.=

1
N

N�

i=1

yi = 0, (2.15)

while a common constraint used to resolve the change of basis ambiguity is to
impose that the columns of Ud be orthonormal. This last constraint eliminates
the change of basis ambiguity only up to a rotation, because we can still re-
represent xi as xi = x0 + (UdR)(R�yi) for some rotation R in Rd. However,
this rotational ambiguity can be easily deal with during optimization, as we shall
see.

In general the given points are imperfect and have noise. We define the “opti-
mal” affine subspace to be the one that minimizes the sum of squared distances
between xi and its projection onto the subspace x0 + Udyi, i.e.,

min
x0,Ud,{yi}

N�

i=1

��xi − x0 − Udyi

��2
, s.t. U�d Ud = Id and ȳ = 0. (2.16)

In order to solve this optimization problem, we define the Lagrangian

L =
N�

i=1

��xi − x0 − Udyi

��2 + γ�
N�

i=1

yi + tr(Λ(Id − U�d Ud)), (2.17)

where γ ∈ Rd and Λ = Λ� ∈ Rd×d are, respectively, a vector and a matrix of
Lagrange multipliers.

The necessary condition for x0 to be an extrema is

− 2
N�

i=1

(xi − x0 − Udyi) = 0 =⇒ x̂0 = x̄
.=

1
N

N�

i=1

xi. (2.18)

The necessary condition for yi to be an extrema is

− 2U�d (xi − x0 − Udyi) + γ = 0. (2.19)

Summing over i yields γ = 0, from which we obtain

ŷi = U�d (xi − x̄). (2.20)

The vector ŷi ∈ Rd is simply the coordinates of the projection of xi ∈ RD onto
the subspace S. We may call such ŷ the “geometric principal components” of x.3

2In the statistical setting, xi and yi will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to be zero.

3As we will soon see in the next section, the geometric principal components coincide with the
sample principal components defined in a statistical sense.
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Before optimizing over Ud, we can replace the optimal values for x0 and yi

into the objective function. This leads to the following optimization problem

min
Ud

N�

i=1

��(xi − x̄)− UdU
�
d (xi − x̄)

��2 s.t. U�d Ud = Id. (2.21)

Note that this is a restatement of the original problem with the mean x̄ sub-
tracted from each of the sample points. Therefore, from now on, we will consider
only the case in which the data points have zero mean. If not, simply subtract the
mean from each point before computing Ud.

The following theorem gives a constructive solution for finding an optimal Ûd.

Theorem 2.2 (PCA via SVD). Let X = [x1,x2, . . . ,xN ] ∈ RD×N be the matrix
formed by stacking the (zero-mean) data points as its column vectors. Let X =
UΣV � be the SVD of the matrix X . Then for any given d < D, an optimal
solution for Ud is given by the first d columns of U , and an optimal solution for
yi is given by the ith column of the top d×N submatrix ΣdV �d of ΣV �.

Proof. Recalling that x�Ax = tr(Axx�), we can rewrite the least-squares error
N�

i=1

��xi − UdU
�
d xi

��2 =
N�

i=1

x�i (ID − UdU
�
d )xi (2.22)

as tr((ID − UdU�d )XX�). The first term tr(XX�) does not depend on Ud.
Therefore, we can transform the minimization of (2.22) to

max
Ud

tr(UdU
�
d XX�) s.t. U�d Ud = Id. (2.23)

Since tr(AB) = tr(BA), the Lagrangian for this problem can be written as

L = tr(U�d XX�Ud) + tr((Id − U�d Ud)Λ). (2.24)

The conditions for an extrema are given by

XX�Ud = UdΛ. (2.25)

Therefore, Λ = U�d XX�Ud and the objective function reduces to tr(Λ). Now,
recall that Ud is defined only up to a rotation, i.e., U �d = UdR is also a valid
solution, hence so is Λ� = RΛR�. Since Λ is symmetric, it has an orthogonal
matrix of eigenvectors. Thus, if we choose R to be the matrix of eigenvectors of
Λ, then Λ� is a diagonal matrix. As a consequence, we can choose Λ to be diagonal
without loss of generality. It follows from (2.25) that the columns of Ud must be
eigenvectors of XX� with the corresponding eigenvalues in the diagonal entries
of Λ. Since the goal is to maximize tr(Λ), an optimal solution is given by the top d
eigenvectors of XX�, i.e., the top d singular vectors of X = UΣV �, which are
the first d columns of U . It then follows from (2.20) that Y = [y1, · · · ,yN ] =
U�d X = U�d UΣV � = ΣdV �d . Finally, since Λ = U�d UΣ2U�Ud = Σ2

d, the
optimal least-squares error is given by tr(Σ2)− tr(Σ2

d) =
�D

i=d+1 σ2
i , where σi

is the ith singular value of X .
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According to the theorem, the SVD gives an optimal solution to the PCA
problem. The resulting matrix Ûd (together with the mean x̄ if the data is not zero-
mean) provides a geometric description of the dominant subspace structure for all
the points4; and the columns of the matrix ΣdV �d = [ŷ1, ŷ2, . . . , ŷN ] ∈ Rd×N ,
i.e., the principal components, give a more compact representation for the points
X = [x1,x2, . . . ,xN ] ∈ RD×N , as d is typically much smaller than D.

Theorem 2.3 (Equivalence of Geometric and Sample Principal Components). Let
X = [x1,x2, . . . ,xN ] ∈ RD×N be the data matrix (with x̄ = 0). The vectors
û1, û2, . . . , ûd ∈ RD associated with the d sample principal components for X
are exactly the columns of the matrix Ûd ∈ RD×d that minimizes the least-squares
error (2.22).

Proof. The proof is simple. Notice that if X has the singular value decomposition
X = UΣV �, then XX� = UΣ2U� is the eigenvalue decomposition of XX�.
If Σ is ordered, then the first d columns of U are exactly the leading d eigenvectors
of XX�, which give the d sample principal components.

Therefore, both the geometric and statistical formulation of PCA lead to exactly
the same solutions/estimates of the principal components. The geometric formu-
lation allows us to apply PCA to data even if the statistical nature of the data is
unclear; the statistical formulation allows to quantitatively evaluate the quality of
the estimates. For instance, for Gaussian random variables, one can derive explicit
formulae for the mean and covariance of the estimated principal components. For
a more thorough analysis of the statistical properties of PCA, we refer the reader
to the classical book [Jolliffe, 1986].

2.1.3 Probabilistic PCA
The PCA model described so far allows us to find a low-dimensional representa-
tion {yi ∈ Rd} of a set of points {xi ∈ RD}, with d � D. However, the PCA
model is not a proper generative model, because the low-dimensional representa-
tion y and the error ε are treated as parameters, rather than as random variables.
As a consequence, the PCA model cannot be used to generate new samples x.

To address this issue, assume that the low-dimensional representation y and the
error ε are independent random variables with pdfs p(y) and p(ε), respectively.
This allows us to generate a new sample of x from samples of y and ε as

x = x0 + Udy + ε. (2.26)

Assume that mean and covariance of y are denoted as µy and Σy , respectively.
Assume also that ε is zero mean with covariance Σε. The mean and covariance of

4From a statistical standpoint, the column vectors of Ud give the directions in which the data X

has the largest variance, hence the name “principal components.” See the next section for detail.
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the observations are then given by

µx = x0 + Udµy and Σx = UdΣyU�d + Σε. (2.27)

The remainder of the section discusses different methods for estimating the
parameters of this model, x0, Ud, µy , Σy and Σε, from the mean and covariance
of the population, µx and Σx, or from i.i.d. samples {xi}

N
i=1.

PPCA from Population Mean and Covariance

Observe that, in general, we cannot recover model parameters from µx and Σx.
For instance, notice that x0 and µy cannot be uniquely recovered from µx. Sim-
ilarly to what we did in the case of PCA, this issue can be easily resolved by
assuming that µy = 0. This leads to the following estimate of x0

�x0 = µx, (2.28)

which is the same estimate as that of PCA.
Another ambiguity that cannot be resolved in a straightforward manner is that

Σy and Σε cannot be uniquely recovered from Σx. For instance, Σy = 0 and
Σε = Σx is a valid solution. However, this solution is not meaningful, because it
assigns all the information in Σx to the error, rather than to the low-dimensional
representation. Intuitively we would like Σy to capture as much information about
Σx as possible. Thus it makes sense for Σy to be full rank and for Σε to be as
close to zero as possible. Probabilistic PCA (PPCA) resolves the aforementioned
ambiguity by assuming that

1. the low-dimensional representation has unit covariance Σy = Id ∈ Rd×d

and

2. the noise covariance matrix Σε ∈ RD×D is isotropic, i.e., Σε = σ2ID.

These assumptions lead to the following relationship

Σx = UdU
�
d + σ2ID. (2.29)

The following theorem allows us to compute the parameters Ud and σ.

Theorem 2.4. The optimal solution for Ud and σ with the smallest σ is given by

�Ud = U1(Σ1 − �σ2I)1/2 and �σ2 =
1

D − d

D�

i=d+1

λi, (2.30)

where U1 is the matrix with the top d eigenvectors of Σx, Σ1 is the matrix with
the corresponding d top eigenvalues, and λi is the ith eigenvalue of Σx.

Proof. Multiplying (2.29) on the right by Ud leads to

(Σx − σ2ID)Ud = UdΛ. (2.31)

Therefore, the columns of Ud must be eigenvectors of Σx − σ2ID, which are the
same as the eigenvectors of Σx. Since we want σ to be as small as possible, it
makes sense to choose the top d eigenvectors of Σx. So see this, let Ud = U1Γ,
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where the columns of U1 ∈ RD×d are any d orthonormal eigenvectors of Σx and
Γ ∈ Rd×d is a diagonal matrix, which scales these eigenvectors so that they satisfy
U�d Ud = Λ. Since U�1 U1 = Id, we obtain Γ2 = Λ = Σ1 − σ2Id, where Σ1 is a
diagonal matrix with the d eigenvalues of Σx corresponding to the d eigenvectors
in U1. Now, recalling that Σx = UdU�d + σ2ID we have that

tr(Σx) = tr(UdU
�
d ) + tr(σ2ID) = tr(U�d Ud) + Dσ2 (2.32)

= tr(Λ) + Dσ2 = tr(Σ1) + (D − d)σ2. (2.33)

Therefore, the smallest possible σ is obtained when tr(Σ1) is maximized, which
happens if we choose the diagonal entries of Σ1 to be the top d eigenvalues of
Σx.

PPCA by Maximum Likelihood

In general, we may not know the true covariance matrix Σx. Instead, we are given
samples {xi}

N
i=1 from which we can estimate the sample covariance matrix �ΣN .

The question is whether the model parameters can be estimated as in the previous
section after replacing Σx by �ΣN . As it turns out, the maximum likelihood esti-
mates of the model parameters can be computed almost as before when y and ε
are assumed to be Gaussian random variables.

More specifically, assume that both y and ε are Gaussian random variables
y ∼ N (µy,Σy) and ε ∼ N (0,Σε). This implies that x is also Gaussian, because
it is a linear combination of Gaussians. Specifically, x ∼ N (µx,Σx), where µx

and Σx are given in (2.27). Assume also that Σy = Id and that Σε = σ2I . The
maximum likelihood estimate for µx is 1

N

�N
i=1 xi. The maximum likelihood

estimates for Ud and Σε are obtained by maximizing

L(Ud,Σε) = −
ND

2
log(2π)−

N

2
log det(Σx)−

N

2
tr(Σ−1

x
�Σx) (2.34)

subject to Σx = UdU�d + Σε.
After taking derivatives with respect to Ud, we obtain

∂L

∂Ud
= −NΣ−1

x Ud + NΣ−1
x

�ΣxΣ−1
x Ud = 0 =⇒ �ΣxΣ−1

x Ud = Ud. (2.35)

One possible solution is Ud = 0, which leads to a minimum of the log-likelihood
and violates our assumption that Ud should be full rank. Another possible solution
is Σx = �Σx, where the covariance model is exact. This corresponds to the case
discussed in the previous section, after replacing Σx by �Σx. Thus, the model
parameters can be computed as before. A third solution is obtained when Ud �= 0
and Σx �= �Σx. In this case, we have,

ΣxUd = Ud(Λ + σ2Ud) =⇒ Ud = Σ−1
x Ud(Λ + σ2Id) (2.36)

=⇒ �ΣxUd = Ud(Λ + σ2Id) (2.37)
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Notice that the last equation is the same as that in (2.31) with Σx replaced by �Σx.
Therefore, the optimal solution is of the form Ud = U1(Σ1 − σ2I)1/2, where U1

is a matrix with d eigenvectors of �Σx with the corresponding eigenvalues in Σ1.
Before replacing this solution into (2.34), recall two well known identities,

the matrix determinant lemma det(A + UV �) = det(I + V �A−1U) det(A)
and the matrix inversion lemma (A + UCV )−1 = A−1 − A−1U(C−1 +
V A−1U)−1V A−1. Applying the matrix determinant lemma to det(Σx) leads to

|UdU
�
d + σ2ID| = |Id + σ−2U�d Ud)||σ2ID| = |(Σ1/σ2)|σ2D = |Σ1|σ

2(D−d),
(2.38)

while applying the matrix inversion lemma to Σx leads to

(UdU
�
d + σ2ID)−1 =

ID

σ2
−

Ud

σ2
(Id +

1
σ2

U�d Ud)−1 U�d
σ2

(2.39)

=
1
σ2

(ID − UdΛ−1U�d ) =
1
σ2

(ID − U1U
�
1 ) (2.40)

Therefore, the log-likelihood can be rewritten as

L = −
ND

2
log(2π)−

N

2
�
(D − d) log σ2 + log det(Σ1)

�
(2.41)

−
N

2σ2
tr(�Σx − U1U

�
1

�Σx) (2.42)

The condition for an extrema in σ2 is given by

∂L

∂σ2
= −

N

2
D − d

σ2
+

N

2σ4

�
tr(�Σx)− tr(U�1 �ΣxU1)

�
= 0. (2.43)

Since tr(U�1 �ΣxU1) = tr(Σ1), we conclude that

σ2 =
1

D − d

�
tr(�Σx)− tr(Σ1)

�
. (2.44)

This expression is minimized when tr(Σ1) is maximized, which happens when
Σ1 is chosen as the matrix with the top d eigenvalues of �Σx.

In summary, we have shown that the optimal solution to PPCA is given by

�Ud = U1(Σ1 − �σ2I)1/2 and �σ2 =
1

D − d

D�

i=d+1

λi, (2.45)

where U1 is the matrix with the top d eigenvectors of �Σx, Σ1 is the matrix with
the corresponding d top eigenvalues, and λi is the ith eigenvalue of �Σx.

2.2 Determining the Number of Principal Components

In the above discussions, we have assumed that the dimension of the subspace
S (the number of principal components) is given and that all the sample points
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can be fit with the same geometric or statistical model: a subspace. In this sec-
tion, we discuss various robustness issues for PCA, such as how to determine
the dimension of the subspace from noisy data and how to determine the principal
components when the data are contaminated by outliers or incomplete data points.

Notice that the SVD of the noisy data matrix X gives a solution to PCA not
only for a particular dimension of the subspace, d, but also for all d = 1, 2, . . . ,D.
This has an important side-benefit: If the dimension of the subspace S is not
known or specified a priori, rather than optimizing for both d and S simultane-
ously, we can easily look at the entire spectrum of solutions for different values
of d to decide on the “best” estimate d̂ for the dimension of the subspace d given
the data X .

The problem of determining the optimal dimension d̂ is in fact a “model selec-
tion” problem. As we discussed in the introduction of the book, the conventional
wisdom is to strike a good balance between the complexity of the chosen model
and the fidelity of the data to the model. The dimension d of the subspace S is a
natural measure of model complexity, while the least-squares error between the
given data X and its projection X̂ = [x̂1, x̂2, . . . , x̂N ] onto the subspace S, i.e.,

�X − X̂�
2
F =

N�

i=1

�xi − x̂i�
2, (2.46)

is a natural measure of the data fidelity.
As shown in the proof of Theorem 2.2, the optimal least-squares error is given

by the sum of the squares of the remaining singular values of X ,
�D

i=d+1 σ2
i .

Normally, the leading term σ2
d+1 of

�D
i=d+1 σ2

i is already a good index of
the magnitude of the remaining ones. Thus, one can simply seek for a balance
between d and σ2

d+1 by minimizing an objective function of the form:

J1(d) .= α · σ2
d+1 + β · d (2.47)

for some proper weights α,β > 0. A similar criterion that is often used to
determine the rank d of a noisy matrix X is:

J2(d) .=
σ2

d+1�d
i=1 σ2

i

+ κd, (2.48)

where κ > 0 is a proper weight (see [Kanatani, 2002]).
In general, the ordered singular values of the data matrix X versus the dimen-

sion d of the subspace resemble a plot similar to that shown in Figure 2.1. In the
statistics literature, this is known as the “Scree graph.” We should see a signif-
icant drop in the singular values right after the “correct” dimension d̂, which is
sometimes called the “knee” or “elbow” point of the plot. Such a point is a stable
minimum as it optimizes the above objective function (2.47) for a range of values
for α and β, or the objective function in (2.48) for a range of values of κ. One can
also select the optimal dimension d̂ from the Scree graph by specifying a toler-
ance τ for the fitting error and then using the plot to identify the model that has
the lowest dimension and satisfies the given tolerance, as indicated in the figure.
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Figure 2.1. Singular value as a function of the dimension of the subspace.

A more principled approach to finding the optimal dimension of the subspace,
d̂, is to use some of the model selection criteria described in Appendix A. Such
criteria rely on a different choice of the model complexity term and provide an au-
tomatic way of choosing the parameters α and β or κ. Specifically, the complexity
of the model is measured by the number of parameters needed to describe the sub-
space. Using the Grassmannian coordinates, the dimension of the parameter space
for a d-dimensional subspace in RD is Dd − d2.5 With a model parameter space
of dimension Dd − d2 and a Gaussian noise model with known variance σ2, the
Bayesian information criterion (BIC) is equivalent to minimizing

BIC(d) .=
1
N
�X − X̂�

2
F + (log N)

(Dd− d2)
N

σ2, (2.49)

while the Akaike information criterion (AIC) minimizes

AIC(d) .=
1
N
�X − X̂�

2
F + 2

(Dd− d2)
N

σ2. (2.50)

More recently, a geometric version of the Akaike information criterion has been
proposed by [Kanatani, 2003]. The Geometric AIC minimizes

G-AIC(d) .=
1
N
�X − X̂�

2
F + 2

(Dd− d2 + Nd)
N

σ2, (2.51)

where the extra term Nd accounts for the number of coordinates needed to
represent (the closest projection of) the given N data points in the estimated d-

5
Dd− d

2 is the dimension of the Grassmannian manifold of d-dimensional subspaces in RD . To
specify a subspace, one can use the so-called Grassmannian coordinates which need exactly Dd− d

2

entries: starting with a D × d matrix whose columns form a basis for the subspace, perform column-
reduction so that the first d × d block is the identity matrix. Then, one only needs to give the rest
(D − d)× d entries to specify the subspace.
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dimensional subspace. From an information-theoretic viewpoint, the additional
Nd coordinates are necessary if we are interested in encoding not only the model
but also the data themselves. This is often the case when we use PCA for purposes
such as data compression and dimension reduction. The quantity (Dd−d2+Nd)

N is
closely related to the so-called “effective dimension” of the data set defined in
Chapter 6, which can be generalized to multiple subspaces.

In some sense, all the above criteria can be loosely referred to as information-
theoretic model selection criteria, in the sense that most of these criteria can
be interpreted as variations to minimizing the optimal code length for both the
model and the data with respect to certain class of distributions and coding
schemes [Hansen and Yu, 2001].6 There are many other methods for determining
the number of principal componenrs. Interested readers may find more references
in [Jolliffe, 1986].

2.3 Robust PCA: Classical Approaches

In the above discussions, we have assumed that all the sample points can be fit
with the same statistical or geometric model: a subspace. In practical applications
it is often the case that the data points are contaminated not only by noise, but also
by outliers. Sometimes it is also the case that some entries of the of the data points
are missing. In this section, we discuss classical approaches from robust statistics
for dealing with outliers and incomplete data points in the context of PCA.

2.3.1 Dealing with Incomplete Data Points
In practice, it is often the case that some of the given data points are “incomplete.”
For an incomplete data point x = [x1, x2, . . . , xD]�, we mean that some of its
entries are missing or unspecified. For instance, if the xi-entry of x is missing,
then x is known only up to a line in RD:

x ∈ L
.=

�
[x1, . . . , xi−1, t, xi+1, . . . , xD]�, t ∈ R

�
. (2.52)

One should be aware that an incomplete data point is in nature rather different
from a noisy data point.7 In general, such incomplete data points can contain use-
ful information about the model, and in the case of PCA, the principal subspace.
For instance, if the principal subspace happens to contain the line L, the princi-
pal subspace can be determined from a sufficiently large number of such lines.

6Even if one chooses to compare models by their algorithmic complexity, such as the minimum
message length (MML) criterion [Wallace and Boulton, 1968] (an extension of the Kolmogrov com-
plexity to model selection), a strong connection with the above information-theoretic criteria, such
as MDL, can be readily established via Shannon’s optimal coding theory (see [Wallace and Dowe,
1999]).

7One can view incomplete data points as a very special type of noisy data points which have infinite
uncertainty only in certain directions.
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In general, the line L may or may not lie in the principal subspace. We therefore
should handle incomplete data points with more care.

A useful observation here is that an incomplete data point x is just as good
as any point on the line L. Hence it is natural to choose a representative x̂ ∈ L
that is the closest to the principal subspace. If we let the columns of Ud for a
basis form an orthonormal basis for the subspace, then the closest point x∗ =
[x1, . . . , xi−1, t∗, xi+1, . . . , xD]� on L to the principal subspace can be found by
minimizing the following quadratic function in t:

t∗ = arg min
t

�
x�(ID − UdU

�
d )x

�
. (2.53)

This problem has a unique solution as long as the line L is not parallel to the
principal subspace, i.e., ei �∈ span(Ud).

In essence, the above process of finding x∗ on the principal subspace is to
give a rank-d approximation of the entire data set containing both complete and
incomplete data points. Mathematically, under the assumption that the samples
{xi}

N
i=1 are zero-mean, PCA with incomplete data is equivalent to finding a rank-

d approximation/factorization of the data matrix X = [x1,x2, . . . ,xN ] with
incomplete data entries (in a least-squares sense). That is, the goal is to find ma-
trices Ud ∈ RD×d and Y ∈ Rd×N that minimize �X − UdY �2F . The main issue
is that some entries of X , {xij}, are missing.

Obviously, we cannot expect to always be able to find a solution to this problem.
For instance, suppose the first entry is missing from each one of the data points.
Then we cannot hope to be able to recover such an entry. Likewise, suppose that
all the entries of one data point are missing. While in this case we can find the
subspace from all other data points, we cannot recover the low-dimensional rep-
resentation for that point. Nevertheless, if the missing entries do not follow a
specific pattern, we should be able to recover both Ud and Y as long as the num-
ber of measurements (known entries of X) is sufficiently large relative to the
number of unknowns (D(D − d) + dN entries in Ud and Y ). Intuitively, the
smallest the rank of the matrix d the larger the amount of missing information we
can tolerate.

In what follows, we discuss a few traditional approaches to PCA with incom-
plete data. Throughout the exposition, we will make use of a matrix W ∈ RD×N

whose entries {wij} encode the locations of the missing information, i.e.,

wij =

�
1 if xij is known
0 if xij is missing

. (2.54)

We will also make use of the Haddamart product of two matrices W ⊙X , which
is defined as (W ⊙X)ij = wijxij .

Incomplete Mean and Covariance

Since the optimal solution to PCA is obtained from the mean and covariance of
the data points, a straightforward method for dealing with missing entries is to
simply compute the mean and covariance over the missing entries. Specifically,
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the incomplete mean and incomplete covariance are given by

µ̂i =
�N

j=1 wijxij
�N

j=1 wij

=⇒ x̂0 = diag(W1)−1(W ⊙X)1, (2.55)

σ̂ij =
�N

j=1 wij(xij − µi)
�N

j=1 wij

=⇒ x̂0 = diag(W1)−1(W ⊙X)1, (2.56)

(2.57)

Power Factorization

Power Factorization (PF) is an iterative algorithm for finding a low-rank approx-
imation UdY of a matrix X with missing entries (see [Vidal and Hartley, 2004]
and references therein for further details). The main idea behind PF is to minimize
�X − UdY �2F considering only the known entries of X . Given Y , the optimal
Ud can be computed linearly. Likewise, given Ud, the optimal Y can be computed
linearly. The PF algorithm then iterates between these two steps till convergence.

More specifically, the PF algorithm tries to minimize a cost function of the form

�W ⊙ (X − UdY )�2F =
D�

i=1

N�

j=1

wij(xij − u�i yj)
2. (2.58)

Notice that this cost function is the same as that in (2.16), except that the errors
εij = xij−u�i yj associated with the missing entries (wij = 0) are removed from
the cost function.

2.3.2 Dealing with Outliers
Another issue that we encounter in practice is that a small portion of the data
points does not fit well the same model as the rest of the data. Such points
are called outliers. Their presence can lead to a completely wrong estimate of
the underlying subspace. Therefore, it is very important to develop methods for
detecting and eliminating outliers from the given data.

The true nature of outliers can be very elusive. In fact, there is really no unan-
imous definition for what an outlier is.8 Outliers could be atypical samples that
have an unusually large influence on the estimated model parameters. Outliers
could also be perfectly valid samples from the same distribution as the rest of the
data that happen to be small-probability instances. Alternatively, outliers could
be samples drawn from a different model, and therefore they will likely not be
consistent with the model derived from the rest of the data. In principle, however,
there is no way to tell which is the case for a particular “outlying” sample point.

In what follows, we discuss a few approaches to dealing with outliers that are
particularly related to PCA. We will distinguish between two types of outliers.

8For a more thorough exposition of outliers in statistics, we recommend the books of [Barnett and
Lewis, 1983, Huber, 1981].
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The first kind, which we call sample outliers, corresponds to the case where the
entire sample data point is an atypical sample. The second kind, which we call
intra-sample outliers, corresponds to the case where only a few entries of a data
point are atypical, while the remaining entries are not. The main distinction to be
made is that in the latter case we do not want to discard the entire data point, but
only the atypical entries.

Influence-Based Outlier Detection

This approach relies on the assumption that an outlier is an atypical sample which
has an unusually large influence on the estimated model parameters. This leads
to an outlier detection scheme where the influence of a sample is determined
by comparing the difference between the model estimated with and without this
sample. For instance, for PCA one may use a sample influence function to measure
the difference:

I(xi, Ud)
.= �Ûd, Ûd(i)�, (2.59)

where �·, ·� is the largest subspace angle (see Exercise 2.2) between the subspace
span(Ûd) estimated with the ith sample and the subspace span(Ûd(i)) without the
ith sample. The larger the difference, the larger the influence of xi on the estimate,
and the more likely that xi is an outlier. Thus, we may eliminate a sample xi as
an outlier if

I(xi, Ud) ≥ τ (2.60)

for some threshold τ > 0 or if I(xi, Ud) is relatively large among all the samples.
However, this method does not come without an extra cost. We need to com-

pute the principal components (and hence perform SVD) N times: one time with
all the samples together and another N−1 times with one sample eliminated from
each time. There have been many studies that aim to give a formula that can accu-
rately approximate the sample influence without performing SVD N times. Such
a formula is called a theoretical influence function. For more detailed discussion
of the sample influence for PCA, we refer the interested readers to [Jolliffe, 2002].

Probability-Based Outlier Detection

In this approach a model is fit to all the sample points, including potential out-
liers. Outliers are then detected as the points that correspond to small-probability
events or that have large fitting errors with respect to the identified model. A new
model is then estimated with the detected outliers removed or down-weighted.
This process is then repeated until the estimated model stabilizes.

In the case of PCA, the goal is to find a low-dimensional subspace that best fits
a given set of data points {xi ∈ RD}N

i=1 by minimizing the least-squares errors

N�

i=1

�xi − x0 − Udyi�
2, (2.61)
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between a point xi and its projection onto the subspace x0 + Udyi, where x0 ∈

RD is any point in the subspace, Ud ∈ RD×d is a basis for the subspace, and
yi ∈ Rd are the coordinates of the point in the subspace. If there were no outliers,
an optimal solution to PCA could be obtained as described in Section 2.1.2, i.e.,

x̂0 =
1
N

N�

i=1

xi and ŷi = Û�d (x− x̂0), (2.62)

where Ûd is a D × d matrix whose columns are the top d eigenvectors of

�ΣN =
1

N − 1

N�

i=1

(xi − x̂0)(xi − x̂0)�. (2.63)

If we adopt the guideline that outliers are samples that do not fit the model well
or have a small probability with respect to the estimated model, then the outliers
are exactly those samples that have a relatively large residual

ε2
i = �xi − x̂0 − Ûdŷi�

2 or ε2
i = x�i �Σ−1

N xi, i = 1, 2, . . . , N. (2.64)

The first error is simply the distance to the subspace, while the second error is the
Mahalanobis distance,9 which is obtained when we approximate the probability
that a sample xi comes from this model by a multivariate Gaussian

p(xi; �ΣN ) =
1

(2π)D/2 det(�ΣN )1/2
exp

�
−

1
2
x�i �Σ−1

N xi

�
. (2.65)

In principle, we could use p(xi, �ΣN ) or either residual εi to determine if xi

is an outlier. However, the above estimate of the subspace is obtained using all
the samples, including the outliers themselves. Therefore, the estimated subspace
could be completely wrong and hence the outliers could be incorrectly detected.
In order to improve the estimate of the subspace, one can recompute the model
parameters after discarding or down-weighting samples that have large residuals.
More specifically, let wi ∈ [0, 1] be a weight assigned to the ith point such that
wi ≈ 1 if xi is an inlier and wi ≈ 0 if xi is an outlier. Then, similarly to (2.16),
a new estimate of the subspace can be obtained by minimizing a weighted least-
squares error:

N�

i=1

wi�xi − x0 − Udyi�
2 s.t. U�d Ud = Id and

N�

i=1

wiyi = 0. (2.66)

9 In fact, it can be shown that [Ferguson, 1961], if the outliers have a Gaussian distribution of a dif-
ferent covariance matrix aΣ, then εi is a sufficient statistic for the test that maximizes the probability
of correct decision about the outlier (in the class of tests that are invariant under linear transforma-
tions). Interested reader may want to find out how this distance is equivalent (or related) to the sample
influence bΣ(i)

N − bΣN or the approximate sample influence given in (A.50).
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If we follow the same steps as in Section 2.1.2, we can find that an optimal
solution to this problem is of the form:

x̂0 =
�N

i=1 wixi�N
i=1 wi

and ŷi = Û�d (x− x̂0), (2.67)

where Ûd is a D × d matrix whose columns are the top d eigenvectors of

�ΣN =
�N

i=1 wi(xi − x̂0)(xi − x̂0)��N
i=1 wi − 1

. (2.68)

As a consequence, under the least-squares criterion, finding a robust solution to
PCA reduces to finding a robust estimate of the sample mean and the sample
covariance of the data by properly setting the weights. In what follows, we discuss
two main approaches approaches for estimating the weights.

Multivariate trimming (MVT) is a popular robust method for estimating the
sample mean and covariance of a set of points. This method assumes discrete
weights

wi =

�
1 if xi is an inlier
0 if xi is an outlier

, (2.69)

and chooses the outliers as a certain percentage of the samples (say 10 percent)
that have relatively large residual. This can be done by simply sorting the residu-
als {εi} from the lowest to the highest and then choosing as outliers the desired
percentage of samples with the highest residuals. Once the outliers are trimmed
out, one can use the remaining samples to re-estimate the subspace as in (2.67)-
(2.68). Each time we have a new estimate of the subspace, we can recalculate the
residual of every sample and reselect samples that need to be trimmed. We can
repeat the above process until a stable estimate of the subspace is obtained. When
the percentage of outliers is somewhat known, it usually takes only a few itera-
tions for MTV to converge and the resulting estimate is in general more robust.
However, if the percentage is wrongfully specified, MVT may not converge or it
may converge to a wrong estimate of the subspace. In general, the ”breakdown
point” of MTV, i.e., the proportion of outliers that it can tolerate before giving a
completely wrong estimate, depends only on the chosen trimming percentage. In
Chapter ??, we will discuss how MVT can be modified in the context of GPCA
when the percentage of outliers is not known.

Maximum Likelihood Type Estimators (M-Estimators) uses continuous weights
wi = ρ(εi)/ε2

i for some robust loss function ρ(·). The objective function then
becomes

N�

i=1

ρ(εi). (2.70)

Many loss functions ρ(·) have been proposed in the statistics literature [Huber,
1981, Barnett and Lewis, 1983]. When ρ(ε) = ε2, we obtain the standard least-
squares solution, which is not robust. Other robust loss functions include
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1. L1 or total variation loss: ρ(ε) = |ε|.

2. Cauchy loss: ρ(ε) = ε2
0 log(1 + ε2/ε2

0)

3. Huber loss [Huber, 1981]: ρ(ε) =

�
ε2 if |ε| < ε0

2ε0|ε|− ε2
0 otherwise

4. Geman-McClure loss [Geman and McClure, 1987]: ρ(ε) = ε2

ε2+b2

where ε > 0 is a parameter.
One way of minimizing (2.70) with respect to the subspace parameters is to ini-

tialize all the weights to wi = 1, i = 1, . . . , N . This will give an initial estimate
for the subspace which is the same as that given by PCA. Given this initial esti-
mate of the subspace, one may compute the weights as wi = ρ(ε)/ε2 using any
the aforementioned robust cost functions. Given these weights, one can reestimate
the subspace from (2.67)-(2.68). One can then iterate in between computing the
weights given the subspace and computing the subspace given the weights. This
iterative process, called iterative re-weighted least squares, converges to a local
minima of the cost function (2.70). An alternative method for minimizing (2.70)
is to simply do gradient descent. This method may be preferable for loss functions
ρ that are differentiable, e.g., the Geman-McClure loss function.

One drawback of the M-estimators is that its breakdown point is inversely pro-
portional to the dimension of the space. Thus, the M-estimators become much less
robust when the dimension is high. This makes M-estimators of limited use in the
context of GPCA since the dimension of the space is typically very high (≥ 70).

Consensus-Based Outlier Detection

This approach assumes that the outliers are not drawn from the same model as the
rest of the data. Hence it makes sense to try to avoid the outliers when we infer
the model in the first place. However, without knowing which points are outliers
beforehand, how can we avoid them? One idea is to fit a model, instead of to all
the data points at the same time, only to a subset of the data. This is possible when
the number of data points required for a unique solution for the estimate is much
smaller than that of the given data set. Of course, one should not expect that a
randomly chosen subset will have no outliers and always lead to a good estimate
of the model. Thus, one should try on many different subsets:

X1,X2, . . . ,Xn ⊂ X. (2.71)

The rationale is that if the number of subsets are large enough,10 one of the trial
subsets, say Xi, likely contains few or no outliers and hence the resulting model
would be the most consistent with the rest of the data points.

In the case of PCA, the minimum number of data points needed to define the
model is d for linear subspaces and d + 1 for affine subspaces. Therefore, each

10See Appendix A.5 for details on how large this number needs to be.



24 Chapter 2. Data Modeling with a Single Subspace

subset Xi is formed by randomly sampling d (or d + 1) data points and fitting
a subspace with basis �Ud(Xi) to the subset. The subset Xi gives a consistent
estimate �Ud(Xi) of the subspace if the number of data points that fit the subspace
well is large enough. For instance, we may claim that the subset Xi gives a con-
sistent estimate �Ud(Xi) if the following criterion is maximized (among all the
chosen subsets):

max
i

#
�
x ∈ X :

��x− Ûd(Xi)
�� ≤ τ

�
, (2.72)

where # is the cardinality of the set and τ > 0 is a chosen error threshold.
This scheme is typically called Random Sample Consensus (RANSAC) [Fischler
and Bolles, 1981], and it normally improves the robustness of the estimate. As a
word of caution, in practice, in order to design a successful RANSAC algorithm,
one needs to carefully choose a few key parameters: the size of every subset,
the number of subsets, and the consensus criterion.11 There is a vast amount of
literature on RANSAC-type algorithms, especially in computer vision. For more
details on RANSAC and other related random sampling techniques, the reader
is referred to Appendix A.5. In Chapter ??, we will discuss some limitations of
RANSAC in the context of estimating multiple subspaces simultaneously.

2.4 Robust PCA: A Sparse Representation Approach

In this section, we discuss a sparse representation-based approach to dealing with
intra-sample outliers in PCA. In this approach, it is assumed that the given data
matrix X is generated as the sum of two matrices

X = L0 + E0. (2.73)

The matrix L0 represents the ideal low-rank matrix, while the matrix E0 rep-
resents the intra-sample outliers. Since many entries of X are not corrupted
(otherwise the problem is not well posed), many entries of E0 should be zero.
As a consequence, we can pose the robust PCA problem as one of decomposing
a given matrix X as the sum of two matrices L + E, where L is of low-rank and
E is sparse. This problem can be formulated as

min
L,E

rank(L) + λ�E�0 s.t. X = L + E, (2.74)

where �E�0 is the number of non-zero entries in E and λ > 0 is a user parameter.
At a first sight, one may think that solving the problem in (2.74) is really impos-

sible. First of all, we have D×N equations and 2D×N unknowns. Second, it is
not clear that we can always decompose a matrix as the sum of a low-rank matrix
and a sparse matrix. For instance, if X11 = 1 and Xij = 0 for all (i, j) �= (1, 1),

11That is, the criterion that verifies whether each sample is consistent with the model derived from
the subset.
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then the matrix X is both rank 1 and sparse. Thus, if λ = 1, we can choose
L = X and E = 0 or L = 0 and E = X as valid solutions. Last, but not least,
the cost function to be minimized is non-convex and non-differentiable. Moreover,
it is well known that this problem is in general NP hard [?].

In what follows, we will show that, under certain conditions on L0 and E0,
the optimal solution to (2.74) can be found by solving the following convex
optimization problem

min
L,E

�L�∗ + λ�E�1 s.t. X = L + E, (2.75)

where �L�∗ =
�

i σi(L) is the nuclear norm of L, i.e., the sum of its singular
values, and �E�1 =

�
i,j |Eij | is the �1 norm of E considered as a vector. The

conditions rely on recent results from compressed sensing, which aim at finding
a sparse solution to a linear system Ax = b. Therefore, we will first review re-
cent results on sparsity and rank minimization before we return to the problem of
decomposing a matrix as the sum of a low rank plus a sparse matrix.

2.4.1 Basis Pursuit
Let us first consider the simpler problem of finding a solution to the linear system
Ax = b, where x ∈ RN , b ∈ RD and A ∈ RD×N , with D < N . Since this
linear system is underdetermined, in general there could be many solutions x. A
classical approach to finding a unique solution (when a solution exists) is to look
for a vector x of minimum �2 norm, i.e., min �x�2 such that Ax = b.

An alternative approach is to look for a vector x that is sparse. Specifically,
assume that the vector b is generated as Ax0 = b, where x0 is a d-sparse vector,
i.e., �x0�0 = d � N . When the matrix A is such that δ2d(A) < 1, where δd(A)
is the smallest number such that for all x with �x�0 ≤ d,

(1− δd(A))�x�22 ≤ �Ax�22 ≤ (1 + δd(A))�x�22, (2.76)

then the x0 is the only d-sparse vector such that Ax = b.
In order to find x0, we seek a solution to the problem

min �x�0 s.t. Ax = b. (2.77)

In general, this problem is NP hard. However, when the matrix A satisfies the so-
called restricted isometry property δ2d(A) <

√
2−1, then the optimal solution to

(2.80) can be found by solving the following convex optimization problem

min �x�1 s.t. Ax = b. (2.78)

2.4.2 Rank Minimization and PCA with Missing Data
Consider now the problem of finding a solution to the matrix linear system
A(X) = b, where X ∈ RD×N , b ∈ RK , A : RD×N → RK is a linear map,
and K < D×N . As before, there could be many matrices X that solve the linear
system A(X) = b. Assume that there is a matrix X0 of rank d ≥ 1 that solves the
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linear system. When the matrix A is such that δ2d(A) < 1, where δd(A) is the
smallest number such that for all matrices X ∈ RD×N of rank d

(1− δd(A))�X�F ≤ �A(X)�2 ≤ (1 + δd(A))�X�F , (2.79)

then X0 is the only matrix of rank at most d satisfying A(X) = b.
In order to find X0, we seek a solution to the problem

min rank(X) s.t. A(X) = b. (2.80)

In general, this problem is NP hard. However, when the matrix A is such that
δ5d(A) < 1/10, the optimal solution to (2.80) can be found by solving the
following convex problem

min �X�∗ s.t. A(X) = b. (2.81)

Observe that, when generalizing from the vector case to the matrix case, the
2-norm of x is replaced by the Frobenius norm of X . Observe also that the Frobe-
nius norm �X� is the �2 norm of the singular values, while the nuclear norm �X�∗
is the �1 norm of the singular values.

Observe also that the above rank minimization problem provides a solution
to PCA with missing data. Specifically, let X be a given matrix of rank d with
missing entries, and recall the definition of the matrix W where wij = 1 if the Xij

is known and wij = 0 otherwise. Then, we can find X by solving the problem

min rank(X) s.t. W ⊙X = W ⊙X (2.82)

In other words, we seek a matrix X of minimum rank, whose entries coincide with
the known entries of X . From the results above, we know that if the matrix AW

defined by the relationship AW (X) = W ⊙ X is such that δ2d(AW ) < 1, then
the missing entries of X are uniquely defined. Moreover, if δ5d(AW ) < 1/10,
we can find the missing entries of X by solving the following convex problem

min �X�∗ s.t. W ⊙X = W ⊙X. (2.83)

An additional advantage of this formulation of PCA with missing data is that we
do not need to specify the number of principal components in advance: the number
of principal components is simply the rank of X and this method searches for the
matrix of minimum rank.

2.4.3 Principal Component Pursuit and Robust PCA
Let us now return to the original problem of decomposing a matrix X as the sum
of a low-rank matrix L0 plus a sparse matrix E0. Recall from (2.75) that we wish
to find L0 and E0 by solving the following optimization problem

min
L,E

�L�∗ + λ�E�1 s.t. X = L + E, (2.84)

The following theorem gives conditions on the rank of the matrix and the per-
centage of outliers under which the optimal solution is exactly L0 and E0 with
overwhelming probability.
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Theorem 2.5 (??). Let X = L0 +E0. Assume that there exists a µ > 0 such that
the compact SVD of L0 = UΣV � satisfies

max
i
�ui�

2
≤

µd

D
, max

i
�vi�

2
≤

µd

N
and �UV ��∞ ≤

�
µd

ND
, (2.85)

where U = [u1, u2, · · · , uD]� ∈ RD×d and V = [v1, v2, · · · , vN ]� ∈ RN×d.
Assume also that the support of E0 is uniformly distributed among all the sets of
cardinality D ×N . If

rank(L0) ≤
ρd min{D,N}

µ log2 �
max{D,N}

� and �E0�0 ≤ ρsND. (2.86)

Then there is a constant c such that with probability at least 1−cmax{N,D}−10,
the solution (L∗, E∗) to (2.75) with λ = 1√

max{N,D}
is exact, i.e.,

L∗ = L0 and E∗ = E0. (2.87)

Assuming that the conditions of the theorem are satisfied, the next question
is how do we actually optimize the cost function in order to find the global
minimum.

2.5 Extensions to PCA

Although PCA offers a rather useful tool to model the linear structure of a given
data set, it becomes less effective when the data lies in a nonlinear manifold.
In this section, we introduce some basic extensions to PCA which can, to some
extent, handle the difficulty with nonlinearity.

2.5.1 Nonlinear and Kernel PCA
Nonlinear PCA

The key idea behind nonlinear PCA is that, instead of applying PCA directly to
the given data, we can apply it to a transformed version of the data. The rationale
is that the structure of the data may become linear after embedding the data into a
higher-dimensional space. For example, imagine that the data point (x1, x2) lies
in a conic of the form

c1x
2
1 + c2x1x2 + c3x

2
2 + c4 = 0. (2.88)

If we define the map φ : R2 → R3 as

(z1, z2, z3) = (x2
1,
√

2x1x2, x
2
2), (2.89)

then the conic in R2 transforms into the following affine subspace in R3

c1z1 +
c2
√

2
z2 + c3z3 + c4 = 0. (2.90)
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Therefore, instead of learning a nonlinear manifold in R2, we can simply learn an
affine manifold in R5.

More generally, we seek a nonlinear transformation (usually an embedding):

φ(·) : RD
→ RM , (2.91)

x �→ φ(x), (2.92)

such that the structure of the resulting data {φ(xi)}N
i=1 becomes (significantly

more) linear. In machine learning, φ(x) ∈ RM is called the “feature” of the data
point x ∈ RD, and the space RM is called the “feature space.”

Let φ̄ = 1
N

�N
i=1 φ(xi) be the sample mean in the feature space and define

the matrix Φ .= [φ(x1) − φ̄, φ(x2) − φ̄, . . . ,φ(xN ) − φ̄] ∈ RM×N . The princi-
pal components in the feature space are given by the eigenvectors of the sample
covariance matrix12

Σφ(x)
.=

1
N − 1

N�

i=1

(φ(xi)− φ̄)(φ(xi)− φ̄)� =
1

N − 1
ΦΦ� ∈ RM×M .

(2.93)

Let vi ∈ RM , i = 1, . . . ,M , be the M eigenvectors, i.e.,

Σφ(x)vi = λivi, i = 1, 2, . . . ,M. (2.94)

Then the d “nonlinear principal components” of every data point x are given by

yi
.= v�i (φ(x)− φ̄) ∈ R, i = 1, 2, . . . , d. (2.95)

Unfortunately, the map φ(·) is generally not known beforehand and searching
for the proper map is a difficult task. In such cases, the use of nonlinear PCA
becomes limited. However, in some practical applications, good candidates for
the map φ(·) can be found from the nature of the problem. In such cases, the
map, together with PCA, can be very effective in extracting the overall geometric
structure of the data.

Example 2.6 (Veronese Map for an Arrangement of Subspaces). As we will see later in
this book, if the data points belong to a union of multiple subspaces, then a natural choice
of the transformation φ(·) is the Veronese map:

νn(·) : x �→ νn(x),

(x1, . . . , xD) �→ (xn
1 , x

n−1
1 x2, . . . , x

n
D),

where the monomials are ordered in the degree-lexicographic order. Under such a mapping,
the multiple low-dimensional subspaces are mapped into a single subspace in the feature
space, which can then be identified via PCA for the features.

12In principle, we should use the notation Σ̂φ(x) to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use Σφ(x). The
same goes for the eigenvectors and the principal components.
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NLPCA in a High-dimensional Feature Space.

A potential difficulty associated with nonlinear PCA is that the dimension of the
feature space, M , can be very high. Thus computing the principal components
in the feature space may become computationally prohibitive. For instance, if
we use a Veronese map of degree n, the dimension of the feature space M grows
exponentially with the degree. When M exceeds N , the eigenvalue decomposition
of ΦΦ� ∈ RM×M becomes more costly than that of Φ�Φ ∈ RN×N , although
the two matrices have the same eigenvalues.

This motivates us to examine whether the computation of PCA in the feature
space can be reduced to a computation with the lower-dimensional matrix Φ�Φ.
The answer is actually yes. The key is to notice that, despite the dimension of
the feature space, every eigenvector v ∈ RM of ΦΦ� associated with a non-zero
eigenvalue is always in the span of the matrix Φ:13

ΦΦ�v = λv ⇔ v = Φ(λ−1Φ�v) ∈ range(Φ). (2.96)

We define the vector w
.= λ−1Φ�v ∈ RN . Obviously �w�2 = λ−1. It is straight-

forward to check that w is an eigenvector of Φ�Φ for the same eigenvalue λ.
Once such a w is computed from Φ�Φ, we can recover the corresponding v in the
feature space as:

v = Φw. (2.97)

Therefore the d nonlinear principal component of x under the map φ(·) can be
computed as:

yi
.= v�i (φ(x)− φ̄) = w�i Φ�(φ(x)− φ̄) ∈ R, i = 1, . . . , d, (2.98)

where wi ∈ RN is the ith leading eigenvector of Φ�Φ ∈ RN×N .

Kernel PCA

A very interesting property of the above NLPCA method is that the computation
of the nonlinear principal components involves only inner products of the features.
More specifically, in order to compute the nonlinear principal components, yi, we
simply need to compute the entries of the matrix Φ�Φ and the entries of the
vectors Φ�φ(x) and Φ�φ̄ = 1

N

�
Φ�φ(xi), all of which can be obtained from

inner products of the form φ(x)�φ(y), as we will show next.
Define the “kernel function” of two vectors x,y ∈ RD to be the inner product

of their features

k(x,y) .= φ(x)�φ(y) ∈ R. (2.99)

The so-defined function k(·, ·) is a symmetric positive semi-definite function in
x and y,14 which can be used to compute the nonlinear principal components as

13The remaining M −N eigenvectors of ΦΦ� are associated with the eigenvalue zero.
14A function k(x, y) is positive semi-definite if

R R
RD f(x)k(x, y)f(y) dxdy ≥ 0 for all square-

integrable functions f(·).
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follows. Define a kernel matrix K ∈ RN×N as kij = k(xi,xj). The entries of
the matrix K = Φ�Φ can be computed as

Kij = (Φ�Φ)ij = (φ(xi)− φ̄)�(φ(xj)− φ̄) (2.100)

= kij −
1
N

�

j

kij −
1
N

�

i

kij +
1

N2

�

i

�

j

kij , (2.101)

or in matrix notation

K = K −
1
N

K11� −
1
N

11�K +
1�K1

N2
11� (2.102)

= (I −
1
N

11�)K(I −
1
N

11�). (2.103)

The matrix I − 1
N 11� is called the centering matrix, since it makes the

The vectors wi are then eigenvectors of K associated with its top d eigenvalues.
Now, the entries of the vector Φ�(φ(x)− φ̄) can be computed as

(Φ�(φ(x)− φ̄))i = (φ(xi)− φ̄)�(φ(x)− φ̄) (2.104)

= k(xi,x)−
1
N

�

j

kij −
1
N

�

i

k(xi,x) +
1

N2

�

i

�

j

kij ,

(2.105)

or in vector notation

Φ�(φ(x)− φ̄) = kx −
1
N

K1−
1
N

11�kx +
1�K1

N2
1, (2.106)

where kx = [k(x1,x), k(x2,x), · · · , k(xN ,x)]� ∈ RN . The nonlinear
principal components are then given by

yi = w�i kx −
w�i K1

N
−

w�i 11�kx

N
+

1�K1
N2

w�i 1. (2.107)

In the particular case where the data is zero-mean, i.e., φ̄ = 0, we simply have

K = K, 1�kx = 0, K1 = 0 and yi = w�i kx, i = 1, . . . , d. (2.108)

If follows from the analysis above that the nonlinear principal components can
be computed directly from the kernel function k(x,y) = φ(x)�φ(y). Therefore,
we may be able to avoid having to compute φ(x) whenever an expression for the
kernel k is known. For instance, in the conic example in (2.89), we have

k(x,y) = [x2
1,
√

2x1x2, x
2
2][y

2
1 ,
√

2y1y2, y
2
2 ]� = (x1y1 + x2y2)2 = (x�y)2,

(2.109)

which can be computed directly in R2 without need to resort to computing the
embedding into R3.

In general, we do not need to explicitly define and evaluate the map φ(·). In fact,
given any (positive-definite) kernel function, according to a fundamental result in
functional analysis, one can in principle decompose the kernel and recover the
associated map φ(·) if one wishes to.
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Theorem 2.7 (Mercer’s Theorem). Suppose k : RD × RD → R is a symmetric
real valued function such that for some C > 0 and almost every (x,y)15 we have
|k(x,y)| ≤ C. Suppose that the linear operator L : L2(RD) → L2(RD),

L(f)(x) .=
�

RD

k(x,y)f(y)dy, (2.110)

is positive semi-definite. Let ψi be the normalized orthogonal eigenfunctions of L
associated with the eigenvalues λi > 0, sorted in non-increasing order, and let
M be the number of nonzero eigenvalues. Then

• The sequence of eigenvalues is absolutely convergent, i.e.,
�M

i=1 |λi| < ∞.

• The kernel k can be expanded as k(x,y) =
�M

i=1 λiψi(x)ψi(y) for almost
all (x,y).

The interested readers may refer to [Mercer, 1909] for a proof of the theorem.
It follows from the theorem that, given a positive semi-definite kernel k, we can
always associate with it an embedding function φ as

φi(x) =
�

λiψi(x) i = 1, . . . M. (2.111)

Notice that the dimension of the embedding, M , could be rather large, sometimes
even infinity. Nevertheless, an important reason for computing with the kernel
function is that we do not need to compute the embedding function or the features.
Instead, we simply evaluate the dot products k(x,y) in the original space RD.

Example 2.8 (Examples of Kernels). There are several popular choices for the nonlinear
kernel function, such as the polynomial kernel and the Gaussian kernel, respectively,

kP (x, y) = (x�y)n and kG(x, y) = exp
`
−
�x− y�2

2

´
. (2.112)

Evaluation of such functions only involves the inner product or the difference between
two vectors in the original space RD . This is much more efficient than evaluating the
inner product in the associated feature space, whose dimension for the first kernel grows
exponentially with the degree n and for the second kernel is infinite.

We summarize our discussion in this section as Algorithm 2.1.

2.5.2 Locally Linear Embedding

2.6 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from
PCA in the numerical linear algebra literature, also known as the Erkart and
Young decomposition [Eckart and Young, 1936, Hubert et al., 2000]. The re-
sult regarding the least-squares optimality of SVD given in Theorem 2.2 can

15“Almost every” means except for a set of measure zero.
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Algorithm 2.1 (Nonlinear Kernel PCA).

For a given set of zero-mean data points X = [x1,x2, . . . ,xN ] ∈ RD×N , and a
given map φ(x) or a kernel function k(x,y) such that φ(0) = 0 or k(0,0) = 0,

1. Compute the inner product matrix

Φ�Φ =
�
φ(xi)�φ(xj)

�
or

�
k(xi,xj)

�
∈ RN×N ; (2.113)

2. Compute the eigenvectors wi ∈ RN of Φ�Φ:

Φ�Φwi = λiwi, (2.114)

and normalize �wi�
2 = λ−1

i ;

3. For any data point x, its ith nonlinear principal component is given by

yi = w�i Φ�φ(x) or w�i [k(x1,x), . . . , k(xN ,x)]�, (2.115)

for i = 1, 2, . . . , d.

be traced back to [Householder and Young, 1938, Gabriel, 1978]. While prin-
cipal components were initially defined exclusively in a statistical sense [Pearson,
1901, Hotelling, 1933], one can show that the algebraic solution given by SVD
gives asymptotically unbiased estimates of the true parameters in the case of
Gaussian distributions. A more detailed analysis of the statistical properties of
PCA can be found in [Jolliffe, 2002].

Note that PCA only infers the principal subspace (or components), but not
a probabilistic distribution of the data in the subspace. Probabilistic PCA was
developed to infer an explicit probabilistic distribution from the data [Tipping
and Bishop, 1999b]. The data is assumed to be independent samples drawn
from an unknown distribution, and the problem becomes one of identifying the
subspace and the parameters of the distribution in a maximum-likelihood or a
maximum-a-posteriori sense. When the underlying noise distribution is Gaussian,
the geometric and probabilistic interpretations of PCA coincide [Collins et al.,
2001]. However, when the underlying distribution is non Gaussian, the optimal
solution to PPCA may no longer be linear. For example, in [Collins et al., 2001]
PCA is generalized to arbitrary distributions in the exponential family.

PCA is obviously not applicable to data whose underlying structure is non-
linear. PCA was generalized to principal curves and surfaces by [Hastie, 1984]
and [Hastie and Stuetzle, 1989]. A more general approach however is to find a
nonlinear embedding map, or equivalently a kernel function, such that the embed-
ded data would lie on a linear subspace. Such methods are referred to as nonlinear
kernel PCA [Scholkopf et al., 1998]. Finding such nonlinear maps or kernels is
by no means a simple problem. Learning kernels is still an active research topic
in the statistical learning community.
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2.7 Exercises

Exercise 2.1 (Some Properties of PCA). Let x be a random vector with covariance matrix
Σx. Consider a linear transformation of x:

y = W
�x, (2.116)

where y ∈ Rd and W is a D×d orthogonal matrix. Let Σy = W
�ΣxW be the covariance

matrix for y. Show that

1. The trace of Σy is maximized by W = Ud, where Ud consists of the first d

(normalized) eigenvectors of Σx.

2. The trace of Σy is minimized by W = Ũd, where Ũd consists of the last d

(normalized) eigenvectors of Σx.

Exercise 2.2 (Subspace Angles). Given two d-dimensional subspaces S1 and S2 in RD ,
define the largest subspace angle θ1 between S1 and S2 to be the largest possible sharp
angle (< 90◦) formed by any two vectors u1, u2 ∈ (S1 ∩ S2)

⊥ with u1 ∈ S1 and
u2 ∈ S2 respectively. Let U1 ∈ RD×d be an orthogonal matrix whose columns form a
basis for S1 and similarly U2 for S2. Then show that if σ1 is the smallest non-zero singular
value of the matrix W = U

�
1 U2, then we have

cos(θ1) = σ1. (2.117)

Similarly, one can define the rest of the subspace angles as cos(θi) = σi, i = 2, . . . , d

from the rest of the singular values of W .

Exercise 2.3 (Fixed-Rank Approximation of a Matrix). Given an arbitrary full-rank ma-
trix A ∈ Rm×n, find the matrix B ∈ Rm×n with a fixed rank r < min{m, n} such that
the Frobenius norm �A−B�F is minimized. The Frobenius norm of a matrix M is defined
to be �M�

2
F = trace(MT

M). (Hint: Use the SVD of A to guess the matrix B and then
prove its optimality.)

Exercise 2.4 (Identification of Auto-Regressive Exogeneous (ARX) Systems). A popu-
lar model that is often used to analyze a time series {yt}t∈Z is the linear auto-regressive
model:

yt = a1yt−1 + a2yt−2 + · · ·+ anyt−n + εt, ∀t, yt ∈ R, (2.118)

where εt ∈ R models the modeling error or noise and it is often assumed to be a white-
noise random process. Now suppose that you are given the values of yt for a sufficiently
long period of time.

1. Show that in the noise free case, i.e. εt ≡ 0, regardless of the initial conditions, the
vectors xt = [yt, yt−1, . . . , yt−n]T for all t lie on an n-dimensional hyperplane in
Rn+1. What is the normal vector to this hyperplane?

2. Now consider the case with noise. Describe how you may use PCA to identify the
unknown model parameters (a1, a2, . . . , an)?

Exercise 2.5 (Basis for an Image). Given a gray-level image I , consider all of its
b × b blocks, denoted as {Bi ∈ Rb×b

}. We would like to approximate each block as a
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superposition of d base blocks, say {B̂j ∈ Rb×b
}

d
j=1. That is,

Bi =
dX

j=1

aijB̂j + Ei, (2.119)

where Ei ∈ Rb×b is the possible residual from the approximation. Describe how you can
use PCA to identify an optimal set of d base blocks so that the residual is minimized?

In Section ??, we have seen an example in which a similar process can be applied to
an ensemble of face images, where the first d = 3 principal components are computed for
further classification. In the computer vision literature, the corresponding base images are
called “eigen faces.”

Exercise 2.6 (Probability of Selecting a Subset of Inliers). Imagine we have 80 samples
from a four-dimensional subspace in R5. However, the samples are contaminated with
another 20 samples that are far from the subspace. We want to estimate the subspace from
randomly drawn subsets of four samples. In order to draw a subset that only contains inliers
with probability 0.95, what is the smallest number of subsets that we need to draw?

Exercise 2.7 (Ranking of Webpages). PCA is actually used to rank webpages on the
Internet by many popular search engines. One way to see this is to view the Internet as
a directed graph G = (V, E), where every webpage, denoted as pi, is a node in V , and
every hyperlink from pi to pj , denoted as eij , are directed edges in E. We can assign each
webpage pi an “authority” score xi that indicates how many other webpages point to it
and a “hub” score yi that indicates how many other webpages it points out to. Then, the
authority score xi depends on how many hubs point to pi and the hub score yi depends
on how many authorities pi points to. Let L be the adjacent matrix of the graph G (i.e.
Lij = 1 if eij = E), x the vector of the authority scores and y of the hub scores.

1. Justify that the following relationships hold:

y� = Lx, x� = L
T y; x = x�/�x��, y = y�/�y��. (2.120)

2. Show that x is the eigenvector of L
T
L and y is the eigenvector of LL

T associ-
ated with the largest eigenvalue (why not the others). Explain how x and y can be
computed from the singular value decomposition of L.

In the literature, this is known as the Hybertext Induced Topic Selection (HITS) algorithm
[Kleinberg, 1999, Ding et al., 2004]. In fact, the same algorithm can also be used to rank
any competitive sports such as football teams and chess players.

Exercise 2.8 (Karhunen-Loève Transform). The Karhunen-Loève transform (KLT) can
be thought as a generalization of PCA from a (finite-dimensional) random vector x ∈ RD

to an (infinite-dimensional) random process x(t), t ∈ R. When x(t) is a (zero-mean)
second-order stationary random process, its auto correlation function is defined to be
K(t, τ)

.
= E[x(t)x)(τ)] for all t, τ ∈ R.

1. Show that K(t, τ) has a family of orthonormal eigen-functions {φi(t)}
∞
i=1 that are

defined as
Z

K(t, τ)φi(τ) dτ = λiφi(t), i = 1, 2, . . . . (2.121)

(Hint: First show that K(t, τ) is a positive definite function and then use Mercer’s
Theorem.)
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2. Show that with respect to the eigen-functions, we original random process can be
decomposed as

x(t) =
nX

i=1

xiφi(t), (2.122)

where {xi}
∞
i=1 are a set of uncorrelated random variables.

Exercise 2.9 (Full Rank of Gaussian RBF Gram Matrices) Suppose that you are given
N distinct points {xi}

N
i=1. If σ �= 0, then the matrix K ∈ RN×N given by

Kij = exp

„
−
�xi − xj�

2

2σ2

«
(2.123)

has full rank.



This is page 36
Printer: Opaque this

Chapter 3
Algebraic Methods for
Multiple-Subspace Segmentation

“The art of doing mathematics consists in finding that special case
which contains all the germs of generality.”

– David Hilbert

In this chapter, we consider a generalization of PCA in which the given
sample points are drawn from an unknown arrangement of subspaces of un-
known and possibly different dimensions. We first present a series of simple
examples that demonstrate that the subspace-segmentation problem can be
solved non-iteratively via certain algebraic methods. These solutions lead to
a general-purpose algebro-geometric algorithm for subspace segmentation. We
conveniently refer to the algorithm as Generalized Principal Component Analysis
(GPCA). To better isolate the difficulties in the general problem, we will develop
the algorithm in two steps. The first step is to develop a basic GPCA algorithm
by assuming a known number of subspaces; and in the second step, we deal with
an unknown number of subspaces and develop a recursive version of the GPCA
algorithm. The algorithms in this chapter will be derived under ideal noise-free
conditions and assume no probabilistic model. Nevertheless, the algebraic tech-
niques involved are numerically well-conditioned and the algorithms are designed
to tolerate moderate amounts of noise. Dealing with large amounts of noise or
even outliers will be the subject of Chapter ??.

In order to make the material accessible to a larger audience, in this chapter
we focus primarily on the development of a (conceptual) algorithm. We leave a
more formal study of subspace arrangements and rigorous justifications of all the
algebraic facts that support the algorithms of this chapter to Appendix C.
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3.1 Problem Formulation of Subspace Segmentation

In mathematics (especially in algebraic geometry), a collection of subspaces is
formally known as a subspace arrangement:

Definition 3.1 (Subspace Arrangement). A subspace arrangement is defined as a
finite collection of n linear subspaces in RD: A .= {S1, . . . , Sn}. The union of
the subspaces is denoted as ZA

.= S1 ∪ S2 ∪ · · · ∪ Sn.

For simplicity, we will use the term “subspace arrangement” to refer to both A
and ZA.

Imagine that we are given a set of sample points drawn from an arrangement
of unknown number of subspaces which have unknown and possibly different
dimensions. Our goal is to simultaneously estimate these subspaces and seg-
ment the points into their corresponding subspaces. Versions of this problem are
known in the literature as subspace clustering, multiple eigenspaces [Leonardis
et al., 2002], or mixtures of principal component analyzers [Tipping and Bishop,
1999a], etc. To be precise, we will first state the problem that we will study in this
book, which we refer to as “multiple-subspace segmentation,” or simply as “sub-
space segmentation,” to be suggestive of the problem of fitting multiple (principal)
subspaces to the data.

Problem 3.1 (Multiple-Subspace Segmentation).

Given a set of sample points X = {xi ∈ RD}N
i=1 drawn from n ≥ 1 distinct

linear subspaces Sj ⊂ RD of dimensions dj < D, j = 1, 2, . . . , n, identify each
subspace Sj without knowing which sample points belong to which subspace.
More specifically, by identifying the subspaces we mean the following:

1. Identifying the number of subspaces n and their dimensions dj = dim(Sj);

2. Identifying an orthonormal basis for each subspace Sj (or equivalently a
basis for its orthogonal complement S⊥j );

3. Clustering the N points into the subspaces to which they belong.

Notice that in the foregoing problem statement, we have not yet specified the
objective for what is an “optimal” solution. We will leave the interpretation of
that open for now and will delay the definition until the context is more specific.
Although the problem seems to be stated in a purely geometric fashion, it is easy
to re-formulate it in a statistical fashion. For instance, we have assumed here that
the subspaces do not have to be orthogonal to each other. In a statistical setting,
this is essentially equivalent to assuming that these subspaces are not necessarily
uncorrelated. Within each subspace, one can also relate all the geometric and sta-
tistical notions associated with “principal components” in the classical PCA: The
orthonormal basis chosen for each subspace usually corresponds to a decompo-
sition of the random variable into uncorrelated principal components conditioned
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on the subspace. In Section 4.2, a detailed analysis and comparison will be given
for both points of view.

3.1.1 Projectivization of Affine Subspaces
Note that a linear subspace always passes through the origin but an affine subspace
does not. So, would the above problem statement lose any generality by restricting
it only to linear subspaces? The answer to this question is no. In fact every proper
affine subspace in RD can be converted to a proper linear subspace in RD+1 by
lifting every point of it through the so-called homogeneous coordinates:

Definition 3.2 (Homogeneous Coordinates). The homogeneous coordinates of a
point x = [x1, x2, . . . , xD]T ∈ RD are defined as [x1, x2, . . . , xD, 1]T .

Given a set of points in an affine subspace, it is easy to prove that their
homogeneous coordinates span a linear subspace. More precisely:

Fact 3.3 (Homogeneous Representation of Affine Subspaces). The homogeneous
coordinates of points on a k-dimensional affine subspace in RD span a (d +
1)-dimensional linear subspace in RD+1. This representation is one-to-one.

Figure 3.1 shows an example of the homogeneous representation of three lines
in R2. The points on these lines span three linear subspaces in R3 which pass
through the origin.

R2

R3
0

L1

L2
L3

Figure 3.1. Lifting of three (affine) lines in R2 to three linear subspaces in R3 via the
homogeneous representation.

Definition 3.4 (Central Subspace Arrangements). We say an arrangement of sub-
spaces is central if every subspace passes through the origin, i.e., every subspace
is a linear subspace.

According to this definition, the homogeneous representation of any (affine)
subspace arrangement in RD gives a central subspace arrangement in RD+1.
Therefore, Problem 3.1 does not loss any generality. From now on, we may as-
sume that our data set is drawn from a central subspace arrangement, in which all
subspaces are linear, not affine, subspaces, unless otherwise stated. In a statistical
setting, this is equivalent to assuming that each subset of samples has zero mean.
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3.1.2 Subspace Projection and Minimum Representation
The are many cases in which the given data points live in a very high dimen-
sional space. For instance, in many computer vision problems the dimension of
the ambient space D is the number of pixels in an image, which is normally in
the range 106. In such cases, the complexity of any subspace segmentation so-
lution becomes computationally prohibitive. It is therefore important for us to
seek situations in which the dimension of the ambient space can be significantly
reduced.

Fortunately, in most practical applications, we are interested in modeling the
data by subspaces of relatively small dimensions (d � D), thus one can avoid
dealing with high-dimensional data sets by first projecting them onto a lower-
dimensional (sub)space. An example is shown in Figure 3.2, where two lines L1

and L2 in R3 are projected onto a plane P . In this case, segmenting the two lines
in the three-dimensional space R3 is equivalent to segmenting the two projected
lines in the two-dimensional plane P .

+

+

+

+ +
+

+

+

+ +
++ + + ++

P

R3

L1 L2

l1

l2

o

Figure 3.2. Samples on two 1-dimensional subspaces L1, L2 in R3 projected onto a
2-dimensional plane P . The number and separation of the lines is preserved by the
projection.

In general, we will distinguish between two different kinds of “projections.”
The first kind corresponds to the case in which the span of all the subspaces is
a proper subspace of the ambient space, i.e., span(∪n

j=1Sj) ⊂ RD. In this case,
one may simply apply PCA (Chapter 2) to eliminate the redundant dimensions.
The second kind corresponds to the case in which the largest dimension of the
subspaces, denoted by dmax, is strictly less than D − 1. When dmax is known,1
one may choose a (dmax+1)-dimensional subspace P such that, by projecting RD

onto this subspace:

πP : x ∈ RD
�→ x� = πP (x) ∈ P, (3.1)

1For example, in 3-D motion segmentation from affine cameras, it is known that the subspaces
have dimension at most four [Costeira and Kanade, 1998, Kanatani, 2001, Vidal and Hartley, 2004].
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the dimension of each original subspace Sj is preserved,2 and there is a one-to-
one correspondence between Sj and its projection – no reduction in the number
of subspaces n,3 as stated in the following theorem.

Theorem 3.5 (Segementation-Preserving Projections). If a set of vectors {xi}

all lie in n linear subspaces of dimensions {dj}
n
j=1 in RD, and if πP represents a

linear projection onto a subspace P of dimension D�, then the points {πP (xi)} lie
in at most n linear subspaces of P of dimensions {d�j ≤ dj}

n
j=1. Furthermore, if

D > D� > dmax, then there is an open and dense set of projections that preserve
the separation and dimensions of the subspaces.

Thanks to Theorem 3.5, if we are given a data set X drawn from an arrange-
ment of low-dimensional subspaces in a high-dimensional space, we can first
project X onto a generic subspace of dimension D� = dmax + 1 and then model
the data with a subspace arrangement in the projected subspace, as illustrated by
the following sequence of steps:

X ⊂ RD πP
−−−−→ X �

⊂ P −→ ∪n
j=1πP (Sj)

π−1
P

−−−−→ ∪n
j=1Sj . (3.2)

However, even though the set of (dmax +1)-dimensional subspaces P ⊂ RD

that preserve the separation and dimension of the subspaces is an open and dense
set, it remains unclear as to what a “good” choice for P is, especially when there
is noise in the data. For simplicity, one may randomly select a few projections
and choose the one that results in the smallest fitting error. Another alternative
is to apply PCA regardless and project the data onto the (dmax+1)-dimensional
principal subspace.

One solution for choosing P is attributed to [Broomhead and Kirby, 2000]. The
technique was originally designed for dimension reduction of differential mani-
folds.4 We here adopt it for subspace arrangements. Instead of directly using the
original data matrix X , we gather the vectors (also called “secants”) defined by
every pair of points xi,xj ∈ X

yij
.= xi − xj ∈ RD, (3.3)

and construct a matrix consisting of yij as columns:

Y
.= [y12,y13, . . . ,y(N−1)N ] ∈ RD×M , (3.4)

2This requires that P be transversal to each S
⊥
j , i.e., span{P, S

⊥
j } = RD for every j =

1, 2, . . . , n. Since n is finite, this transversality condition can be easily satisfied. Furthermore, the set
of positions for P which violate the transversality condition is only a zero-measure closed set [Hirsch,
1976].

3This requires that all πP (Sj) be transversal to each other in P , which is guaranteed if we require
P to be transversal to S

⊥
j ∩ S

⊥
j� for j, j

� = 1, 2, . . . , n. All P ’s which violate this condition form
again only a zero-measure set.

4That is essentially based on Whitney’s classic proof of the fact any differential manifold can be
embedded in a Euclidean space.
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where M = (N−1)N/2. Then the principal components of Y span the subspace
in which the distance (and hence the separateness) between the projected points
is preserved the most. Therefore, the optimal subspace that maximizes the sepa-
rateness of the projected points is given by the dmax+1 principal components of
Y . More precisely, if Y = UΣV T is the SVD of Y , then the optimal subspace
P is given by the first dmax+1 columns of U .

3.2 Introductory Cases of Subspace Segmentation

Notice that, to apply the K-subspaces and EM algorithms, we need to know three
things in advance: the number of subspaces, their dimensions, and initial estimates
of the bases of the subspaces. In practice, this may not be the situation and many
difficulties may arise. The optimizing process in both algorithms is essentially
a local iterative descent scheme. If the initial estimates of the bases of the sub-
spaces are far off from the global optimum, the process is likely to converge to a
local minimum. More seriously, if the number of subspaces and their dimensions
were wrong, the process might never converge or might converge to meaningless
solutions. Furthermore, when the number and dimensions of the subspaces are
unknown and the samples are noisy (or contaminated by outliers), model selec-
tion becomes a much more elusive problem as we have alluded to earlier in the
introduction chapter.

In this and next few chapters, we will systematically address these difficulties
and aim to arrive at global non-iterative solutions to subspace segmentation that
require less or none of the above initial information. Before we delve into the most
general case, we first examine, in this section, a few important special cases. The
reason is two-fold: Firstly, many practical problems fall into these cases already
and the simplified solutions can be directly applied; and secondly, the analysis of
these special cases offers some insights into a solution to the general case.

3.2.1 Segmenting Points on a Line
Let us begin with an extremely simple clustering problem: clustering a collection
of points {x1, x2, . . . , xN} on the real line R around a collection of cluster cen-
ters {µ1, µ2, . . . , µn}. In spite of its simplicity, this problem shows up in various
segmentation problems. For instance, in intensity-based image segmentation, one
wants to separate the pixels of an image into different regions, with each region
corresponding to a significantly different level of intensity (a one-dimensional
quantity). More generally, the point clustering problem is very much at the heart
of spectral clustering, a popular technique for clustering data in spaces of any
dimension. Furthermore, as we will see throughout this book, the same basic
ideas introduced through this simple example can also be applied to clustering
points from arrangements of more complex structures such as lines, hyperplanes,
subspaces, and even surfaces.
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In the sequel, we introduce a not so conventional solution to the point clustering
problem. The new formulation that the solution is based on is neither geomet-
ric (like K-subspaces) nor statistical (like EM). Instead, the solution is purely
algebraic.

Let x ∈ R be any of the data points. In an ideal situation in which each data
point perfectly matches one of the cluster centers, we know that there exists a
constant µj such that x = µj . This means that

(x = µ1) ∨ (x = µ2) ∨ · · · ∨ (x = µn). (3.5)

The “∨” in the preceding equation stands for the logical connective “or.” This is
equivalent to that x satisfies the following polynomial equation of degree n in x:

pn(x) .= (x− µ1)(x− µ2) · · · (x− µn) =
n�

k=0

ckxn−k = 0. (3.6)

Since the polynomial equation pn(x) = 0 must be satisfied by every data point,
we have that

V n cn
.=





xn
1 xn−1

1 · · · x1 1
xn

2 xn−1
2 · · · x2 1

...
...

...
...

xn
N xn−1

N · · · xN 1









1
c1
...

cn




= 0, (3.7)

where V n ∈ RN×(n+1) is a matrix of embedded data points, and cn ∈ Rn+1 is
the vector of coefficients of pn(x).

In order to determine the number of groups n and then the vector of coefficients
cn from (3.7), notice that for n groups there is a unique polynomial of degree n
whose roots are the n cluster centers. Since the coefficients of this polynomial
must satisfy equation (3.7), in order to have a unique solution we must have that
rank(V n) = n. This rank constraint on V n ∈ RN×(n+1) enables us to determine
the number of groups n as5

n
.= min{j : rank(V j) = j}. (3.8)

Example 3.6 (Two Clusters of Points). The intuition behind this formula is as follows.
Consider, for simplicity, the case of n = 2 groups, so that pn(x) = p2(x) = (x−µ1)(x−
µ2), with µ1 �= µ2. Then, it is clear that there is no polynomial equation of degree one,
p1(x) = x − µ, that is satisfied by all the points. Similarly, there are infinitely many
polynomial equations of degree 3 or more that are satisfied by all the points, namely any
multiple of p2(x). Thus the degree n = 2 is the only one for which there is a unique
polynomial that fits all the points.

5Notice that the minimum number of points needed is N ≥ n, which is linear in the number of
groups. We will see in future chapters that this is no longer the case for more general segmentation
problems.
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Once the minimum polynomial pn(x) that fits all the data points is found, we
can solve the equation pn(x) = 0 for its n roots. These roots, by definition, are
the centers of the clusters. We summarize the overall solution as Algorithm 3.1.

Algorithm 3.1 (Algebraic Point Clustering Algorithm).

Let {x1, x2, . . . , xN} ⊂ R be a given collection of N ≥ n points clustering
around an unknown number n of cluster centers {µ1, µ2, . . . , µn}. The number
of groups, the cluster centers and the segmentation of the data can be determined
as follows:

1. Number of Groups. Let V j ∈ RN×(j+1) be a matrix containing the last
j + 1 columns of V n. Determine the number of groups as

n
.= min{j : rank(V j) = j}.

2. Cluster Centers. Solve for cn from V ncn = 0. Set pn(x) =�n
k=0 ckxn−k. Find the cluster centers µj as the n roots of pn(x).

3. Segmentation. Assign point xi to cluster j = arg minl=1,...,n(xi − µl)2.

Notice that the above algorithm is described in a purely algebraic fashion and is
more of a conceptual than practical algorithm. It does not minimize any geometric
errors or maximize any probabilistic likelihood functions. In the presence of noise
in the data, one has to implement each step of the algorithm in a numerically more
stable and statistically more robust way. For example, with noisy data, the matrix
V n will most likely be of full rank. In this case, the vector of coefficients cn

should be solved in a least-squares sense as the singular-vector of V n associated
with the smallest singular value. It is also possible that the pn(x) obtained from cn

may have some complex roots, because the constraint that the polynomial must
have real roots is never enforced when solving for the coefficients in the least-
squares sense.6 In practice, for well-separated clusters with moderate noise, the
roots normally give decent estimates of the cluster centers.

Although clustering points on a line may seem a rather simple problem, it can
be easily generalized to the problem of clustering points on a plane (see Exercise
3.1). Furthermore, it is also a key step of a very popular data clustering algorithm:
spectral clustering. See Exercise 3.2.

3.2.2 Segmenting Lines on a Plane
Let us now consider the case of clustering data points to a collection of n lines in
R2 passing through the origin, as illustrated in Figure 3.3. Each one of the lines

6However, in some special cases, one can show that this would never occur. For example, when
n = 2, the least-squares solution for cn is c2 = Var[x], c1 = E[x2]E[x] − E[x3] and c0 =
E[x3]E[x]−E[x2]2 ≤ 0, hence c

2
1−4c0c2 ≥ 0 and the two roots of the polynomial c0x

2+c1x+c2

are always real.
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can be represented as:

Lj
.= {x = [x, y]T : bj1x + bj2y = 0}, j = 1, 2, . . . , n. (3.9)

Given a point x = [x, y]T in one of the lines we must have that

(b11x + b12y = 0) ∨ · · · ∨ (bn1x + bn2y = 0). (3.10)

Therefore, even though each individual line is described with one polynomial
equation of degree one (a linear equation), an arrangement of n lines can be
described with a polynomial of degree n, namely

pn(x) = (b11x + b12y) · · · (bn1x + bn2y) =
n�

k=0

ckxn−kyk = 0. (3.11)

An example is shown in Figure 3.3.

Figure 3.3. A polynomial in two variables whose zero set is three lines in R2.

The polynomial pn(x) allows us to algebraically eliminate the segmentation of
the data at the beginning of the model estimation, because the equation pn(x) = 0
is satisfied by every data point regardless of whether it belongs to L1, L2, . . ., or
Ln. Furthermore, even though pn(x) is nonlinear in each data point x = [x, y]T ,
pn(x) is actually linear in the vector of coefficients c = [c0, c1, . . . , cn]T . There-
fore, given enough data points {xi = [xi, yi]T }N

i=1, one can linearly fit this
polynomial to the data. Indeed, if n is known, we can obtain the coefficients of
pn(x) from solving the equation:

V ncn =





xn
1 xn−1

1 y1 · · · x1y
n−1
1 yn

1

xn
2 xn−1

2 y2 · · · x2y
n−1
2 yn

2
...

...
...

...
xn

N xn−1
N yN · · · xNyn−1

N yn
N









c0

c1
...

cn




= 0. (3.12)
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Similar to the case of points in a line, the above linear system has a unique solution
if and only if rank(V n) = n, hence the number of lines is given by

n
.= min{j : rank(V j) = j}. (3.13)

Given the vector of coefficients cn, we are now interested in estimating the
equations of each line from the associated polynomial pn(x). We know each line
is determined by its normal vector bj = [b1j , b2j ]T , j = 1, 2, . . . , n. For the sake
of simplicity, let us consider the case n = 2. A simple calculation shows that the
derivative of p2(x) is given by

∇p2(x) = (b21x + b22y)b1 + (b11x + b12y)b2. (3.14)

Therefore, if the point x belongs to L1, then (b11x + b12y) = 0 and hence
∇p2(x) ∼ b1. Similarly, if x belongs to L2, then ∇p2(x) ∼ b2. This means
that given any point x, without knowing which line contains the point, we can
obtain the equation of the line passing through the point by simply evaluating the
derivative of p2(x) at x. This fact should come at no surprise and is valid for any
number of lines n. Therefore, if we are given one point in each line7 {yj ∈ Lj},
we can determine the normal vectors as bj ∼ ∇pn(yj). We summarize the overall
solution for clustering points to multiple lines as Algorithm 3.2.

Algorithm 3.2 (Algebraic Line Segmentation Algorithm).

Let {x1,x2, . . . ,xN} be a collection of N ≥ n points in R2 clustering around
an unknown number n of lines whose normal vectors are {b1, b2, . . . , bN}. The
number of lines, the normal vectors, and the segmentation of the data can be
determined as follows:

1. Number of Lines. Let V j be defined as in (3.12). Determine the number
of groups as

n
.= min{j : rank(V j) = j}.

2. Normal Vectors. Solve for cn from V ncn = 0 and set pn(x, y) =�n
k=0 ckxn−kyk. Determine the normal vectors as

bj =
∇pn(yj)
�∇pn(yj)�

∈ R2, j = 1, 2, . . . , n,

where yj is a point in the jth line.

3. Segmentation. Assign point xi to line j = arg min�=1,...,n(bT
� xi)2.

The reader may have realized that the problem of clustering points on a line is
very much related to the problem of segmenting lines in the plane. In point clus-

7We will discuss how to automatically obtain one point per subspace from the data in the next
subsection when we generalize this problem to clustering points on hyperplanes.
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(0, 0)

µ1 µ2 µ3

L1 L2 L3

0

R2

R

Figure 3.4. Using homogeneous coordinates to convert the point clustering problem into
the line segmentation problem.

tering, for each data point x there exists a cluster center µj such that x− µj = 0.
By working in homogeneous coordinates, one can convert it into a line clustering
problem: for each data point x = [x, 1]T there is a line bj = [1,−µj ]T passing
through the point. Figure 3.4 shows an example of how three cluster centers are
converted into three lines via homogeneous coordinates. Indeed, notice that if we
let y = 1 in the matrix V n in (3.12), we obtain exactly the matrix V n in (3.7).
Therefore, the vector of coefficients cn is the same for both algorithms and the
two polynomials are related as pn(x, y) = ynpn(x/y). Therefore, the point clus-
tering problem can be solved either by polynomial factorization (Algorithm 3.1)
or by polynomial differentiation (Algorithm 3.2).

3.2.3 Segmenting Hyperplanes
In this section, we consider another particular case of Problem 3.1 in which all the
subspaces are hyperplanes of equal dimension d1 = · · · = dn = d = D− 1. This
case shows up in a wide variety of segmentation problems in computer vision,
including vanishing point detection and motion segmentation. We will discuss
these applications in greater detail in later chapters.

We start by noticing that every (D−1)-dimensional subspace Sj ⊂ RD can be
defined in terms of a nonzero normal vector bj ∈ RD as follows:8

Sj
.=

�
x ∈ RD : bT

j x
.= bj1x1 + bj2x2 + · · ·+ bjDxD = 0

�
. (3.15)

Therefore, a point x ∈ RD lying in one of the hyperplanes Sj must satisfy the
formula:

(bT
1 x = 0) ∨ (bT

2 x = 0) ∨ · · · ∨ (bT
nx = 0), (3.16)

8Since the subspaces Sj are all different from each other, we assume that the normal vectors
{bj}

n
j=1 are pairwise linearly independent.
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which is equivalent to the following homogeneous polynomial of degree n in x
with real coefficients:

pn(x)=
n�

j=1

(bT
j x)=

�
cn1,n2,...,nDxn1

1 xn2
2 · · ·xnD

D =νn(x)T cn =0, (3.17)

where cn1,...,nD ∈ R represents the coefficient of monomial xn1
1 xn2

2 · · ·xnD
D , cn

is the vector of all coefficients, and νn(x) is the stack of all possible monomials.
The number of linearly independent monomials is Mn

.= ( D+n−1
n ), hence cn

and νn(x) are vectors in RMn .
After applying (3.17) to the given collection of N sample points {xi}

N
i=1, we

obtain the following system of linear equations on the vector of coefficients cn

V n cn
.=





νn(x1)T

νn(x2)T

...
νn(xN )T




cn = 0 ∈ RN . (3.18)

We now study under what conditions we can solve for n and cn from equa-
tion (3.18). To this end, notice that if the number of hyperplanes n was known,
we could immediately recover cn as the eigenvector of V T

nV n associated with its
smallest eigenvalue. However, since the above linear system (3.18) depends ex-
plicitly on the number of hyperplanes n, we cannot estimate cn directly without
knowing n in advance. Recall from Example C.14, the vanishing ideal I of a hy-
perplane arrangement is always principal, i.e., generated by a single polynomial
of degree n. The number of hyperplanes n then coincides with the degree of the
first non-trivial homogeneous component In of the vanishing ideal. This leads to
the following theorem.

Theorem 3.7 (Number of Hyperplanes). Assume that a collection of N ≥ Mn−1
sample points {xi}

N
i=1 on n different (D − 1)-dimensional subspaces of RD is

given. Let V j ∈ RN×Mj be the matrix defined in (3.18), but computed with
polynomials of degree j. If the sample points are in general position and at least
D − 1 points correspond to each hyperplane, then:

rank(V j)






= Mj j < n,
= Mj − 1 j = n,
< Mj − 1 j > n.

(3.19)

Therefore, the number n of hyperplanes is given by:

n = min{j : rank(V j) = Mj − 1}. (3.20)

In the presence of noise, one cannot directly estimate n from (3.20), because
the matrix V j is always full rank. In this case, one can use the criterion (2.48)
given in Chapter 2 to determine the rank.

Theorem 3.7 and the linear system in equation (3.18) allow us to determine
the number of hyperplanes n and the vector of coefficients cn, respectively, from
sample points {xi}

N
i=1. The rest of the problem now becomes how to recover
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the normal vectors {bj}
n
j=1 from cn. Imagine, for the time being, that we were

given a set of n points {yj}
n
j=1, each one lying in only one of the n hyperplanes,

that is yj ∈ Sj for j = 1, 2, . . . , n. Now let us consider the derivative of pn(x)
evaluated at each yj . We have:

∇pn(x) =
∂pn(x)

∂x
=

∂

∂x

n�

j=1

(bT
j x) =

n�

j=1

(bj)
�

� �=j

(bT
� x). (3.21)

Because
�

� �=m(bT
� yj) = 0 for j �= m, one can obtain each one of the normal

vectors as

bj =
∇pn(yj)
�∇pn(yj)�

, j = 1, 2, . . . , n. (3.22)

Therefore, if we know one point in each one of the hyperplanes, the hyperplane
segmentation problem can be solved analytically by simply evaluating the partial
derivatives of pn(x) at each one of the points with known labels.

Consider now the case in which we do not know the membership of any of
the data points. We now show that one can obtain one point per hyperplane by
intersecting a random line with each one of the hyperplanes. To this end, consider
a random line L

.= {tv + x0, t ∈ R} with direction v and base point x0. We
can obtain one point in each hyperplane by intersecting L with the union of all
the hyperplanes.9 Since at the intersection points we must have pn(tv + x0) = 0,
the n points {yj}

n
j=1 can be obtained as

yj = tjv + x0, j = 1, 2, . . . , n, (3.23)

where {tj}n
j=1 are the roots of the univariate polynomial of degree n

qn(t) = pn(tv + x0) =
n�

j=1

�
tbT

j v + bT
j x0

�
= 0. (3.24)

We summarize our discussion so far as Algorithm 3.3 for segmenting
hyperplanes.

3.3 Subspace Segmentation Knowing the Number of
Subspaces

In this section, we derive a general solution to the subspace-segmentation problem
(Problem 3.1) in the case in which the number of subspaces n is known. However,
unlike the special cases we saw in the previous section, the dimensions of the
subspaces can be different. In Section 3.3.1, we illustrate the basic ideas of dealing
with subspaces of different dimensions via a simple example. Through Sections

9Except when the chosen line is parallel to one of the hyperplanes, which corresponds to a zero-
measure set of lines.
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Algorithm 3.3 (Algebraic Hyperplane Segmentation Algorithm).

Let {x1,x2, . . . ,xN} ⊂ RD be a given collection of points clustered around an
unknown number n of planes {b1, b2, . . . , bn}. The number of planes, the normal
vectors, and the segmentation of the data can be determined as follows:

1. Number of Hyperplanes. Let V j be defined as in (3.18). Determine the
number of groups as

n
.= min{j : rank(V j) = Mj − 1}.

2. Normal Vectors. Solve for cn from V ncn = 0 and set pn(x) = cT
nνn(x).

Choose x0 and v at random and compute the n roots t1, t2, . . . , tn ∈ R
of the univariate polynomial qn(t) = pn(tv + x0). Determine the normal
vectors as

bj =
∇pn(yj)
�∇pn(yj)�

, j = 1, 2, . . . , n,

where yj = x0 + tjv is a point in the jth hyperplane.

3. Segmentation. Assign point xi to hyperplane j = arg minl=1,...,n(bT
l xi)2.

b2

S1

S2

y1

y2x

b11 = ∇p21(y1)

b12 = ∇p22(y1)

o

R3

Figure 3.5. Data samples drawn from a union of one plane and one line (through the
origin o) in R3. The derivatives of the two vanishing polynomials p21(x) = x1x2 and
p22(x) = x1x3 evaluated at a point y1 in the line give two normal vectors to the line.
Similarly, the derivatives at a point y2 in the plane give the normal vector to the plane.

3.3.2-3.3.4, we give detailed derivation and proof for the general case. The final
algorithm is summarized in Section 3.3.5.

3.3.1 An Introductory Example
To motivate and highlight the key ideas, in this section we study a simple example
of clustering data points lying in subspaces of different dimensions in R3: a line
S1 = {x : x1 = x2 = 0} and a plane S2 = {x : x3 = 0}, as shown in Figure 3.5.
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We can describe the union of these two subspaces as

S1 ∪ S2 = {x : (x1 = x2 = 0) ∨ (x3 = 0)} = {x : (x1x3 = 0) ∧ (x2x3 = 0)}.

Therefore, even though each individual subspace is described with polynomials
of degree one (linear equations), the union of two subspaces is described with
two polynomials of degree two, namely p21(x) = x1x3 and p22(x) = x2x3. In
general, we can represent any two subspaces of R3 as the set of points satisfying
a set of homogeneous polynomials of the form

c1x
2
1 + c2x1x2 + c3x1x3 + c4x

2
2 + c5x2x3 + c6x

2
3 = 0. (3.25)

Although these polynomials are nonlinear in each data point [x1, x2, x3]T , they
are actually linear in the vector of coefficients c = [c1, c2, . . . , c6]T . Therefore,
given enough data points, one can linearly fit these polynomials to the data.

Given the collection of polynomials that vanish on the data points, we are now
interested in estimating a basis for each subspace. In our example, let P2(x) =
[p21(x), p22(x)] and consider the derivatives of P2(x) at two representative
points of the two subspaces y1 = [0, 0, 1]T ∈ S1 and y2 = [1, 1, 0]T ∈ S2:

∇P2(x) =




x3 0
0 x3

x1 x2



 =⇒ ∇P2(y1) =




1 0
0 1
0 0



 and ∇P2(y2) =




0 0
0 0
1 1



 . (3.26)

Then the columns of ∇P2(y1) span the orthogonal complement to the first sub-
space S⊥1 and the columns of ∇P2(y2) span the orthogonal complement to the
second subspace S⊥2 (see Figure 3.5). Thus the dimension of the line is given
by d1 = 3 − rank(∇P2(y1)) = 1 and the dimension of the plane is given by
d2 = 3− rank(∇P2(y2)) = 2. Therefore, if we are given one point in each sub-
space, we can obtain the subspace bases and their dimensions from the derivatives
of the polynomials at the given points.

The final question is how to choose one representative point per subspace. With
perfect data, we may choose a first point as any of the points in the data set. With
noisy data, we may first define a distance from any point in R3 to the union of the
subspaces,10 and then choose a point in the data set that minimizes this distance.
Say we pick y2 ∈ S2 as such point. We can then compute the normal vector
b2 = [0, 0, 1]T to S2 from ∇P (y2) as above. How do we now pick a second
point in S1 but not in S2? As it turns out, this can be done by polynomial division.
We can divide the original polynomials by bT

2 x to obtain new polynomials of
degree n− 1 = 1:

p11(x) =
p21(x)
bT
2 x

= x1 and p12(x) =
p22(x)
bT
2 x

= x2.

10For example, the squared algebraic distance to S1 ∪ S2 is p21(x)2 + p22(x)2 = (x2
1 + x

2
2)x2

3.



3.3. Subspace Segmentation Knowing the Number of Subspaces 51

Since these new polynomials vanish on S1 but not on S2, we can use them to
define a new distance to S1 only,11 and then find a point y1 in S1 but not in S2 as
the point in the data set that minimizes this distance.

The next sections shows how this simple example can be systematically gener-
alized to multiple subspaces of unknown and possibly different dimensions by
polynomial fitting (Section 3.3.2), differentiation (Section 3.3.3), and division
(Section 3.3.4).

3.3.2 Fitting Polynomials to Subspaces
Now consider a subspace arrangement A = {S1, S2, . . . , Sn} with dim(Sj) =
dj , j = 1, 2, . . . , n. Let X = {x1,x2, . . . ,xN} be a sufficiently large number
of sample points in general position drawn from ZA = S1 ∪ S2 ∪ · · · ∪ Sn. As
we may know from Appendix C, the vanishing ideal I(ZA), i.e., the set of all
polynomials that vanish on ZA, is much more complicated than the special cases
we studied earlier in this chapter.

Nevertheless, since we assume to know the number of subspaces n, we only
have to consider the set of polynomials of degree n that vanish on ZA, i.e., the
homogeneous component In of I(ZA). As we know from Appendix C, these
polynomials uniquely determine ZA. Furthermore, as the result of Corollary C.22,
we know that if the subspace arrangement is transversal, In is generated by the
products of n linear forms that vanish on the n subspaces, respectively. More
precisely, suppose the subspace Sj is of dimension dj and let kj = D − dj . Let

Bj
.= [b1, b2, . . . , bkj ] ∈ RD×(kj)

be a set of base vectors for the orthogonal complement S⊥j of Sj . The vanishing
ideal I(Sj) of Sj is generated by the set of linear forms

{l(x) .= bT x, b ∈ Bj}.

Then any polynomial pn(x) ∈ In can be written as a summation of products of
the linear forms

pn(x) =
�

l1(x)l2(x) · · · ln(x),

where lj ∈ I(Sj).
Using the Veronese map, each polynomial in In can also be written as:

pn(x) = cT
nνn(x) =

�
cn1,n2,...,nDxn1

1 xn2
2 · · ·xnD

D = 0, (3.27)

where cn1,n2,...,nD ∈ R represents the coefficient of the monomial xn =
xn1

1 xn2
2 · · ·xnD

D . Although the polynomial equation is nonlinear in each data point
x, it is linear in the vector of coefficients cn. Indeed, since each polynomial
pn(x) = cT

nνn(x) must be satisfied by every data point, we have cT
nνn(xi) = 0

11For example, the squared algebraic distance to S1 is p11(x)2 + p12(x)2 = x
2
1 + x

2
2.
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for all i = 1, 2, . . . , N . Therefore, the vector of coefficients cn must satisfy the
system of linear equations

V n(D) cn
.=





νn(x1)T

νn(x2)T

...
νn(xN )T




cn = 0 ∈ RN , (3.28)

where V n(D) ∈ RN×Mn(D) is called the embedded data matrix.
Clearly, the coefficient vector of every polynomial in In is in the null space of

the data matrix V n(D). For every polynomial obtained from the null space of
V n(D) to be in In, we need to have

dim(Null(V n(D))) = dim(In) .= hI(n),

where hI(n) is the Hilbert function of the ideal I(ZA) (see Appendix C). Or
equivalently, the rank of the data matrix V n(D) needs to satisfy

rank(V n(D)) = Mn(D)− hI(n) (3.29)

in order that In can be exactly recovered from the null space of V n(D). As a
result of the Algebraic Sampling Theory in Appendix B, the above rank condition
is typically satisfied with N ≥ (Mn(D)− 1) data points in general position.12 A
basis of In,

In = span{pn�(x), � = 1, 2, . . . , hI(n)}, (3.30)

can be computed from the set of hI(n) singular vectors of V n(D) associated
with its hI(n) zero singular values. In the presence of moderate noise, we can
still estimate the coefficients of the polynomials in a least-squares sense from the
singular vectors associated with the hI(n) smallest singular values.

As discussed in Sections 2.5.1 and 2.5.1, the basic modeling assumption in
NLPCA and KPCA is that there exists an embedding of the data into a higher-
dimensional feature space F such that the features live in a linear subspace of F .
However, there is no general methodology for finding the correct embedding for
an arbitrary problem. Equation (3.28) shows that the commonly used polynomial
embedding νn is the right one to use when the data lives in an arrangement of sub-
spaces, because the embedded data points {νn(xi)}N

i=1 indeed live in a subspace
of RMn(D). Notice that each vector cn is simply a normal vector to the embedded
subspace, as illustrated in Figure 3.6.

3.3.3 Subspaces from Polynomial Differentiation
Given a basis for the set of polynomials representing an arrangement of sub-
spaces, we are now interested in determining a basis and the dimension of each

12In particular, it requires at least dj points from each subspace Sj .
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Figure 3.6. The polynomial embedding maps a union of subspaces of RD into a single sub-
space of RMn(D) whose normal vectors {cn} are the coefficients of the polynomials {pn}

defining the subspaces. The normal vectors to the embedded subspace {cn} are related to
the normal vectors to the original subspaces {bj} via the symmetric tensor product.

subspace. In this section, we show that one can estimate the bases and the dimen-
sions by differentiating all the polynomials {pn�} obtained from the null space of
the embedded data matrix V n(D).

Let pn(x) be any polynomial in In. Since pn ∈ I(ZA) ⊂ I(Sj), where I(Sj)
is generated by linear forms l(x) = bT x with b ∈ S⊥j , pn is of the form

pn = l1g1 + l2g2 + · · ·+ lkj gkj (3.31)

for l1, l2, . . . , lkj ∈ I(Sj) and some polynomials g1, g2, . . . , gkj .13 The derivative
of pn is

∇pn =
kj�

i=1

(gi∇li + li∇gi) =
kj�

i=1

(gibi + li∇gi). (3.32)

Let yj be a point in the subspace Sj but not in any other subspaces in the arrange-
ment ZA. Then li(yj) = 0, i = 1, 2, . . . , kj . Thus, the derivative of pn evaluated
at yj is a superposition of the vectors bi:

∇pn(yj) =
kj�

i=1

gi(yj)bi ∈ S⊥j . (3.33)

This fact should come at no surprise. The zero set of each polynomial pn is just
a surface in RD, therefore its derivative at a regular point yj ∈ Sj ,∇pn(yj), gives
a vector orthogonal to the surface. Since an arrangement of subspaces is locally
flat, i.e., in a neighborhood of yj the surface is merely the subspace Sj , then the
derivative at yj lives in the orthogonal complement S⊥j of Sj . By evaluating the
derivatives of all the polynomials in In at the same point yj we obtain a set of
normal vectors that span the orthogonal complement of Sj . We summarize the
above facts as Theorem 3.8. Figure 3.5 illustrates the theorem for the case of a
plane and a line described in Section 3.3.1.

13In fact, from discussions in the preceding subsection, we know the polynomials gi are products
of linear forms that vanish on the remaining n− 1 subspaces.
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Theorem 3.8 (Subspace Bases and Dimensions by Polynomial Differentiation).
If the data set X is such that dim(Null(V n(D))) = dim(In) = hI(n) and one
generic point yj is given for each subspace Sj , then we have

S⊥j = span
� ∂

∂x
cT

nνn(x)
���
x=yj

, ∀cn ∈ Null(V n(D))
�

. (3.34)

Therefore, the dimensions of the subspaces are given by

dj = D − rank
�
∇Pn(yj)

�
for j = 1, 2, . . . , n, (3.35)

where Pn(x) .= [pn1(x), . . . , pnhI(n)(x)] ∈ R1×hI(n) is a row of linearly in-
dependent polynomials in In, and ∇Pn(x) .=

�
∇pn1(x), . . . ,∇pnhI(n)(x)

�
∈

RD×hI(n).

Proof. (Sketch only). The fact that the derivatives span the entire normal space is
the consequence of the general dimension theory for algebraic varieties [Bochnak
et al., 1998, Harris, 1992, Eisenbud, 1996]. For a (transversal) subspace arrange-
ment, one can also prove the theorem by using the fact that polynomials in In

are generated by the products of n linear forms that vanish on the n subspaces,
respectively.

Given cn, the computation of the derivative of pn(x) = cT
nνn(x) can be done

algebraically:

∇pn(x) = cT
n∇νn(x) = cT

nEnνn−1(x),

where En ∈ RMn(D)×Mn−1(D) is a constant matrix containing only the expo-
nents of the Veronese map νn(x). Thus, the computation does not involve taking
derivatives of the (possibly noisy) data.

3.3.4 Point Selection via Polynomial Division
Theorem 3.8 suggests that one can obtain a basis for each S⊥j directly from the
derivatives of the polynomials representing the union of the subspaces. However,
in order to proceed we need to have one point per subspace, i.e., we need to know
the vectors {y1,y2, . . . ,yn}. In this section, we show how to select these n points
in the unsupervised learning scenario in which we do not know the label for any
of the data points.

In Section 3.2.3, we showed that in the case of hyperplanes, one can obtain one
point per hyperplanes by intersecting a random line L with the union of all hy-
perplanes.14 This solution, however, does not generalize to subspaces of arbitrary
dimensions. For instance, in the case of data lying in a line and a plane shown
in Figure 3.5, a randomly chosen line L may not intersect the line. Furthermore,
because polynomials in the null space of V n(D) are no longer factorizable, their

14This can always be done, except when the chosen line is parallel to one of the subspaces, which
corresponds to a zero-measure set of lines.
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zero set is no longer a union of hyperplanes, hence the points of intersection with
L may not lie in any of the subspaces.

In this section we propose an alternative algorithm for choosing one point per
subspace. The idea is that we can always choose a point yn lying in one of the
subspaces, say Sn, by checking that Pn(yn) = 0. Since we are given a set of data
points X = {x1,x2, . . . ,xN} lying in the subspaces, in principle we can choose
yn to be any of the data points. However, in the presence of noise and outliers,
a random choice of yn may be far from the true subspaces. One may be tempted
to choose a point in the data set X that minimizes �Pn(x)�, as we did in our
introductory example in Section 3.3.1. However, such a choice has the following
problems:

1. The value �Pn(x)� is merely an algebraic error, i.e., it does not really
represent the geometric distance from x to its closest subspace. In princi-
ple, finding the geometric distance from x to its closest subspace is a hard
problem, because we do not know the normal bases {B1, B2, . . . , Bn}.

2. Points x lying close to the intersection of two or more subspaces are
more likely to be chosen, because two or more factors in pn(x) =
(bT

1 x)(bT
2 x) · · · (bT

nx) are approximately zero, which yields a smaller
value for |pn(x)|. In fact, we can see from (3.33) that for an arbitrary x
in the intersection, the vector∇pn(x) needs to be a common normal vector
to the two or more subspaces. If the subspaces have no common normal
vector, then �∇pn(x)� = 0. Thus, one should avoid choosing points close
to the intersection, because they typically give very noisy estimates of the
normal vectors.

We could avoid these two problems if we could compute the distance from
each point to the subspace passing through it. However, we cannot compute such
a distance yet because we do not know the subspace bases. The following lemma
shows that we can compute a first order approximation to such a distance from
Pn and its derivatives.

Lemma 3.9. Let x̃ be the projection of x ∈ RD onto its closest subspace. The
Euclidean distance from x to x̃ is given by

�x− x̃� = n
�

Pn(x)
�
∇Pn(x)T∇Pn(x)

�†
Pn(x)T + O

�
�x− x̃�2

�
,

where Pn(x) = [pn1(x), . . . , pnhI(n)(x)] ∈ R1×hI(n) is a row vector with all
the polynomials,∇Pn(x) =

�
∇pn1(x), . . . ,∇pnhI(n)(x)

�
∈ RD×hI(n), and A†

is the Moore-Penrose inverse of A.

Proof. The projection x̃ of a point x onto the zero set of the polynomi-
als {pn�}

hI(n)
�=1 can be obtained as the solution to the following constrained

optimization problem

min �x̃− x�2, s.t. pn�(x̃) = 0, � = 1, 2, . . . , hI(n). (3.36)
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By using Lagrange multipliers λ ∈ RhI(n), we can convert this problem into the
unconstrained optimization problem

min
x̃,λ

�x̃− x�2 + Pn(x̃)λ. (3.37)

From the first order conditions with respect to x̃ we have

2(x̃− x) +∇Pn(x̃)λ = 0. (3.38)

After multiplying on the left by (∇Pn(x̃))T and (x̃−x)T , respectively, we obtain

λ = 2
�
∇Pn(x̃)T

∇Pn(x̃)
�†
∇Pn(x̃)T x, �x̃− x�2 =

1
2
xT
∇Pn(x̃)λ, (3.39)

where we have used the fact that (∇Pn(x̃))T x̃ = 0. After substituting the first
equation into the second, we obtain that the squared distance from x to its closest
subspace can be expressed as

�x̃− x�2 = xT
∇Pn(x̃)

�
∇Pn(x̃)T

∇Pn(x̃)
�†
∇Pn(x̃)T x. (3.40)

After expanding in Taylor series about x̃ = x, and noticing that∇Pn(x)T x =
nPn(x)T we obtain

�x̃− x�2 ≈ n2Pn(x)
�
∇Pn(x)T

∇Pn(x)
�†

Pn(x)T , (3.41)

which completes the proof.

Thanks to Lemma 3.9, we can immediately choose a candidate yn lying in
(close to) one of the subspaces and not in the intersection as

yn = arg min
x∈X:∇Pn(x) �=0

Pn(x)
�
∇Pn(x)T

∇Pn(x)
�†

Pn(x)T . (3.42)

and compute a basis Bn ∈ RD×(D−dn) for S⊥n by applying PCA to ∇Pn(yn).
In order to find a point yn−1 lying in (close to) one of the remaining (n − 1)

subspaces but not in (far from) Sn, we could in principle choose yn−1 as in (3.42)
after removing the points in Sn from the data set X . With noisy data, however,
this depends on a threshold and is not very robust. Alternatively, we can find a
new set of polynomials {p(n−1)�(x)} defining the algebraic set ∪n−1

j=1 Sj . In the
case of hyperplanes, there is only one such polynomial, namely

pn−1(x) .= (b1x)(b2x) · · · (bT
n−1x) =

pn(x)
bT

nx
= cT

n−1νn−1(x).

Therefore, we can obtain pn−1(x) by polynomial division. Notice that dividing
pn(x) by bT

nx is a linear problem of the form

Rn(bn)cn−1 = cn, (3.43)

where Rn(bn) ∈ RMn(D)×Mn−1(D). This is because solving for the coefficients
of pn−1(x) is equivalent to solving the equations (bT

nx)(cT
n−1νn(x)) = cT

nνn(x)
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for all x ∈ RD. These equations are obtained by equating the coefficients, and
they are linear in cn−1, because bn and cn are already known.

Example 3.10 If n = 2 and b2 = [b1, b2, b3]
T , then the matrix R2(b2) is given by

R2(b2) =

2

4
b1 b2 b3 0 0 0
0 b1 0 b2 b3 0
0 0 b1 0 b2 b3

3

5
T

∈ R6×3
.

In the case of subspaces of arbitrary dimensions we cannot directly divide the
entries of the polynomial vector Pn(x) by bT

nx for any column bn of Bn, be-
cause the polynomials {pn�(x)} may not be factorizable. Furthermore, they do
not necessarily have the common factor bT

nx. The following theorem resolves
this difficulty by showing how to compute the polynomials associated with the
remaining subspaces ∪n−1

j=1 Sj .

Theorem 3.11 (Choosing one Point per Subspace by Polynomial Division). If the
data set X is such that dim(null(V n(D))) = dim(In), then the set of homoge-
neous polynomials of degree (n − 1) associated with the algebraic set ∪n−1

j=1 Sj

is given by {cT
n−1vn−1(x)} where the vectors of coefficients cn−1 ∈ RMn−1(D)

must satisfy

V n(D)Rn(bn)cn−1 = 0, ∀ bn ∈ S⊥n . (3.44)

Proof. We first show the necessity. That is, any polynomial of degree n − 1,
cT

n−1νn−1(x), that vanishes on ∪n−1
j=1 Sj satisfies the above equation. Since a

point x in the original algebraic set ∪n
j=1Sj belongs to either ∪n−1

j=1 Sj or Sn,
we have cT

n−1νn−1(x) = 0 or bT
nx = 0 for all bn ∈ S⊥n . Hence pn(x) .=

(cT
n−1νn−1(x))(bT

nx) = 0, and pn(x) must be a linear combination of polyno-
mials in Pn(x). If we denote pn(x) as cT

nνn(x), then the vector of coefficients
cn must be in the null space of V n(D). From cT

nνn(x) = (cT
n−1νn−1(x))(bT

nx),
the relationship between cn and cn−1 can be written as Rn(bn)cn−1 = cn. Since
V n(D)cn = 0, cn−1 needs to satisfy the following linear system of equations
V n(D)Rn(bn)cn−1 = 0.

We now show the sufficiency. That is, if cn−1 is a solution to (3.44), then
cT

n−1νn−1(x) is a homogeneous polynomial of degree (n − 1) that vanishes on
∪

n−1
j=1 Sj . Since cn−1 is a solution to (3.44), then for all bn ∈ S⊥n we have that

cn = Rn(bn)cn−1 is in the null space of V n(D). Now, from the construction of
Rn(bn), we also have that cT

nνn(x) = (cT
n−1νn−1(x))(bT

nx). Hence, for every
x ∈ ∪

n−1
j=1 Sj but not in Sn, we have cT

n−1νn−1(x) = 0, because there is a bn

such that bT
nx �= 0. Therefore, cT

n−1νn−1(x) is a homogeneous polynomial of
degree (n− 1) that vanishes on ∪n−1

j=1 Sj .

Thanks to Theorem 3.11, we can obtain a basis {p(n−1)�(x), � = 1, 2, . . . , hI(n−
1)} for the polynomials vanishing on ∪n−1

j=1 Sj from the intersection of the null
spaces of V n(D)Rn(bn) ∈ RN×Mn−1(D) for all bn ∈ S⊥j . By evaluating the
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derivatives of the polynomials p(n−1)� we can obtain normal vectors to Sn−1 and
so on. By repeating these process, we can find a basis for each one of the re-
maining subspaces. The overall subspaces estimation and segmentation process
involves polynomial fitting, differentiation, and division.

3.3.5 The Basic Generalized PCA Algorithm
We summarize the results of this section with the following Generalized Princi-
pal Component Analysis (GPCA) algorithm for segmenting a known number of
subspaces of unknown and possibly different dimensions from sample data points
X = {x1,x2, . . . ,xN}.

Algorithm 3.4 (GPCA: Generalized Principal Component Analysis).

Given a set of samples X = {x1,x2, . . . ,xN} in RD, fit n linear subspaces with
dimensions d1, d2, . . . , dn:

1: Set V n(D) .= [νn(x1), νn(x2), . . . , νn(xN )]T ∈ RN×Mn(D).
2: for all j = n : 1 do
3: Solve V j(D)c = 0 to obtain a basis {cj�}

hI(j)
�=1 of null(V j(D)), where

the number of polynomials hI(j) is obtained as in Appendix B.
4: Set Pj(x) = [pj1(x), pj2(x), . . . , pjhI(j)(x)] ∈ R1×hI(j), where

pj�(x) = cT
j�νj(x) for � = 1, 2, . . . , hI(j).

5: Compute

yj = arg min
x∈X:∇Pj(x) �=0

Pj(x)
�
∇Pj(x)T

∇Pj(x)
�†

Pj(x)T ,

Bj
.= [bj1, bj2, . . . , bj(D−dj)] = PCA

�
∇Pj(yj)

�
,

V j−1(D) = V j(D)
�
RT

j (bj1), RT
j (bj2), . . . , RT

j (bj(D−dj))
�T

.

6: end for
7: for all i = 1 : N do
8: Assign point xi to subspace Sj if j = arg min�=1,2,...,n �BT

� xi�
2.

9: end for

Avoiding Polynomial Division.

In practice, we may avoid computing Pj for j < n by using a heuristic dis-
tance function to choose the points {y1,y2, . . . ,yn} as follows. Since a point
in ∪n

�=jS� must satisfy �BT
j x��BT

j+1x� · · · �B
T
n x� = 0, we can choose a point

yj−1 on ∪j−1
�=1S� as:

yj−1 = arg min
x∈X:∇Pn(x) �=0

�
Pn(x)(∇Pn(x)T∇Pn(x))†Pn(x)T + δ

�BT
j x��BT

j+1x� · · · �B
T
n x�+ δ

, (3.45)

where δ > 0 is a small number chosen to avoid cases in which both the numerator
and the denominator are zero (e.g., with perfect data).
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3.4 Subspace Segmentation not Knowing the Number
of Subspaces

The solution to the subspace-segmentation problem proposed in Section 3.3.5
assumes prior knowledge of the number of subspaces n. In practice, however, the
number of subspaces n may not be known beforehand, hence we cannot estimate
the polynomials representing the subspaces directly, because the linear system
in (3.28) depends explicitly on n.

Earlier in Section 3.2, we have presented some special cases (e.g., arrangements
of hyperplanes) for which one can recover the number of subspaces from data. In
this section, we show that by exploiting the algebraic structure of the vanishing
ideals of subspace arrangements it is possible to simultaneously recover the num-
ber of subspaces, together with their dimensions and their bases. As usual, we first
examine some subtlety with determining the number of subspaces via two simple
examples in Section 3.4.1 and illustrate the key ideas. Section 3.4.2 considers the
case of perfect subspace arrangements in which all subspaces are of equal dimen-
sion d = d1 = · · · = dn. We derive a set of rank constraints on the data from
which one can estimate the n and d. Section 3.4.3 considers the most general case
of subspaces of different dimensions and shows that n and can be computed in a
recursive fashion by first fitting subspaces of larger dimensions and then further
segmenting these subspaces into subspaces of smaller dimensions.

3.4.1 Introductory Examples
Imagine we are given a set of points X = {x1,x2, . . . ,xN} lying in two lines in
R3, say

S1 = {x : x2 = x3 = 0} and S2 = {x : x1 = x3 = 0}. (3.46)

If we form the matrix of embedded data points V n(D) for n = 1 and n = 2,
respectively:

V 1(3) =





...
...

x1 x2 x3
...

...



 and V 2(3) =





...
...

x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

...
...



 ,

we obtain rank(V 1(3)) = 2 < 3 and rank(V 2(3)) = 2 < 6.15 Therefore, we
cannot determine the number of subspaces as the degree n such that the ma-
trix V n(D) drops rank (as we did in Section 3.2.3 for the case of hyperplanes),
because we would obtain n = 1 which is not the correct number of subspaces.

How do we determine the correct number of subspaces in this case? As dis-
cussed in Section 3.1.2, a linear projection onto a low-dimensional subspace

15The reader is encouraged to verify these facts numerically and do the same for the examples in
the rest of this section.
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preserves the number and dimensions of the subspaces. In our example, if we
project the data onto the plane P = {x : x1 + x2 + x3 = 0} and then embed the
projected data we obtain

V 1(2) =





...
...

x1 x2
...

...



 and V 2(2) =





...
...

x2
1 x1x2 x2

2
...

...



 .

In this case rank(V 1(2)) = 2 �< 2, but rank(V 2(2)) = 2 < 3. Therefore, the first
time the matrix V n(d + 1) drops rank is when n = 2 and d = 1. This suggests
that, as we will formally show in Section 3.4.2, when the subspaces are of equal
dimension one can determine d and n as the minimum values for which there are
a projection onto a d + 1-dimensional subspace such that the matrix V n(d + 1)
drops rank.

Unfortunately, the situation is not so simple for subspaces of different dimen-
sions. Imagine now that in addition to the two lines S1 and S2 we are also given
data points on a plane S3 = {x : x1 + x2 = 0} (so that the overall configuration
is similar to that shown in Figure ??). In this case we have rank(V 1(3)) = 3 �< 3,
rank(V 2(3)) = 5 < 6, and rank(V 3(3)) = 6 < 10. Therefore, if we try to de-
termine the number of subspaces as the degree of the embedding for which the
embedded data matrix drops rank we would obtain n = 2, which is incorrect
again. The reason for this is clear: we can either fit the data with one polynomial
of degree n = 2, which corresponds to the plane S3 and the plane P spanned by
the two lines, or we can fit the data with four polynomials of degree n = 3, which
vanish precisely on the two lines S1, S2, and the plane S3.

In cases like this, one needs to resort to a more sophisticated algebraic process
to identify the correct number of subspaces. As in the previous example, we can
first search for the minimum degree n and dimension d such that V n(d+1) drops
rank. In our example, we obtain n = 2 and d = 2. By applying the GPCA algo-
rithm to this data set we will partition it into two planes P and S3. Once the two
planes have been estimated, we can reapply the same process to each plane. The
plane P will be separated into two lines S1 and S2, as described in the previous
example, while the plane S3 will remain unchanged. This recursive process stops
when every subspace obtained can no longer be separated into lower-dimensional
subspaces. We will a more detailed description of this Section 3.4.3.

3.4.2 Segmenting Subspaces of Equal Dimension
In this section, we derive explicit formulae for the number of subspaces n and
their dimensions {dj} in the case of subspaces of equal dimension d = d1 = d2 =
· · · = dn. Notice that this is a generalized version to the two-lines example that we
discussed in the previous section. In the literature, arrangements of subspaces of
equal dimensions are called pure arrangements. This type of arrangements are im-
portant for a wide range of applications in computer vision [Costeira and Kanade,
1998,Kanatani, 2002,Vidal and Ma, 2004], pattern recognition [Belhumeur et al.,
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1997, Vasilescu and Terzopoulos, 2002], as well as identification of hybrid linear
systems [Overschee and Moor, 1993, Ma and Vidal, 2005].

Theorem 3.12 (Subspaces of Equal Dimension). Let {xi}
N
i=1 be a given collec-

tion of N ≥ Mn(d + 1) − 1 sample points lying in n different d-dimensional
subspaces of RD. Let V j(�+1) ∈ RN×Mj(�+1) be the embedded data matrix de-
fined in (3.28), but computed with the Veronese map νj of degree j applied to the
data projected onto a generic (� + 1)-dimensional subspace of RD. If the sample
points are in general position and at least d points are drawn from each subspace,
then the dimension of the subspaces is given by:

d = min{� : ∃ j ≥ 1 such that rank(V j(� + 1)) < Mj(� + 1)}, (3.47)

and the number of subspaces can be obtained as:

n = min{j : rank(V j(d + 1)) = Mj(d + 1)− 1}. (3.48)

Proof. For simplicity, we divide the proof into the following three cases:

Case 1: d known

Imagine for a moment that d was known, and that we wanted to compute n only.
Since d is known, following our analysis in Section 3.1.2, we can first project
the data onto a (d + 1)-dimensional space P ⊂ RD so that they become n
d-dimensional hyperplanes in P (see Theorem 3.5). Now compute the matrix
V j(d + 1) as in (3.28) by applying the Veronese map of degree j = 1, 2, . . .
to the projected data. From our analysis in Section 3.2.3, there is a unique poly-
nomial of degree n representing the union of the projected subspaces and the
coefficients of this polynomial must lie in the null space of V n(d + 1). Thus,
given N ≥ Mn(d + 1) − 1 points in general position, with at least d points in
each subspace, we have that rank(V n(d + 1)) = Mn(d + 1) − 1. Furthermore,
there cannot be a polynomial of degree less than n that is satisfied by all the data,16

hence rank(V j(d + 1)) = Mj(d + 1) for j < n. Consequently, if d is known, we
can compute n by first projecting the data onto a (d + 1)-dimensional space and
then obtain

n = min{j : rank(V j(d + 1)) = Mj(d + 1)− 1}. (3.49)

Case 2: n known

Consider now the opposite case in which n is known, but d is unknown. Let
V n(� + 1) be defined as in (3.28), but computed from the data projected onto a
generic (� + 1)-dimensional subspace of RD. When � < d, we have a collection
of (� + 1)-dimensional subspaces in an (� + 1)-dimensional space, which implies
that V n(� + 1) must be full rank. If � = d, then from equation (3.49) we have
that rank(V n(� + 1)) = Mn(� + 1) − 1. When � > d, then equation (3.28) has

16This is guaranteed by the algebraic sampling theorem in Appendix B.
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more than one solution, thus rank(V n(� + 1)) < Mn(� + 1)− 1. Therefore, if n
is known, we can compute d as

d = min{� : rank(V n(� + 1)) = Mn(� + 1)− 1}. (3.50)

Case 3: n and d unknown

We are left with the case in which both n and d are unknown. As before, if � < d
then V j(�+1) is full rank for all j. When � = d, V j(�+1) is full rank for j < n,
drops rank by one if j = n and drops rank by more than one if j > n. Thus one
can set d to be the smallest integer � for which there exist an j such that V j(�+1)
drops rank, that is

d = min{� : ∃j ≥ 1 such that rank(V j(� + 1)) < Mj(� + 1)}.

Given d one can compute n as in equation (3.49).

Therefore, in principle, both n and d can be retrieved if sufficient data points
are drawn from the subspaces. The subspace-segmentation problem can be subse-
quently solved by first projecting the data onto a (d+1)-dimensional subspace and
then applying the GPCA algorithm (Algorithm 3.4) to the projected data points.

In the presence of noise, one may not be able to estimate d and n from from
equations (3.47) and (3.48), respectively, because the matrix V j(� + 1) may be
full rank for all j and �. As before, we can use the criterion (2.48) of Chapter 2
to determine the rank of V j(� + 1). However, in practice this requires to search
for up to possibly (D − 1) values for d and �N/(D − 1)� values for n. In our
experience, the rank conditions work well when either d or n are known. There
are still many open issues in the problem of finding a good search strategy and
model selection criterion for n and k when both of them are unknown. Some of
these issues will be discussed in more detail in Chapter ??

3.4.3 Segmenting Subspaces of Different Dimensions
In this section, we consider the problem of segmenting an unknown number of
subspaces of unknown and possibly different dimensions from sample points.

First of all, we notice that the simultaneous recovery of the number and dimen-
sions of the subspaces may be an ill-conditioned problem if we are not clear about
what we are looking for. For example, in the extreme cases, one may interpret the
sample set X as N 1-dimensional subspaces, with each subspace spanned by each
one of the sample points x ∈ X; or one may view the whole X as belonging to
one D-dimensional subspace, i.e., RD itself.

Although the above two trivial solutions can be easily rejected by imposing
some conditions on the solutions,17 other more difficult ambiguities may also arise

17To reject the N -lines solution, one can put a cap on the maximum number of groups nmax; and
to reject RD as the solution, one can simply require that the maximum dimension of every subspace
is strictly less than D.
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in cases such as that of Figure ?? in which two lines and a plane can also be
interpreted as two planes. More generally, when the subspaces are of different
dimensions one may not be able to determine the number of subspaces directly
from the degree of the polynomials fitting the data, because the degree of the
polynomial of minimum degree that fits a collection of subspaces is always less
than or equal to the number of subspaces.

To resolve the difficulty in determining the number and dimension of sub-
spaces, notice that the algebraic set ZA = ∪n

j=1Sj can be decomposed into
irreducible subsets Sj’s – an irreducible algebraic set is also called a variety. The
decomposition of Z into {S1, S2, . . . , Sn} is always unique. Therefore, as long
as we are able to correctly determine from the given sample points the underlying
algebraic set ZA or the associated (radical) ideal I(ZA), in principle the num-
ber of subspaces n and their dimensions {d1, d2, . . . , dn} can always be uniquely
determined in a purely algebraic fashion. In Figure ??, for instance, the first in-
terpretation (2 lines and 1 plane) would be the right one and the second one (2
planes) would be incorrect, because the two lines, which span one of the planes,
is not an irreducible algebraic set.

Having established that the problem of subspace segmentation is equivalent to
decomposing the algebraic ideal associated with the subspaces, we are left with
deriving a computable scheme to achieve the goal.

From every homogeneous component Ii of

I(ZA) = Im ⊕ Im+1 ⊕ · · ·⊕ In ⊕ · · · ,

we may compute a subspace arrangement Zi such that ZA ⊆ Zi is a subspace
embedding (see Section C.2). For each i ≥ m, we can evaluate the derivatives of
polynomials in Ii on subspace Sj and denote the collection of derivatives as

Di,j
.= ∪x∈Sj{∇f |x, ∀f ∈ Ii}, j = 1, 2, . . . , n. (3.51)

Obviously, we have the following relationship:

Di,j ⊆ Di+1,j ⊆ S⊥j , ∀i ≥ m. (3.52)

Then for each Ii, we can define a new subspace arrangement as

Zi
.= D⊥

i,1 ∪D⊥
i,2 ∪ · · · ∪D⊥

i,n. (3.53)

Notice that it is possible that Di,j = Di,j� for different j and j� and Zi con-
tains less than n subspaces. We summarize the above derivation as the following
theorem.

Theorem 3.13 (A Filtration of Subspace Arrangements). Let I(ZA) = Im ⊕

Im+1 ⊕ · · ·⊕ In ⊕ · · · be the ideal of a subspace arrangement ZA. Let Zi be the
subspace arrangement defined by the derivatives of Ii, i ≥ m as above. Then we
obtain a filtration of subspace arrangements:

Zm ⊇ Zm+1 ⊇ · · · ⊇ Zn = ZA,

and each subspace of ZA is embedded in one of the subspaces of Zi.
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The above theorem naturally leads to a recursive scheme that allows us to de-
termine the correct number and dimensions of the subspaces in ZA. Specifically,
we start with n = 1 and increase n until there is at least one polynomial of degree
n fitting all the data, i.e., until the matrix V n(D) drops rank for the first time.
For such an n, we can use Algorithm 3.4 to separate the data into n subspaces.
Then we can further separate each one of these n groups of points using the same
procedure. The stopping criterion for the recursion is when all the groups cannot
be further separated or the number of groups n reaches some nmax.18

3.5 Model Selection for Multiple Subspaces

However, if the data points in the sample set X are corrupted by random noise,
the above recursive scheme may fail to return a meaningful solution. In fact, up till
now, we have been purposely avoiding a fundamental difficulty in our problem:
it is inherently ambiguous in fitting multiple subspaces for any given data set,
especially if the number of subspaces and their dimensions are not given a priori.
When the sample points in X are noisy or are in fact drawn from a nonlinear
manifold, any multi-subspace model unlikely will fit the data perfectly except for
the pathological cases: 1. All points are viewed as in one D-dimensional subspace
– the ambient space; 2. Every point is viewed as in an individual one-dimensional
subspace. In general, the more the number of planes we use, the higher accuracy
may we achieve in fitting any given data set. Thus, a fundamental question we
like to address in this section is:

Among a class of subspace arrangements, what is the “optimal”
model that fits a given data set?

From a practical viewpoint, we also need to know under what conditions the
optimal model exists and is unique, and more importantly, how to compute it
efficiently.

In Appendix C, we have seen that in general, any model selection criterion
aims to strike a balance between the complexity of the resulting model and the
fidelity of the model to the given data. However, its exact form often depends on
the class of models of interest as well as how much information is given about the
model in advance. If we were to apply any of the model-selection criteria (or their
concepts) to subspace arrangements, at least two issues need to be addressed:

1. We need to know how to measure the model complexity of arrangements
of subspaces (possibly of different dimensions).

2. As the choice of a subspace arrangement involves both continuous parame-
ters (the subspace bases) and discrete parameters (the number of subspaces

18For example, the inequality Mn(D) ≤ N imposes a constraint on the maximum possible number
of groups nmax.
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and their dimensions), we need to know how to properly balance the model
complexity and the modeling error for subspace arrangements.

In the rest of this section, we provide a specific model selection criterion for sub-
space arrangements. The most fundamental idea behind the proposed criterion is
that the optimal model should lead to the most compact or sparse representation
for the data set.

3.5.1 Effective Dimension of Samples of Multiple Subspaces
Definition 3.14 (Effective Dimension). Given an arrangement of n subspaces
ZA

.= ∪n
j=1Sj in RD of dimension dj < D, and Nj sample points Xj drawn

from each subspace Sj , the effective dimension of the entire set of N =
�n

j=1 Nj

sample points, X = ∪n
j=1Xj , is defined to be:

ED(X, ZA) .=
1
N

� n�

j=1

dj(D − dj) +
n�

j=1

Njdj

�
. (3.54)

We contend that ED(X, ZA) is the “average” number of (unquantized) real
numbers that one needs to assign to X per sample point in order to specify the
configurations of the n subspaces and the relative locations of the sample points in
the subspaces. In the first term of equation (3.54), dj(D− dj) is the total number
of real numbers (known as the Grassmannian coordinates19) needed to specify a
dj-dimensional subspace Sj in RD; in the second term of (3.54), Njdj is the total
number of real numbers needed to specify the dj coordinates of the Nj sample
points in the subspace Sj . In general, if there are more than one subspace in ZA,
ED(X, ZA) can be a rational number, instead of an integer for the conventional
dimension.

Notice that we here choose real numbers as the basic “units” for measuring
complexity of the model in a similar fashion in the theory of sparse representation.
Indeed, if the set of basis vectors of the subspaces are given, the second term
of the effective dimension is essentially the sum of �0 norm of the data points
each represented as a linear combination of the bases. In general, the existence
of sparse linear representation always relies on the fact that the underlying model
is an arrangement of a large number of subspaces. Of course, the compactness
of the model can potentially be measured by more accurate units other than real
numbers. Binary numbers, or “bits,” have traditionally been used in information
theory for measuring the complexity of a data set. We will thoroughly examine
that direction in the next chapter and will subsequently reveal the relationships
among different measures such as �0 norm, �1 norm, and (binary) coding length.

19Notice that to represent a d-dimensional subspace in a D-dimensional space, we only need to
specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows
of a d × D matrix. Any nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the normal form [Id×d, G]
where G is a d× (D − d) matrix consisting of the so-called Grassmannian coordinates.
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In the above definition, the effective dimension of X depends on the subspace
arrangement ZA. This is because in general, there could be many subspace struc-
tures that can fit X . For example, we could interpret the whole data set as lying in
one D-dimensional subspace and we would obtain an effective dimension D. On
the other hand, we could interpret every point in X as lying in a one-dimensional
subspace spanned by itself. Then there will be N such one-dimensional subspaces
in total and the effective dimension, according to the above formula, will also be
D. In general, such interpretations are obviously somewhat redundant. Therefore,
we define the effective dimension of a given sample set X to be the minimum one
among all possible models that can fit the data set:20

ED(X) .= min
ZA:X⊂ZA

ED(X, ZA). (3.55)

Example 3.15 (Effective Dimension of One Plane and Two Lines). Figure ?? shows data
points drawn from one plane and two lines in R3. Obviously, the points in the two lines
can also be viewed as lying in the plane that is spanned by the two lines. However, that
interpretation would result in an increase of the effective dimension since one would need
two coordinates to specify a point in a plane, as opposed to one in a line. For instance,
suppose there are fifteen points in each line; and thirty points in the plane. When we use
two planes to represent the data, the effective dimension is: 1

60 (2× 2× 3− 2× 22 + 60×
2) = 2.07; when we use one plane and two lines, the effective dimension is reduced to:
1
60 (2× 2× 3− 22

− 2× 1 + 30× 1 + 30× 2) = 1.6. In general, if the number of points
N is arbitrarily large (say approaching to infinity), depending on the distributions of points
on the lines or the plane, the effective dimension can be anything between 1 and 2, the true
dimensions of the subspaces.

As suggested by the above example, the arrangement of subspaces that lead
to the minimum effective dimension normally corresponds to a “natural” and
hence compact representation of the data in the sense that it achieves the best
compression (or dimension reduction) among all possible multiple-subspace
models.

3.5.2 Minimum Effective Dimension of Noisy Samples
In practice, real data are corrupted with noise, hence we do not expect that the
optimal model fits the data perfectly. The conventional wisdom is to strike a good
balance between the complexity of the chosen model and the data fidelity (to the
model). See Appendix A.4 for a more detailed discussion about numerous model
selection criteria. To measure the data fidelity, let us denote the projection of each
data point xi ∈ X to the closest subspace as x̂i and let X̂ = {x̂i}. Then, the

20The space of subspace arrangements is topologically compact and closed, hence the minimum
effective dimension is always achievable and hence well-defined.
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total error residual can be measured by:

�X − X̂�
2 =

N�

i=1

�xi − x̂i�
2. (3.56)

As all model-selection criteria exercise the same rationale as above, we here
adopt the geometric-AIC (GAIC) criterion (2.51)21 and it leads to the following
objective for selecting the optimal multiple-subspace model:

Z∗A = arg min
ZA:X̂⊂ZA

1
N
�X − X̂�

2 + 2σ2ED(X̂, ZA), (3.57)

where σ2 is the noise variance of the data. However, this optimization problem
can be very difficult to solve: The variance σ2 might not be known a priori
and we need to search for the global minimum in the configuration space of all
subspace arrangements, which is not a smooth manifold and has very compli-
cated topological and geometric structures. The resulting computation is typically
prohibitive.

To alleviate some of the difficulty, in practice, we may instead minimize the ef-
fective dimension subject to a maximum allowable error tolerance. That is, among
all the multiple-subspace models that fit the data within a given error bound, we
choose the one with the smallest effective dimension. To this end, we define the
minimum effective dimension subject to an error tolerance τ as:

MED(X, τ) .= min
ZA

ED(X̂, ZA) s.t. �X − X̂�∞ ≤ τ, (3.58)

where X̂ is the projection of X onto the subspaces in ZA and the error norm �·�∞
indicates the maximum norm: �X−X̂�∞ = max1≤i≤N �xi−x̂i�. Based on the
above definition, the effective dimension of a data set is then a notion that depends
on the error tolerance. In the extreme, if the error tolerance is arbitrarily large, the
“optimal” subspace-model for any data set can simply be the (zero-dimensional)
origin; if the error tolerance is zero instead, for data with random noise, each
sample point needs to be treated as a one-dimensional subspace in RD of its own
and that brings the effective dimension up close to D.

In many applications, the notion of maximum allowable error tolerance is par-
ticularly relevant. For instance, in image representation and compression, the task
is often to find a linear or hybrid linear model to fit the imagery data subject to
a given peak signal to noise ratio (PSNR).22 The resulting effective dimension
directly corresponds to the number of coefficients needed to store the resulting
representation. The smaller the effective dimension is, the more compact or com-
pressed is the final representation. In Chapter ??, we will see exactly how the
minimum effective dimension principle is applied to image representation. The

21We here adopt the GAIC criterion only to illustrate the basic ideas. In practice, depending on the
problem and application, it is possible that other model selection criteria may be more appropriate.

22In this context, the noise is the different between the original image and the approximate image
(the signal).
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same principle can be applied to any situation in which one tries to fit a piecewise
linear model to a data set whose structure is nonlinear or unknown.

3.5.3 The Recursive GPCA Algorithm
Unlike the geometric AIC (3.57), the MED objective (3.58) is relatively easy to
achieve. For instance, the recursive GPCA scheme that we have discussed earlier
at the end of Section 3.4.3 can be easily modified to minimize the effective di-
mension subject to an error tolerance: we allow the recursion to proceeds only if
the effective dimension would decrease while the resulting subspaces still fit the
data with the given error bound.

To summarize the above discussions, in principle we can use the following
algorithm to recursively identify subspaces in an arrangement ZA from a set of
noisy samples X = {x1,x2, . . . ,xN}.

Algorithm 3.5 (Recursive GPCA).

Given a set of samples X = {x1,x2, . . . ,xN} in the ambient space RD, find a
set of subspaces that fit X subject to an error τ > 0:

1: for all k = 1 : nmax do
2: Set V k(D) .= [νk(x1), νk(x2), . . . , νk(xN )]T ∈ RMk(D)×N .
3: if rank(V k(D)) < Mk(D) then
4: Use the GPCA Algorithm 3.4 to partition X into k subsets X1, . . . ,Xk.

5: Apply PCA and fit each Xj with a subspace Sj of dimension dj , subject
to the error τ . Let Z = S1 ∪ · · · ∪ Sk.

6: if ED(X, Z) < D then
7: for j = 1 : k do
8: Apply Recursive GPCA for Xj (with Sj as the ambient space).
9: end for

10: else
11: Break.
12: end if
13: else
14: k ← k + 1.
15: end if
16: end for

Figure 3.7 demonstrates the result of the Recursive GPCA algorithm segment-
ing synthetic data drawn from two lines (100 points each) and one plane (400
points) in R3 corrupted with 5% uniform noise (Figure 3.7 top-left). Given a rea-
sonable error tolerance, the algorithm stops after two levels of recursion (Figure
3.7 top-right). Note that the pink line (top-right) or group 4 (bottom-left) is a
“ghost” line at the intersection of the original plane and the plane spanned by
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the two lines.23 Figure 3.7 bottom-right is the plot of MED of the same data set
subject to different levels of error tolerance. As we see, the effective dimension
decreases monotonically with the increase of error tolerance.
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Figure 3.7. Simulation results. Top-left: sample points drawn from two lines and a plane
in R3 with 5% uniform noise; Top-right: the process of recursive segmentation by the
Recursive GPCA algorithm 3.5 with the error tolerance τ = 0.05; Bottom-left: group
assignment for the points; Bottom-right: plot of MED versus error tolerance.

Be aware that when the data is noisy, it sometimes can be very difficult to
determine the correct dimension of the null space of the matrix V n(D) from
its singular-value spectrum. If the dimension is wrongfully determined, it may
result in either under-estimating or over-estimating the number of fitting poly-
nomials. In general, if the number of polynomials were under-estimated, the
resulting subspaces would over-fit the data;24 and if the number of polynomials
were over-estimated, the resulting subspaces would under-fit the data.

23This is exactly what we would have expected since the recursive GPCA first segments the data
into two planes. Points on the intersection of the two planes get assigned to either plane depending on
the random noise. If needed, the points on the ghost line can be merged with the plane by some simple
post-processing.

24That is, the dimensions of some of the subspaces estimated could be larger than the true ones.
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Obviously, both over-fitting and under-fitting result in incorrect estimates of
the subspaces. However, do they necessarily result in equally bad segmentation
of the data? The answer is no. Between over-fitting and under-fitting, we actu-
ally would favor over-fitting. The reason is that, though over-fitting results in
subspaces that are larger than the original subspaces, but it is a zero-measure
event that any over-estimated subspace contains simultaneously more than one
original subspace. Thus, the grouping of the data points may still be correct. For
instance, consider the extreme case that we choose only one polynomial that fits
the data, then the derivatives of the polynomial, evaluated at one point per sub-
space, lead to n hyperplanes. Nevertheless, these over-fitting hyperplanes will in
general result in a correct grouping of the data points. One can verify this with the
introductory example we discussed in Section 3.3.1. Either of the two polynomi-
als p21(x) = x1x3 and p22(x) = x2x3 leads to two hyperplanes that segment the
line and the plane correctly.

3.6 Bibliographic Notes

GPCA Algorithms and Extensions

The difficulty with initialization for the iterative clustering algorithms that we
have presented in the previous chapter has motivated the recent development of
algebro-geometric approaches to subspace segmentation that do not require ini-
tialization. [Kanatani, 2001, Boult and Brown, 1991, Costeira and Kanade, 1998]
demonstrated that when the subspaces are orthogonal, of equal dimensions, and
with trivial intersection, one can use the SVD of the data to define a similarity
matrix from which the segmentation of the data can be obtained using spectral
clustering techniques. Unfortunately, this method is sensitive to noise in the data,
as pointed out in [Kanatani, 2001, Wu et al., 2001], where various improvements
are proposed. When the intersection of the subspaces is nontrivial, the segmen-
tation of the data is usually obtained in an ad-hoc fashion again using clustering
algorithms such as K-means. A basis for each subspace is then obtained by ap-
plying PCA to each group. For the special case of two planes in R3, a geometric
solution was developed by [Shizawa and Mase, 1991] in the context of segmenta-
tion of 2-D transparent motions. In the case of subspaces of co-dimension one, i.e.,
hyperplanes, an algebraic solution was developed by [Vidal et al., 2003], where
the hyperplane clustering problem is shown to be equivalent to homogeneous
polynomial factorization.

The GPCA algorithm for the most general case25 was later developed in [Vidal
et al., 2004]; and the decomposition of the polynomial(s) was based on differ-
entiation, a numerically better-conditioned operation. The GPCA algorithm was
successfully applied to solve the motion segmentation problem in computer vi-

25That is, an arbitrary number of subspaces of arbitrary dimensions.
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sion [Vidal and Ma, 2004]. The generalization to arrangements of both linear and
quadratic surfaces was first studied by [Rao et al., 2005].

Algebraic Properties of Subspace Arrangements

The importance of using subspace arrangements to model real-world high-
dimensional data and the early success of the basic GPCA algorithms had
motivated mathematicians to provide a more thorough characterization of sub-
space arrangements in terms of their vanishing ideals. A complete characterization
of the Hilbert functions of the ideals for subspace arrangements was given by
[Derksen, 2005], which serves as the theoretical foundation for this chapter. In
Appendices B and C, we have sketched the basic algebraic concepts, results, and
additional references about subspace arrangements. One may also refer to [Ma
et al., 2008] for a comprehensive review on recent developments of this topic.

Effective Dimension and Sparsity

The notion of minimum Effective Dimension was first introduced in the context
of recursive GPCA in [Huang et al., 2004]. We now understand that Effective Di-
mension is essentially a parsity measure in terms of �0-norm. Incidentally, that is
the same year David Donoho published his landmark paper on sparse representa-
tion, revealing the remarkable equivalence between �0 and �1 minimization. We
will have a more detailed discussion about this connection in Section ??, after we
have examined yet another measure, coding length, for the compactness of a data
set for a model.

Robustness and Outlier Rejection

There have been many work on the estimation of polynomials that best fit a given
set of noisy samples. In Exercise 3.7, we will study one such approach that works
well in the context of GPCA. The approach essentially follows that of [Taubin,
1991].

If there are also outliers in the given sample set, the problem becomes a more
difficult robust model estimation problem. There is vast body of literature on ro-
bust statistics, see Appendix A.5 for a brief review. Sample influence is always
believed to be an important index for detecting outliers. Certain first order ap-
proximations of the influence value were developed at roughly the same period
as the sample influence function was proposed [Campbell, 1978,Critchley, 1985],
when the computational resource was scarcer than it is today. In the literature,
formulae that approximate an influence function are referred to as theoretical in-
fluence functions. Usually, the percentage of outliers can be determined by the
influence of the candidate outliers on the model estimated [Hampel et al., 1986].

In the basic GPCA algorithm 3.4, we see that the key is to be able to ro-
bustly estimate the covariance of the samples in the lifted space, i.e. the matrix
V n(D)T V n(D). Among the class of robust covariance estimators (see Appendix
A.5), the multivariate trimming (MVT) method [Gnanadesikan and Kettenring,
1972] has always been one of the most popular for practitioners, probably because
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of its computational efficiency for high-dimensional data as well as its tolerance
of large percentage of outliers. It application to GPCA is posed as Exercise 3.9.

Random sampling techniques such as the least median estimate (LME)
[Hampel, 1974, Rousseeuw, 1984] and random sampling consensus (RANSAC)
[Fischler and Bolles, 1981] have been widely used in many engineering areas, es-
pecially in pattern recognition and computer vision [Stewart, 1999]. They are very
effective when the model is relatively simple. For instance, RANSAC is known
to be very effective in making the classic PCA robust, i.e. estimating a single
subspace in the presence of outliers. However, if there are multiple subspaces,
RANSAC is known to work well in the case when the dimension of all the sub-
spaces are the same [?]. If the subspace dimensions have different dimensions, a
Monte Carlo scheme can be used to estimate one subspace at a time [Torr and
Davidson, 2003, Schindler and Suter, 2005]. However, the performance degrades
very quickly with the increase of the number of subspaces and the percentage
of outliers. This has been observed in the careful experimental comparison done
by [?]. GPCA combined with MVT was shown to perform generally better on
most of the simulated data sets.

In the next chapter, we are going to see an entirely new approach to clus-
tering data from multiple subspaces. Rather than fitting a global model to the
arrangement or one model for each subspace, the new method forms subspace-
like clusters by merging one sample point at a time. As we will see, one distinctive
feature of such an agglomerative approach is its striking ability to handle high
percentage of outliers, far more robust than the methods we have discussed or
exercised so far.

3.7 Exercises

Exercise 3.1 (Clustering Points in a Plane). Describe how Algorithm 3.1 can also be
applied to a set of points in the plane {xi ∈ R2

}
N
i=1 that are distributed around a collection

of cluster centers {µj ∈ R2
}

n
j=1 by interpreting the data points as complex numbers:

{z
.
= x+ y

√
−1 ∈ C}. In particular, discuss what happens to the coefficients and roots of

the fitting polynomial pn(z).

Exercise 3.2 (Connection of Algebraic Clustering with Spectral Clustering). Spectral
clustering is a very popular data clustering method. In spectral clustering, one is given a set
of N data points (usually in a multi-dimensional space) and an N ×N pairwise similarity
matrix S = (sij). The entries sij of S measure the likelihood of two points belonging to
the same cluster: sij → 1 when points i and j likely belong to the same group and sij → 0
when points i and j likely belong to different groups.

1. First examine the special case in which the N data points have two clusters and the
similarity matrix S is ideal: That is, sij = 1 if and only if points i and j belong
to the same cluster and sij = 0 otherwise. What do the eigenvectors of S look
like, especially the one(s) that correspond to nonzero eigenvalue(s)? Argue how the
entries of the eigenvectors encode information about the membership of the points.

2. Generalize your analysis and conclusions to the case of n clusters.
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3. Show how Algorithm 3.1 can be used to cluster the points based on the eigenvector
of the similarity matrix. Based on Exercise 3.1, show how to cluster the points by
using two eigenvectors simultaneously.

Since many popular image segmentation algorithms are based on spectral clustering (on
certain similarity measure between pixels), you may use the above algorithm to improve
the segmentation results.

Exercise 3.3 (Level Sets and Normal Vectors). Let f(x) : RD
→ R be a smooth func-

tion. For any constant c ∈ R, the set Sc
.
= {x ∈ RD

|f(x) = c} is called a level set of
the function f . Sc is in general a D − 1 dimensional submanifold. Show that if �∇f(x)�
is nonzero at a point x0 ∈ Sc, then the gradient ∇f(x0) ∈ RD at x0 is orthogonal to any
tangent vectors of the level set Sc.

Exercise 3.4 (Hyperplane Embedding from a Single Polynomial). Consider a subspace
arrangement ZA = S1 ∪S2 ∪ · · ·∪Sn ⊂ RD . f(x) is a polynomial that vanishes on ZA.
Show that if we differentiate f(x) at points on ZA, we always obtain an arrangement of
hyperplanes that contain ZA.

Exercise 3.5 (Multiple GPCA). For each f = 1, 2, . . . , F , let {xfi ∈ RD
}

N
i=1 be a

collection of N points lying in n hyperplanes with normal vectors {bfj}
n
j=1. Assume

that x1i, x2i, . . . , xFi correspond to each other, i.e., for each i = 1, 2, . . . , N there is
a j = 1, 2, . . . , n such that for all f = 1, 2, . . . , F , we have b�fjx1i = 0. Propose an
extension of the GPCA algorithm that computes the normal vectors in such a way that
b1j , b2j , . . . bFj correspond to each other.

Hint: If pfn(x) = c�f νn(x) = (b�f1x)(b�f2x) · · · (b�fnx) and the ith set of points
x1i, x2i, . . . , xFi corresponds to the jth group of hyperplanes, then bfj ∼ ∇pfn(xfi).

Exercise 3.6 Implement the basic GPCA Algorithm 3.4 and test the algorithm for different
subspace arrangements with different levels of noise.

Exercise 3.7 (Estimating Vanishing Polynomials). In the next two exercises, we study
two ways of estimating the vanishing polynomials of a subspace arrangement from noisy
samples. Since the data are noisy, a sample point x is only close to the zero set of the fitting
polynomials P (x) = [p1(x), p2(x), . . . , pm(x)]T . Let x̂ be the closest point to x on the
zero set of P (x).

1. Show that the approximate square distance from x to x̂ is given by

�x− x̂�2 ≈ P (x)T `
DP (x)DP (x)T ´†

P (x). (3.59)

This distance is known as the Sampson distance. From this to conclude that, given a
set of sample points X = {x1, . . . , xN}, in order to minimize the mean square
fitting error, 1

N

PN
i=1 �xi − x̂i�

2
2, we can approximately minimize the average

Sampson distance

1
N

NX

i=1

P (xi)
T `

DP (xi)DP (xi)
T ´†

P (xi) (3.60)

2. However, since for any non-singular matrix M ∈ Rm×m, P̃ (x) = MP (x) define
the same zero set. Show that, in order to reduce this redundancy, we can normalize
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the following matrix to an identity:

1
N

NX

i=1

DP (xi)DP (xi)
T = Im×m. (3.61)

Thus, the problem of minimizing the average Sampson distance now becomes a
constrained optimization problem:

P
∗ = arg minP

1
N

PN
i=1 P (xi)

T
`
DP (xi)DP (xi)

T
´†

P (xi),
subject to 1

N

PN
i=1 DP (xi)DP (xi)

T = Im×m.
(3.62)

3. Since the average of DP (xi)DP (xi)
T is an identity, we can approximate each by

an identity too. Then, the above problem becomes:

P
∗ = arg minP

1
N

PN
i=1 �P (xi)�

2
,

subject to 1
N

PN
i=1 DP (xi)DP (xi)

T = Im×m.
(3.63)

Now show that the vector of coefficients of each polynomial in P
∗ is a generalized

eigenvector for a properly defined pair of matrices W and B. That is, they are
solutions c∗i to the following equation:

Wc∗i = λiBc∗i , i = 1, 2, . . . , m. (3.64)

Exercise 3.8 (Fisher Discriminant Analysis for Subspaces). We now illustrate how con-
cepts from discriminant analysis can be adopted to estimate better fitting polynomials. We
use an arrangement of hyperplanes to demonstrate the basic ideas. In this case, the fitting
polynomial as the form:

p(x) =
nY

j=1

`
bT

j x
´

= cT
νn(x) = 0 (3.65)

with n the number of (different) hyperplanes and bj the normal vector to the jth plane.
In this case, it is very easy to find the coefficient vector c as the kernel of the data matrix
V n(D) is only one-dimensional.

1. In the presence of noise, it is likely that p(x) �= 0, but we would like to find the
coefficient vector c that minimizes the following average least-square fitting error
1
N

PN
i=1 |p(xi)|

2. Show that the solution c∗ is the eigenvector associated with the
smallest eigenvalue of the matrix:

W
.
=

“ 1
N

V n(D)T V n(D)
”
. (3.66)

In the spirit of discriminant analysis, the matrix W will be called the within-
subspace scatter matrix.

2. Let us examine the derivative of the polynomial at each of the data samples. Let
x1 ∈ S1. Show that the norm of the derivative∇p(x1) is

‚‚∇p(x1)
‚‚2

=
˛̨
˛
“ nY

j=2

bT
j x1

”˛̨
˛
2
. (3.67)

Thus, the average of the quantity �∇p(x1)�
2 over all x1 in S1 gives a good mea-

sure of “distance” from S1 to
Sn

j=2 Sj , the union of the other subspaces. For the
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segmentation purpose, we would like to find the coefficient vector c that maximizes
the following quantity:

max
1
N

NX

i=1

‚‚∇p(xi)
‚‚2

= cT
“ 1

N

NX

i=1

∇νn(xi)∇νn(xi)
T

”
c

.
= cT

Bc. (3.68)

In the spirit of discriminant analysis, we will call B the between-subspace scatter
matrix.

3. Therefore, we would like to seek a fitting polynomial that simultaneously minimizes
the polynomial evaluated at each of the samples while maximizing the norm of the
derivative at each point. This can be achieve by minimizing the ratio of these two
metrics:

c∗ = arg min
c

cT
Wc

cT Bc
. (3.69)

Show that the solution to this problem is given by the generalized eigenvector c that
is associated with the smallest generalized eigenvalue λ of (W, B):

Wc = λBc. (3.70)

In the case when B is non-singular, c is simply the eigenvector of B
−1

W associated
with the smallest eigenvalue.

Exercise 3.9 (Robust Estimation of Fitting Polynomials). We know that samples from
an arrangement of n subspaces, their Veronese lifting all lie on a single subspace
span(V n(D)). The coefficients of the fitting polynomials are simply the null space of
V n(D). If there is noise, the lifted samples approximately span a subspace and the coef-
ficients of the fitting polynomials are eigenvectors associated with the small eigenvalues
of V n(D)T V n(D). However, if there are outliers, the lifted samples together no longer
span a subspace. Notice that this is the same situation that robust statistical techniques
such as multivariate trimming (MVT) are designed to deal with. See Appendix A.5 for
more details. In this exercise, show how to combine MVT with GPCA so that the result-
ing algorithm will be robust to outliers. Implement your scheme and find out the highest
percentage of outliers that the algorithm can handle (for various subspace arrangements).
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Chapter 4
Iterative Methods for
Multiple-Subspace Segmentation

“Statistics in the hands of an engineer are like a lamppost to a drunk
– they’re used more for support than illumination.”

– A.E. Housman

We will first review some basic concepts and existing iterative algorithms for
clustering multivariate data, i.e. the K-means algorithm and the Expectation Max-
imization (EM) algorithm. We then give a clear formulation of the problem in
which the clusters are subspaces and introduce the basic notation for representing
both linear and affine subspaces. We then customize the two algorithms so as to
segment a known number of subspaces with known dimensions. We point out the
advantages and disadvantages of these algorithms, particularly their sensitivity to
initialization.

4.1 Statistical Methods for Data Clustering

In clustering analysis, the basic assumption is that the given data points X =
{xi}

N
i=1 ⊂ RD are grouped into a number of clusters n ≤ N such that the

“distance” (or “dissimilarity”) among points in the same group is significantly
smaller than those between clusters. Thus the outcome of clustering analysis is a
map:

c(·) : i ∈ {1, 2, . . . , N} �→ j = c(i) ∈ {1, 2, . . . , n} (4.1)

that assigns each point xi to one of the n clusters. Obviously, the outcome of
the clustering very much depends on what the chosen measure of distance is.
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If the notion of distance is not clearly specified, the clustering problem can be
ill-defined. The following example shows some of the reasons.

Example 4.1 (No Invariant Clustering by the Euclidean Distance). If we always choose
the Euclidean distance, then the clustering result cannot be invariant under an arbitrary
linear transformation of the data points – usually representing a change of coordinates.
That is, if we replace xi with x�i = Axi for some non-singular matrix A ∈ RD×D , then
the clustering of {xi} and {x�i} will in general be different. This is easy to see with a
simple example. Suppose we need to cluster the N = 4 points in R2 as follows

x1 = [1, 10]T , x2 = [−1, 10]T , x3 = [1,−10]T , x4 = [−1,−10]T

into n = 2 clusters. The two clusters are obviously {x1, x2} and {x3, x4}. Now consider
two linear transformations A1 and A2 ∈ R2×2:

A1 =

»
100 0
0 1

–
, A2 =

»
10 0
0 10

– »
0 −1
1 0

–
=

»
0 −10
10 0

–
.

Applying the two maps to the original set of points, we obtain two new sets of points
{x�i = A1xi} and {x��i = A2xi}, respectively:

x�1 = [100, 10]T , x�2 = [−100, 10]T , x�3 = [100,−10]T , x�4 = [−100,−10]T ;

x��1 = [−100, 10]T , x��2 = [−100,−10]T , x��3 = [100, 10]T , x��4 = [100,−10]T .

As a set {x�i} is the same as {x��i }. However, the two clusters are {x�1, x�3} and {x�2, x�4}
for the first set; and {x��1 , x��2} and {x��3 , x��4} for the latter. In fact, regardless of the choice
of objective or method, it is always the case that the clustering result for one of the two
new sets will be different from that for the original set.

From the above example, we see that in order for the clustering result to be
invariant under a linear transformation, instead of always using the Euclidean
distance, one should properly adjust the distance measure after each linear trans-
formation of the data. To be more precise, let the length of a vector x ∈ RD be
measured by

�x�2Σ
.= xT Σ−1x (4.2)

for some positive-definite symmetric matrix Σ ∈ RD×D. Notice that Σ = ID×D

corresponds to the Euclidean length. Then after a linear transformation, x� = Ax
for some D ×D matrix A, the “induced” length of x� is defined to be

�x��2Σ� = (x�)T (Σ�)−1x� = (x�)T (AΣAT )−1x� = xT Σ−1x. (4.3)

Thus, the induced length remains the same after the transformation.
Notice that the relationship between Σ and Σ� = AΣAT is just like that

between the covariance matrices of two random vectors related by a linear trans-
formation A. Thus, the change of distance measure is equivalent to the assumption
that the original data {xi} are drawn from some probabilistic distribution. In the
context of data clustering, it is natural to further assume that the distribution itself
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is a mixture of n (Gaussian) distributions with different means and covariances:1

pj(x) ∼ N (µj ,Σj), j = 1, 2, . . . , n. (4.4)

Thus, the clustering problem becomes a statistical model estimation problem and
can be solved via statistical methods. We introduce below two such methods that
are based on two different estimation (and optimization) paradigms: 1. Minimax
estimate; 2. Maximum-likelihood estimate. In this section, we illustrate the basic
ideas using mixtures of Gaussians; but a discussion on more general cases can be
found in Appendix C.

4.1.1 K-Means
With respect to the above statistical model, a natural measure of the distance
between a sample point and the mean of a cluster is the Mahanalobis distance:

d(xi,µj)
.= �xi − µj�

2
Σj

, (4.5)

which is proportional to the (negative) log-likelihood of the sample. The map c∗(·)
that represents an optimal clustering of the data {xi} minimizes the following
“within-cluster scatter”:

min
c(·)

w(c) .=
1
N

n�

j=1

�

c(i)=j

�xi − µj�
2
Σj

. (4.6)

That is, w(c) is a measure of the average distance of all the sample points to their
respective cluster means. Notice that the minimum value of w(c) decreases with
the increase of the number n of clusters. In the extreme case n = N , i.e., each
point is a cluster itself, we have w(c) = 0. Therefore, before conducting clustering
analysis, it is very important to know the correct value of n. We will discuss
methods to determine n in later chapters; in this chapter, we always assume the
correct cluster number n is known.

In the above objective w(c) (4.6), c(·), {µj}, and {Σj} are all unknown. The
problem is how to find the optimal c∗(·), µ∗j and Σ∗j so that w(c) is minimized.
Unfortunately, there is no closed-form solution to the optimal estimates. The main
difficulty is that the objective (4.6) is hybrid – it is a combination of minimization
on the continuous variables {µj ,Σj} and the discrete variable c(i). Conventional
nonlinear optimization techniques, such as gradient descent, do not directly apply
to this case. Hence special optimization schemes have to be developed.

Notice that for w(c) to be minimum, it is necessary that each point xi is as-
signed to the cluster whose mean is the closest to xi. That is, given {µj ,Σj}, we
have

c(i) = arg min
j
�xi − µj�

2
Σj

. (4.7)

1From the viewpoint of subspaces, here we try to fit the data with multiple zero-dimensional affine
spaces (or points) – one point (the mean) for each cluster. Later in this Chapter, we will see how to
generalize the cluster means from points to arbitrary (affine) subspaces.
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Also, from the samples that belong to each cluster, we can obtain unbiased
estimates of the mean and covariance of the cluster:

µ̂j
.=

1
Nj

�

c(i)=j

xi ∈ RD, Σ̂j
.=

1
Nj − 1

�

c(i)=j

(xi−µ̂j)(xi−µ̂j)
T
∈ RD×D,

(4.8)
where Nj is the number of points that are assigned to cluster j by the map c(·).

The above discussions have suggested the following two-step iterative process
for minimizing w(c).

Suppose that some initial estimates {µ̂(0)
j , Σ̂(0)

j } of the means are available.
Then we can easily minimize the objective (4.6) for c(i). That is, for each cluster
with the mean µ̂(0)

j and covariance Σ̂(0)
j , we obtain the subset of points X(0)

j that
are closer to µj than to any other means. The data set X is therefore segmented
into n clusters

X = X(0)
1 ∪X(0)

2 ∪ · · · ∪X(0)
n , (4.9)

and we further require X(0)
j ∩X(0)

j� = ∅ for j �= j�.2 In this way we obtain an
estimate of the map c(0)(·).

Knowing the membership of each point xi from the above segmentation, the
objective (4.6) can be rewritten as:

n�

j=1

�
min
µj ,Σj

�

c(0)(i)=j

�xi − µj�
2
Σj

�
. (4.10)

Notice that the solution to the minimization inside the bracket is an new set of
estimates of the mean and covariance:

µ̂(1)
j =

1
Nj

�

c(0)(i)=j

xi, Σ̂(1)
j =

1
Nj − 1

�

c(0)(i)=j

�
xi − µ̂(1)

j

��
xi − µ̂(1)

j

�T
.

These new means and covariances give a new value of the objective no larger than
that given by the initial estimates

�
µ̂(0)

j , Σ̂(0)
j

�
.

We can further reduce the objective by re-classifying each data point xi to
its closest mean according to the new estimates

�
µ̂(1)

j , Σ̂(1)
j

�
. In this way, we

obtain a new segmentation X = X(1)
1 ∪X(1)

2 ∪ · · · ∪X(1)
n . If we keep iterating

between the above two steps, the objective will keep decreasing until its value
stabilizes to a (local) equilibrium and the segmentation no longer changes. This
minimization process is referred to as the K-means algorithm in the statistical-
learning literature. We summarize the algorithm as Algorithm 4.1.

Notice that Algorithm 4.1 can be significantly simplified if the Gaussian dis-
tributions are all isotropic, i.e., Σj = σ2

j I for some σ2
j ∈ R+, or all covariance

2If a point x ∈ X has the same minimal distance to more than one cluster, then we assign it
arbitrarily to one of them.
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Algorithm 4.1 (K-Means).

Given a set of sample points X = {xi}
N
i=1, the number of clusters n, ini-

tialize the means and covariances of the clusters with a set of initial values
µ̂(0)

j ∈ RD, Σ̂(0)
j ∈ RD×D, j = 1, 2, . . . , n.

Let m = 0.

1. Segmentation: For each point xi ∈ X , assign it to X(m)
j if

j = c(i) = argmin
�=1,2,...,n

�xi − µ̂(m)
� �

2
Σ(m)

�

. (4.11)

If the above cost function is minimized by more than one mean, assign the
point arbitrarily to one of them.

2. Estimation: Obtain new estimates for the n cluster means and covariances:

µ̂(m+1)
j =

1
Nj

�

c(m)(i)=j

xi,

Σ̂(m+1)
j =

1
Nj − 1

�

c(m)(i)=j

�
xi − µ̂(m+1)

j

��
xi − µ̂(m+1)

j

�T
.(4.12)

Let m ← m+1, and repeat Steps 1 and 2 until the segmentation does not change.

matrices are equal to the identity matrix Σj ≡ I . In the latter case, one essen-
tially adopts the Euclidean distance between the sample points and the cluster
means. This special case is often referred to also as the “K-means” algorithm in
the literature.

4.1.2 Expectation Maximization (EM)
The K-means algorithm essentially relies on the minimax estimation paradigm
in statistics (see Appendix C) and it does not need to assume how exactly the
n component distributions are mixed. The Expectation Maximization (EM) al-
gorithm [Dempster et al., 1977] to be introduced below, however, relies on the
maximum-likelihood estimation paradigm (see Appendix C) and it does need an
explicit model for the mixed distribution. Instead of minimizing the modeling er-
ror in a least-distance sense, the EM algorithm estimates the model parameters
and the segmentation of the data in a maximum-likelihood (ML) sense. As we
shall soon see, the EM algorithm, though derived from a different set of assump-
tions, principles, and objectives, has an overall structure that resembles very much
that of the K-means algorithm.3

3This resemblance however should not be mistaken as excuses to confuse these two algorithms.
The solutions given by these two algorithms will be close but different in general.
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A Probabilistic Model for a Mixed Distribution

The EM algorithm is based on the assumption that the given data points {xi}
N
i=1

are independent samples from a (mixed) probabilistic distribution. In the context
of clustering analysis, it is reasonable to assume that xi are samples drawn from
multiple “component” distributions and each component distribution is centered
around a mean. To model from which component distribution a sample x is actu-
ally drawn, we can associate a latent discrete random variable z ∈ R to each data
point x, such that each discrete random variable zi = j if the point xi is drawn
from the jth component, i = 1, 2, . . . , N . Then the random vector

(x, z) ∈ RD
× Z+ (4.13)

completely describes the random event that the point x is drawn from a
component distribution indicated by the value of z.

Typically, one assumes that the random variable z is subject to a multinomial
(marginal) distribution, i.e.,

p(z = j) = πj ≥ 0, s.t. π1 + π2 + · · ·+ πn = 1. (4.14)

Each component distribution is then modeled as a conditional distribution
p(x|z) of x given z. A popular choice for the component distribution is a mul-
tivariate Gaussian distribution: p(x|z = j) ∼ N (µj ,Σj), in which µj is the
mean and Σj is the covariance of the jth cluster.

The Maximum-Likelihood Estimation

In the model, the parameters θ
.= {µj ,Σj , πj}

n
j=1 are unknown and they need

to be inferred from the samples of x. The marginal distribution of x given the
parameters is called the likelihood function, and is given by

p(x|θ) =
n�

z=1

p(x|z, θ)p(z|θ) =
n�

j=1

πjp(x|z = j, θ). (4.15)

Notice that p(x|θ) is a “mixture” of n distributions p(x|z = j, θ), j = 1, 2, . . . , n
that is exactly of the form (??) introduced in Chapter 1.

Given N i.i.d. samples X = {xi}
N
i=1 from the distribution, the optimal

estimates of the parameters θ̂ML are given by maximizing the log-likelihood
function

l(X; θ) .=
N�

i=1

log p(xi|θ). (4.16)

In the statistical learning literature, this objective is often referred to as the
incomplete log-likelihood function – “incomplete” compared to the complete log-
likelihood function to be introduced later. However, maximizing the incomplete
log-likelihood with respect to the parameters θ is typically very difficult, because
this is a very high-dimensional nonlinear optimization problem. This is the moti-
vation for the expectation maximization (EM) process which utilizes the latent
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random variable z introduced earlier to attempt to simplify the maximization
process.

Derivation of the Expectation and Maximization

First notice p(x|θ) = p(x, z|θ)/p(z|x, θ) and
�

j p(z = j|x, θ) = 1. We can
rewrite the (incomplete) log-likelihood function as

l(X; θ) =
N�

i=1

n�

j=1

p(zi = j|xi, θ) log
p(xi, zi = j|θ)
p(zi = j|xi, θ)

(4.17)

=
N�

i=1

n�

j=1

p(zi = j|xi, θ) log p(xi, zi = j|θ) (4.18)

−

N�

i=1

n�

j=1

p(zi = j|xi, θ) log p(zi = j|xi, θ). (4.19)

The first term (4.18) is called the expected complete log-likelihood function
in the statistical learning literature;4 and the second term (4.19) is the condi-
tional entropy5 of zi given xi and θ. Hence, the maximum-likelihood estimation
is equivalent to maximizing the expected log-likelihood and at the same time
minimizing the conditional entropy of zi.

Given each xi, we can define a new function wij(θ)
.= p(zi = j|xi, θ). By

replacing w(θ) = {wij(θ)} into the incomplete log-likelihood, we can view
l(X; θ) as a new function

l(X; θ) .= g(w(θ), θ). (4.20)

Instead of directly maximizing the l(X; θ) with respect to θ, we may maximize
g(w(θ), θ) in a “hill-climbing” style by iterating between the following two steps:

Step 1. partially maximizing g(w(θ), θ) with respect to w(θ) with θ (the second
argument) fixed;

Step 2. partially maximizing g(w(θ), θ) with respect to the second θ with w(θ)
fixed (to the value obtained from Step 1.)

Notice that at each step the value of g(w(θ), θ) does not decrease, so neither does
that of l(X; θ). When the iteration converges to a stationary point θ∗, it must be
a (local) extremum for the function l(X; θ). To see this, examine the equation

dl(X; θ)
dθ

=
∂g(w, θ)

∂w

∂w(θ)
∂θ

+
∂g(w, θ)

∂θ
. (4.21)

4That is, it is the expected value of the complete log-likelihood log p(x, z|θ) of the “complete”
random vector (x, z) with respect to the distribution of (z|x, θ).

5The entropy of a (discrete) random variable z is defined to be H(z)
.
=

P
j p(z = j) log p(z =

j).
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Since θ∗ must be a stationary point for each step, we have ∂g(w,θ)
∂w

���
θ∗

= 0 and
∂g(w,θ)

∂θ

���
θ∗

= 0. Therefore, dl(X;θ)
dθ

���
θ∗

= 0.
As we have alluded to earlier, the main reason for choosing this alternative max-

imization is that, for the log-likelihood function of a mixture of distributions, each
of these two steps of maximizing g are much easier to compute than directly maxi-
mizing the original log-likelihood function. In fact, for Gaussian distributions, one
can often find closed-form solutions to each step.
E-Step: Expected Membership of Samples. To find the optimal ŵ = {ŵij} that
maximize g(w, θ), we need to maximize the function

max
w

g(w, θ) =
N�

i=1

n�

j=1

wij log p(xi, zi = j|θ)−
N�

i=1

n�

j=1

wij log wij (4.22)

with respect to w subject to the constraints
�

j wij = 1 for every i. For this
purpose, we have the following statement.

Proposition 4.2 (Expected Membership). The optimal ŵ that partially maximizes
g(w, θ) is given by:

ŵij =
πjp(xi|zi = j, θ)�n

�=1 π�p(xi|zi = �, θ)
. (4.23)

Proof. Using the Lagrange multipliers method, we differentiate the objective
function

N�

i=1

n�

j=1

�
wij log p(xi, zi = j|θ)−wij log wij

�
+

N�

i=1

λi

� n�

j=1

wij−1
�
. (4.24)

with respect to wij and set the derivatives to zero. We obtain the necessary
conditions for extrema:

log p(xi, zi = j|θ)− log wij − 1 + λi = 0 (4.25)

for every i and j. Solving for wij from this equation, we obtain:

wij = eλi−1p(xi, zi = j|θ). (4.26)

Since
�

j wij = 1, we have eλi−1 =
� �

� p(xi, zi = �|θ)
�−1. In addition,

p(xi, zi = j|θ) = p(xi|zi = j, θ)p(zi = j|θ) = πjp(xi|zi = j, θ).

We hence have the claim of the proposition.

M-Step: Maximize the Expected Complete Log-Likelihood. Now we consider
the second step in which we fix w and maximize g(w, θ) with respect to θ. This
means we fix wij = p(zi = j|xi, θ) in the expression of l(X; θ). The second
term (4.19) of l(X; θ) is therefore fixed as far as this step is concerned. Hence it
is equivalent to maximizing the first term (4.18), the so-called expected complete
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log-likelihood:

L(X; θ) .=
N�

i=1

n�

j=1

wij log
�
πjp(xi|zi = j, θ)

�
. (4.27)

For many common choices of the distributions p(x|z = j, θ), we can find closed-
form solutions to maximize L(X; θ).

For simplicity, in the clustering analysis, we may assume that each cluster is
an isotropic normal distribution, i.e., p(x|z = j, θ) = N (µj , σ

2
j I). Maximizing

L(X; θ) is then equivalent to maximizing the function

N�

i=1

n�

j=1

wij

�
log πj −D log σj −

�xi − µj�
2

σ2
j

�
, (4.28)

where we have omitted terms that depend on only the fixed wij and constants.
The goal of maximization is to find the parameters θ̂ = {(µ̂j , σ̂j , π̂j)}n

j=1

that maximize the above expression. Since
�n

j=1 πj = 1, this is a constrained
optimization problem, which can be solved in closed-form using the Lagrange-
multiplier method. We here give below the formulae but leave the derivation to
the reader as an exercise (see Exercise 4.2):

µ̂j =
�N

i=1 wijxi�N
i=1 wij

, σ̂2
j =

�N
i=1 wij�xi − µ̂j�

2

D
�N

i=1 wij

, π̂j =
�N

i=1 wij

N
. (4.29)

We summarize the above results as Algorithm 4.2.
Instead of using a deterministic map to assign each point xi to a cluster (as

in the K-means algorithm 4.1, where j = c(i)), the EM algorithm assigns the
point xi “softly” to each cluster according to a set of probabilities {wij} (that
are subject to

�n
j=1 wij = 1). Subsequently, the number of points Nj in the jth

cluster is expected to be
�N

i=1 wij ; the ratio Nj

N is expected as
PN

i=1 wij

N ; and the
means µj in (4.12) are replaced by an expected version in (4.31). In general, if
the variances σj are significantly smaller than the distances between the means
µj , the K-means and EM algorithms give similar clustering results.

From the above derivation, each step of the EM algorithm increases the log-
likelihood function l(X; θ). However, beware that a stationary value θ∗ that the
algorithm converges to is not necessarily the global maximum (if the global
maximum exists at all). Furthermore, for distributions as simple as a mixture of
Gaussian distributions, the global maximum may not even exist! We illustrate this
via the following example.

Example 4.3 (ML Estimate of Two Mixed Gaussians [Vapnik, 1995]). Consider a
distribution p(x), x ∈ R that is a mixture of two Gaussian (normal) distributions:

p(x, µ, σ) =
1

2σ
√

2π
exp


−

(x− µ)2

2σ2

ff
+

1

2
√

2π
exp


−

x
2

2

ff
, (4.32)

where θ = (µ, σ) are unknown.
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Algorithm 4.2 (Expectation Maximization).

Given a set of sample points X = {xi}
N
i=1 ⊂ RD drawn from n (isotropic)

Gaussian clusters N (µj , σ
2
j I), j = 1, 2, . . . , n, initialize the parameters θ =

{µj , σj , πj} with a set of vectors µ̂(0)
j ∈ RD and scalars σ̂(0)

j , π̂(0)
j ∈ R.

Let m = 0.

1. Expectation: Using the current estimate for the parameters θ̂(m) =�
µ̂(m)

j , σ̂(m)
j , π̂(m)

j

�
, compute the estimate of wij as

w(m)
ij = p(zi = j|xi, θ̂

(m)) =
π̂(m)

j p(xi|zi = j, θ̂(m))
�n

�=1 π̂(m)
� p(xi|zi = �, θ̂(m))

, (4.30)

where p(x|z = j, θ) is given in (4.39).

2. Maximization: Using the estimated w(m)
ij , update the estimates for the

parameters µ̂j , σ̂j as:

µ̂(m+1)
j =

�N
i=1 w(m)

ij xi
�N

i=1 w(m)
ij

,
�
σ̂(m+1)

j

�2 =
�N

i=1 w(m)
ij

��xi − µ̂(m+1)
j

��2

D
�N

i=1 w(m)
ij

,

(4.31)

and update π̂j as π̂(m+1)
j =

PN
i=1 w(m)

ij

N .

Let m ← m + 1, and repeat Steps 1 and 2 until the update in the parameters is
small enough.

Then for any data X = {x1, x2, . . . , xN} and for any given constant A > 0, there
exists a small σ0 such that for µ = x1 the log-likelihood will exceed A (regardless of the
true µ, σ):

l(X; θ)
˛̨
µ=x1,σ=σ0

=
NX

i=1

ln p(xi | µ = x1, σ = σ0)

> ln

„
1

2σ0

√
2π

«
+

NX

i=2

ln

„
1

2
√

2π
exp


−

x
2
i

2

ff«

= − ln σ0 −

NX

i=1

x
2
i

2
−N ln 2

√
2π > A.

Therefore, the maximum of the log-likelihood does not exist, and the ML objective does
not provide a solution to estimating the unknown parameters. In fact, in this case, the true
parameter corresponds to the largest (finite) local maximum of the log-likelihood.

From the simple example, we can conclude that the ML method only applies to
very restrictive set of densities.6 If we insist using it for mixtures of Gaussians, we
have to rule out the situations that the variance can be arbitrarily small, i.e., σ0 →

6For instance, a class of density functions that are bounded by a common finite value from above.
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0. Fortunately, in practice, the EM algorithm typically tends to avoid such singular
directions and is able to converge to a local maximum that represents the true
parameters if a reasonable initialization is given. However, this leads to another
potential problem: What if the distributions to be estimated are indeed close to
being singular? This is unfortunately the case with subspace-like distributions.7
Thus, singular distributions like subspaces require special treatment.

Also notice that the above K-means and EM algorithms are derived mainly
for isotropic Gaussian distributions. In practice, a cluster is rarely isotropic. For
instance, as we have seen in PCA, a cluster can be a set of points sampled from a
principal subspace. For the above reasons, in the next two sections of this chapter
(Section 3.1 and 4.2), we will extend the basic ideas of K-means and EM to the
case in which clusters are subspaces.

4.2 Subspace-Segmentation Algorithms

In this section, we generalize the K-means and EM algorithms to estimate ar-
rangements of principal subspaces and cluster points into subspaces. They can
both be viewed as certain extension of PCA to multiple principal subspaces.
Both algorithms assume that the number of subspaces n and their dimensions
dj , j = 1, 2, . . . , n are known. They estimate a basis for each subspace and the
segmentation of the data by optimizing certain objective functions, namely the
least-squares error in the geometric setting or the log-likelihood in the statistical
setting. Since the optimal solution is normally not available in closed-form, the
optimization problem is solved by iterating between the segmentation of the data
points and the estimation of the subspace bases, starting from an initial guess for
the subspace bases.

The following sections give a detailed description of both algorithms tailored
to Problem 3.1. The goal is to reveal the similarity and difference between these
two algorithms as well as their advantages and disadvantages.

4.2.1 K-Subspaces
If the number of subspaces n and their dimensions dj , j = 1, 2, . . . , n are known,
then the problem of fitting multiple subspaces to the data is to find orthogonal
matrices Uj , j = 1, 2, . . . , n of dimension D × dj such that

∀i ∃j such that xi = Ujyi, (4.33)

where i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , n}. Once the assignment map c(i) =
j is found for each point xi, yi is simply given by yi = UT

c(i)xi. When xi is

7A subspace-like distribution is one that has large variance inside the subspace but very small
(close to singular) variance in directions orthogonal to the subspace.
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at the intersection of two subspaces, the solution for c(i) and therefore yi is not
unique. In this case, we arbitrarily choose one of the possible solutions.

In case the given points are corrupted by noise, we expect that the model param-
eters be found in a least-squares sense by minimizing the modeling error between
xi and its closest projection onto the subspaces:

min
{Uj}

N�

i=1

min
j

��xi − UjU
T
j xi

��2
, (4.34)

where Uj is a D×dj orthogonal matrix that represents a basis for the jth subspace
Sj , j = 1, 2, . . . , n. Unfortunately, unlike PCA, there is no constructive solution
to the above minimization problem. The main difficulty is that the foregoing ob-
jective of (4.34) is hybrid – it is a combination of minimization on the continuous
variables {Uj} and the discrete variable j. Conventional nonlinear optimization
techniques, such as gradient descent, do not directly apply to this case. Hence
special optimization schemes have to be developed. For that purpose, we need
to examine more closely the relationships between the two minimizations in the
above objective function.

Suppose that some initial estimates Û (0)
1 , Û (0)

2 , . . . , Û (0)
n of the subspaces are

available. Then we can easily minimize the objective (4.34) for j. That is, for each
subspace Sj defined by Û (0)

j , we obtain the subset of points X(0)
j that are closer

to Sj than to any other subspace. The data set X is therefore segmented into n
groups

X = X(0)
1 ∪X(0)

2 ∪ · · · ∪X(0)
n , (4.35)

and we further require X(0)
i ∩X(0)

j = ∅ for i �= j.8
Knowing the membership of each point xi from the above segmentation, the

objective (4.34) can be rewritten as:
n�

j=1

�
min
Uj

�

xi∈X(0)
j

��xi − UjU
T
j xi

��2
�
. (4.36)

Notice that the minimization inside the bracket is exactly the same as the mini-
mization in (2.22). Consequently, we have solved this problem in Theorem 2.2 for
PCA. We can therefore apply PCA to each group of points

�
X(0)

j

�
to obtain new

estimates for the bases
�
Û (1)

j

�
. Such estimates give a modeling error no larger

than the error given by the initial estimates
�
Û (0)

j

�
.

We can further reduce the modeling error by re-assigning each data point xi

to its closest subspace according to the new estimates
�
Û (1)

j

�
. In this way, we

obtain a new segmentation X = X(1)
1 ∪X(1)

2 ∪ · · · ∪X(1)
n . If we keep iterating

8If a point x ∈ X has the same minimal distance to more than one subspace, then we assign it to
an arbitrary subspace.
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between the above two steps, the modeling error will keep decreasing until its
value stabilizes to a (local) equilibrium and the segmentation no longer changes.
This minimization process is in essence an extension of the K-means algorithm to
subspaces. We summarize the algorithm as Algorithm 4.3.

Algorithm 4.3 (K-Subspaces: K-Means for Subspace Segmentation).

Given a set of noisy sample points X = {xi}
N
i=1 drawn from n subspaces with

the dimensions dj , j = 1, 2, . . . , n, initialize the bases of the subspaces with a set
of orthogonal matrices Û (0)

j ∈ RD×dj .
Let m = 0.

1. Segmentation: For each point xi ∈ X , assign it to X(m)
j if

j = arg min
�=1,...,n

��xi − Û (m)
�

�
Û (m)

�

�T
xi

��2
.

If the above cost function is minimized by more than one subspace, assign
the point arbitrarily to one of them.

2. Estimation: Apply PCA to each subset X(m)
j using Theorem 2.2 and

obtain new estimates for the subspace bases

Û (m+1)
j = PCA

�
X(m)

j

�
, j = 1, 2, . . . , n.

Let m ← m+1, and repeat Steps 1 and 2 until the segmentation does not change.

4.2.2 Expectation Maximization for Subspaces
To apply the EM method in Section 4.1.2 to subspaces, we need to assume a
statistical model for the data. Following the general setting in Section 4.1.2, it
is reasonable to assume that the data points X = {xi}

N
i=1 are samples drawn

from multiple component distributions and each component distribution is cen-
tered around a subspace. To model from which component distribution a sample
x is actually drawn, we again associate a latent discrete random variable z ∈ R
to every data point x, where each discrete random variable zi = j if the point xi

is drawn from the jth component, i = 1, 2, . . . , N .
To model the fact that each component distribution has a principal subspace,

say spanned by the columns of an orthogonal matrix Uj ∈ RD×dj , we may
assume that the jth component distribution is a special Gaussian distribution
determined by the following equation:

x = Ujy + Bjs, (4.37)

where the orthogonal matrix Bj ∈ RD×(D−dj) is the orthogonal complement to
the orthogonal matrix Uj ∈ RD×dj , and y ∼ N (0, σ2

yI) and s ∼ N (0, σ2
j I). If
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we further assume that y and s are independent random variables, then we have

Σ−1
j = σ−2

y UjU
T
j + σ−2

j BjB
T
j . (4.38)

The term Bjs models the projection error of x onto the subspace spanned by
Uj . For x to be close to the subspace, one may assume σ2

j � σ2
y . Therefore,

when σ2
y →∞, we have Σ−1

j → σ−2
j BjBT

j . In the limiting case, one essentially
assumes a uniform distribution for y inside the subspace. The uniform assumption
suggests that we do not care much about the distribution of the data inside the
subspace – it is the subspace itself in which we are interested. Technically, this
assumption also helps eliminate additional parameters so that the ML method
may better avoid the difficulty shown in Example 4.3. In practice, this assumption
is approximately valid as long as the variance of the data inside the subspace is
significantly larger than that outside the subspace.

Therefore, in the sequel, we will adopt the limiting case as our probabilistic
model for the derivation of the EM algorithm and derive closed-form formulae for
the two steps of the EM algorithm. More precisely, we assume the distributions
are

p(x|z = j) .=
1

(2πσ2
j )(D−dj)/2

exp
�
−

xT BjBT
j x

2σ2
j

�
. (4.39)

In the model, the parameters θ
.= {Bj , σj , πj}

n
j=1 are unknowns and they need

to be inferred from the samples of x. The likelihood function (which is given by
the marginal distribution of x given the parameters) is

p(x|θ) =
n�

z=1

p(x|z, θ)p(z|θ)

=
n�

j=1

πj

(2πσ2
j )(D−dj)/2

exp
�
−

xT BjBT
j x

2σ2
j

�
. (4.40)

Then given the N samples X = {xi}, estimates of the parameters θ̂ML are given
by maximizing the log-likelihood function

l(X; θ) .=
N�

i=1

log p(xi|θ) (4.41)

=
N�

i=1

log
� n�

j=1

πj

(2πσ2
j )(D−dj)/2

exp
�
−

xT
i BjBT

j xi

2σ2
j

��
.(4.42)

Again, this is in general a difficult high-dimensional optimization problem. Thus,
we can apply the Expectation Maximization method introduced in Section 4.1.2.
All the analysis in Section 4.1.2 directly applies to this new log-likelihood func-
tion except that in the M-Step, under the new probabilistic model, the new
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expected complete log-likelihood L(X; θ) becomes
N�

i=1

n�

j=1

wij

�
log πj − (D − dj) log σj −

�BT
j xi�

2

2σ2
j

�
, (4.43)

where, as before, we have omitted terms that depend on only the fixed wij and
constants. The goal now is to find the parameters θ̂ = {(B̂j , σ̂j , π̂j)}n

j=1 that
maximize the above expected complete log-likelihood. Since BT

j Bj = I and�n
j=1 πj = 1, this is again a constrained optimization problem, whose solutions

are given by the following proposition.

Proposition 4.4 (Maximum of the Expected Complete Log-Likelihood). The
parameters θ̂ = {B̂j , σ̂j , π̂j}

n
j=1 that maximize the expected complete log-

likelihood function (4.43) are: B̂j are exactly the eigenvectors associated with
the smallest D − dj eigenvalues of the weighted sample covariance matrix
Σ̂j

.=
�N

i=1 wijxixT
i , and πj and σ2

j are

π̂j =
�N

i=1 wij

N
, σ̂2

j =
�N

i=1 wij�B̂T
j xi�2

(D − dj)
�N

i=1 wij

. (4.44)

Proof. The part of objective function associated with the bases {Bj} can be
rewritten as

N�

i=1

n�

j=1

−wij

�BT
j xi�

2

2σ2
j

=
n�

j=1

−trace
�

BT
j Σ̂jBj

2σ2
j

�
, (4.45)

where Σ̂j =
�N

i=1 wijxixT
i . Differentiating the Lagrangian associated with Bj

and setting the derivatives to zero, we obtain the necessary conditions for extrema:
n�

j=1

−trace
�

BT
j Σ̂jBj

2σ2
j

�
+ trace

�
Λj(BT

j Bj − I)
�

⇒ Σ̂jBj = 2σ2
j BjΛj ,

where Λj is a matrix of Lagrangian multipliers. Since BT
j Bj = I , the objec-

tive function for Bj becomes −
�n

j=1 trace(Λj). Thus B̂j can be obtained as the
matrix whose columns are the eigenvectors of Σ̂j associated with the (D − dj)
smallest eigenvalues.

From the Lagrangian associated with the mixing proportions {πj}, we have

min
N�

i=1

n�

j=1

wij log(πj) + λ
�
1−

n�

j=1

πj

�
⇒ π̂j =

�N
i=1 wij

N
. (4.46)

Finally, after taking the derivative of the expected log-likelihood with respect to
σj and setting it to zero, we obtain

σ̂2
j =

�N
i=1 wij�B̂T

j xi�2

(D − dj)
�N

i=1 wij

. (4.47)
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We summarize the above results as Algorithm 4.4.

Algorithm 4.4 (EM for Subspace Segmentation).

Given a set of sample points X = {xi}
N
i=1 ⊂ RD, the number of subspaces n and

the dimensions dj , initialize the parameters θ = {Bj , σj , πj} with a set of initial
orthogonal matrices B̂(0)

j ∈ RD×(D−dj) and scalars σ̂(0)
j , π̂(0)

j , j = 1, 2, . . . , n.
Let m = 0.

1. Expectation: Using the current estimate for the parameters θ̂(m) =�
B̂(m)

j , σ̂(m)
j , π̂(m)

j

�
, compute the estimate of wij as

w(m)
ij = p(zi = j|xi, θ̂

(m)) =
π̂(m)

j p(xi|zi = j, θ̂(m))
�n

�=1 π̂(m)
� p(xi|zi = �, θ̂(m))

, (4.48)

where p(x|z = j, θ) is given in (4.39).

2. Maximization: Using the estimated w(m)
ij , compute B̂(m+1)

j as the eigen-
vectors associated with the smallest D − dj eigenvalues of the matrix
Σ̂(m)

j
.=

�N
i=1 w(m)

ij xixT
i , and update π̂j and σ̂j as:

π̂(m+1)
j =

�N
i=1 w(m)

ij

N
,

�
σ̂(m+1)

j

�2 =
�N

i=1 w(m)
ij

���
B̂(m+1)

j

�T
xi

��2

(D − dj)
�N

i=1 w(m)
ij

.

(4.49)

Let m ← m + 1, and repeat Steps 1 and 2 until the update in the parameters is
small enough.

4.2.3 Relationships between K-Subspaces and EM
As we have seen in the above, both K-subspaces and EM are algorithms that can
be used to analyze arrangements of principal subspaces and fit multiple subspaces
to a given set of data points. Both algorithms optimize their objectives via an
iterative scheme. The overall structure of the two algorithms is also very much
similar: the “Segmentation” step in K-subspaces is replaced by the “Expectation”
step in EM; and “Estimation” by “Maximization”.

In addition to the structural similarity, there are also subtle technical relation-
ships between the two steps of K-subspaces and EM. To see this, let us further
assume that in the EM algorithm, the noise has the same variance for all the sub-
spaces (i.e., σ = σ1 = · · · = σn). According to equation (4.45), the EM algorithm
updates the estimates for the subspaces in the “Maximization” step by minimizing
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the objective function:

min
{Bj}

N�

i=1

n�

j=1

wij

��BT
j xi

��2 = min
{Uj}

N�

i=1

n�

j=1

wij

��xi − UjU
T
j xi

��2
, (4.50)

where the equality is due to the identity BjBT
j = I−UjUT

j . For EM, the weights
wij are computed from the “Expectation” step as the expected membership of
xi in the subspaces j according to the equation (4.23), and wij in general take
continuous values between 0 and 1. For K-subspaces, however, wij is a discrete
variable and it is computed in the “Segmentation” step as (see Algorithm 4.3):

wij =

�
1 if j = arg min�=1,...,n �BT

� xi�
2,

0 otherwise.
(4.51)

Then the objective function (4.50) can be rewritten as:

min
{Uj}

N�

i=1

n�

j=1

wij

��xi − UjU
T
j xi

��2 = min
{Uj}

N�

i=1

min
j

��xi − UjU
T
j xi

��2
, (4.52)

which is exactly the same objective function (4.34) for K-subspaces. This is also
the reason why both K-subspaces and EM rely on the eigenvalue decomposition
(or singular value decomposition) of the sample covariance matrix to estimate the
basis for each subspace.

Based on the above analysis, the only conceptual difference between the K-
subspaces and EM algorithm is: At each iteration, the K-subspaces algorithm
gives a “definite” assignment of every data point into one of the subspaces; but the
EM algorithm views the membership as a random variable and uses its expected
value to give a “probabilistic” assignment of the data point. Because of this differ-
ence, for the same set of data points, the “subspaces” found by using K-subspaces
and EM will in general be different, although normally the difference is expected
to be small. A precise quantitative characterization of the difference between the
solutions by K-subspaces and EM remains an open question. Also because of this
difference, the K-subspaces algorithm is less dependent on the correct knowledge
of the dimension of each subspace: As long as the initial subspaces may segment
the data well enough, both the basis and the dimension of each subspace can be
updated at the Estimation step. However, the EM algorithm, at least for the ver-
sion we presented above, depends explicitly on correct knowledge in both the
number of subspaces and their dimensions. In addition, both algorithms require a
good initialization so that they are more likely to converge to the optimal solution
(e.g., the global maximum of the log likelihood) when the iteration stabilizes. In
the next chapter, we will show how these difficulties can be resolved by a new
algebraic method for identifying arrangements of principal subspaces.
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4.3 Relationships between GPCA, K-Subspaces, and
EM

In Section 4.2.3, we have discussed the relationships between K-subspaces and
EM. In this section, we reveal their relationships with GPCA through the special
case of hyperplane arrangements. Let bj be the normal vectors to an arrangement
of hyperplanes Sj , j = 1, 2, . . . , n, respectively.

We know from Chapter 4 that, under reasonable assumptions, both the
K-subspaces and the EM methods minimize an objective of the form

min
{bj}

N�

i=1

n�

j=1

wij

��bT
j xi

��2
. (4.53)

In the case of K-subspaces, wij is a “hard” assignment of xi to the subspaces:
wij = 1 only if xi ∈ Sj and 0 otherwise. The above objective function becomes
exactly the geometric modeling error. In the case of EM, wij ∈ [0, 1] is the prob-
ability of the latent random variable zi = j given xi. Then wij plays the role as a
“soft” assignment of xi to group j.

Following the same line of reasoning, we can replace wij with an even “softer”
assignment of membership:

wij
.=

1
n

�

l �=j

��bT
l xi

��2
∈ R. (4.54)

Notice that, in general, the value of wij is large when xi belongs to (or is close to)
Sj , and the value is small when xi belongs to (or is close to) any other subspace.
With this choice of wij , the objective function becomes

min
{bj}

N�

i=1

n�

j=1

� 1
n

�

l �=j

��bT
l xi

��2
���bT

j xi

��2 =
N�

i=1

n�

j=1

��bT
j xi

��2
. (4.55)

This is exactly the objective function that all the algebraic methods are based
upon. To see this, notice that

N�

i=1

n�

j=1

��bT
j xi

��2 =
N�

i=1

pn(xi)2 =
N�

i=1

�
cT

nνn(xi)
�2

. (4.56)

Not so surprisingly, we end up with a “least-squares like” formulation in terms
of the embedded data νn(x) and the coefficient vector cn. Notice that the above
objective function can be rewritten as

N�

i=1

�
cT

nνn(xi)
�2 =

��V n(D)cn

��2
. (4.57)

The least-squares solution of cn is exactly given by the eigenvector associated
with the smallest eigenvalue of the matrix V n(D).
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The K-subspaces or EM methods minimizes its objective iteratively using bj

computed in the previous iteration. However, one key observation in the GPCA
algorithm is that the derivative of the vanishing polynomial pn(x) = cT

nνn(x)
at the sample points provide information about the normal vectors bj . Therefore,
the GPCA algorithm does not require initialization and iteration but still achieves
a goal similar to that of K-subspaces or EM.

4.4 Bibliographic Notes

When the data points lie on an arrangement of subspaces, the modeling problem
was initially treated as “chicken-and-egg” and tackled with iterative methods,
such as the K-means and EM algorithms. The basic ideas of K-means cluster-
ing goes back to [Lloyd, 1957, Forgy, 1965, Jancey, 1966, MacQueen, 1967]. Its
probabilistic counterpart, the Expectation Maximization (EM) algorithm is due
to [Dempster et al., 1977]. See Appendix A for a more general review. For a more
thorough and complete exposition of EM, one may refer to [Neal and Hinton,
1998] or the book of [McLanchlan and Krishnan, 1997].

In [Tipping and Bishop, 1999a], the classical PCA has been extended to the
mixtures of probabilistic PCA, and the maximum-likelihood solution was recom-
mended to be found by the EM algorithm too. The classical K-means algorithm
was also extended to the case of subspaces, called K-subspace [Ho et al., 2003].
Some other algorithms such as the subspace growing and the subspace selec-
tion algorithm [Leonardis et al., 2002] were also proposed in different contexts.
Unfortunately, as we have alluded to above, iterative methods are sensitive to ini-
tialization, hence they may not converge to the global optimum. This has severely
limited the performance and generality of such methods in solving practical prob-
lems in computer vision or image processing [Shi and Malik, 1998, Torr et al.,
2001]. Thus, in the next chapter, we will change the tools a little bit and seek for
alternative solutions to the subspace segmentation problem.

4.5 Exercises

Exercise 4.1 (K-Means for Image Segmentation). K-means is a very useful and simple
algorithm for many practical problems that require clustering multivariate data. In this
exercise, implement the K-means algorithm 4.1 and apply it to the segmentation of color
(RGB) images. Play with the number of segments and the choice of the window size (i.e.,
instead of using only the RGB values at the pixel, use also the RGB values of a window of
surrounding pixels).

Exercise 4.2 (Maximizing the Expected Log-Likelihood of Gaussians). Show that
the formulae given in equation (4.29) are the solutions for maximizing the expected
log-likelihood L(X; θ) (4.27) for isotropic Gaussian distributions p(x|z = j, θ) =
N (µjσ

2
j I).
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Exercise 4.3 (Two Subspaces in General Position). Consider two linear subspaces of
dimension d1 and d2 respectively in RD . We say they are in general position if an arbitrary
(small) perturbation of the position of the subspaces does not change the dimension of their
intersection. Show that two subspaces are in general position if and only if

dim(S1 ∩ S2) = min{d1 + d2 −D, ; 0}. (4.58)

Exercise 4.4 (Segmenting Three Planes in R3). Customize and implement (in MATLAB)
the K-subspaces algorithm 4.3 and the EM-algorithm 4.4 for the purpose of segmenting
three planes in R3. Randomly generate three subspaces and draw a number of (say uni-
formly distributed) sample points on the planes. Use the algorithms to segment the samples.
Play with the level of noise (added to the samples) and the number of random initializations
of the algorithm.
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Appendix A
Basic Facts from Mathematical
Statistics

“A knowledge of statistics is like a knowledge of foreign languages or
of algebra; it may prove of use at any time under any circumstances.”

– A. L. Bowley

In the practice of science and engineering, data are often modeled as samples
of a random variable (or vector) drawn from a certain probability distribution.
Mathematical statistics then deals with the problem how to infer the underlying
distribution from the given samples. To render the problem tractable, we typi-
cally assume that the unknown distribution belongs to certain parametric family
(e.g., Gaussian), and the problem becomes how to estimate the parameters of the
distribution from the samples.

In this appendix, we provide a brief review of some of the relevant concepts and
results from mathematical statistics used in this book. The review is not meant to
be exhaustive, but rather to make the book self-contained for readers who already
have basic knowledge in probability theory and statistics. If one is looking for a
more formal and thorough introduction to mathematical statistics, we recommend
the classic books of [Wilks, 1962] or [Bickel and Doksum, 2000].

A.1 Estimation of Parametric Models

Let x be a random variable or vector. For simplicity, we assume the distribution
of x has a density p(x, θ), where the parameter (vector) θ = [θ1, θ2, . . . , θd]� ∈
Rd, once known, uniquely determines the density function p(·, θ). Now suppose
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X = {x1,x2, . . . ,xN} are a set of samples of x independently drawn according
to the density p(x, θ). That is, X has the density

p(X, θ) =
N�

i=1

p(xi, θ). (A.1)

We call any real or vector-valued function of the samples X a statistic and
denote it by T (X). The goal here is to properly choose the function T (·) so that
it gives a “good” estimate for the true parameter θ.

Definition A.1 (Sufficient Statistic). A statistic T (X) is said to be sufficient for
θ if, and only if, the conditional distribution of X given T (X) does not depend
on θ.

That is, p(X, θ|T (X)) no longer depends on θ. Thus, the original samples X
do not contain any more information about θ than T (X).

Theorem A.2 (Factorization Theorem). A statistic T (X) is sufficient for θ if, and
only if, there exists a function g(t, θ) and a function h(X) such that

p(X, θ) = g(T (X), θ)h(X). (A.2)

A popular measure of “goodness” of a statistic T (X) ∈ Rd as an estimate of
θ ∈ Rd is the mean squared error between T (X) and θ:

R(θ, T ) = E[�T (X)− θ�2]. (A.3)

The choice of this measure is not just for convenience: When the sample size N is
large, the distribution of many estimates converges to a normal distribution with
θ as the mean. Then R is the variance of the estimates. In some literature, such a
function is also referred to as the “risk function,” hence the capital letter “R.”

We may rewrite the expression R(θ, T ) as follows:

R(θ, T ) = E[�T (X)− E[T (X)] + E[T (X)]− θ�2]

= E[�T (X)− E[T (X)]�2] + �E[T (X)]− θ�2

.= Var(T (X)) + b2(θ, T ),

(A.4)

where b(θ, T ) = E[T (X)] − θ is called the bias of the estimate T (X), and
Var(T (X)) ∈ R is the trace of the covariance matrix

Cov(T (X)) .= E[T (X)T (X)�] ∈ Rd×d. (A.5)

We refer to Var(T (X)) as the “variance” of T (X). Thus, a good estimate is one
that has both small bias and small variance.

Unfortunately, there is no such thing as a universally optimal estimate that gives
a smaller error R than any other estimates for all θ. For instance, if the true pa-
rameter is θ0, for the estimate S(X) = θ0, it achieves the smallest possible error
R(θ, S) = 0. Thus, the universally optimal estimate, say T , would have to have
R(θ0, T ) = 0 too. As θ0 can be arbitrary, then T has to estimate every potential
parameter θ perfectly, which is impossible except for trivial cases. One can view
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this as a manifestation of the so-called No Free Lunch Theorem known in learn-
ing theory: Without any prior knowledge in θ, we can only expect a statistical
estimate to be better than others most of the time, but we can never expect it to
be the best all the time. Thus, in the future, whenever we claim some estimate is
“optimal,” it will be in the restricted sense that it is optimal within a special class
of estimates considered (e.g., unbiased estimates).

Define the Fisher information matrix to be

I(θ) .= E
�� ∂

∂θ
log p(X, θ)

�� ∂

∂θ
log p(X, θ)

���
∈ Rd×d. (A.6)

Let ψ(θ) .= E[T (X)] = [ψ1(θ), ψ2(θ, . . . ,ψd(θ)]� and define:

∂ψ(θ)
∂θ

.=





∂ψ1(θ)
∂θ1

∂ψ1(θ)
∂θ2

· · ·
∂ψ1(θ)

∂θd
∂ψ2(θ)

∂θ1

∂ψ2(θ)
∂θ2

· · ·
∂ψ2(θ)

∂θd

...
... · · ·

...
∂ψd(θ)

∂θ1

∂ψd(θ)
∂θ2

· · ·
∂ψd(θ)

∂θd




∈ Rd×d. (A.7)

Theorem A.3 (Information Inequality). Under reasonable conditions, we have
that for all θ, ψ(θ) is differentiable and

Cov(T (X)) ≥
∂ψ(θ)

∂θ
I(θ)−1

�∂ψ(θ)
∂θ

�T
, (A.8)

where the inequality is between semi-positive definite symmetric matrices.

For unbiased estimate ψ(θ) = θ, we have ψ�(θ) = I . The information inequal-
ity can be thought of as giving a lower bound for the variance of any unbiased
estimate: Cov(T (X)) ≥ I(θ)−1, which is often referred to as the Cramér-Rao
lower bound.

As X = {x1,x2, . . . ,xN} are i.i.d. samples from the distribution p(x, θ), we
define I1(θ)

.= E
�

∂
∂θ log p(x1, θ)( ∂

∂θ log p(x1, θ))T
�
∈ Rd×d. Then, we have

I(θ) = NI1(θ). (A.9)

The Cramér-Rao lower bound can be rewritten as Cov(T (X)) ≥ 1
N I1(θ)−1.

A.1.1 Uniformly Minimum Variance Unbiased Estimates
As we have mentioned earlier, to make the model estimation problem well-
conditioned, one must restrict the class of estimates. For instance, we may require
the estimate T (X) needs to be unbiased, i.e., b(θ, T ) = 0. Then the problem of
finding the best unbiased estimate becomes

min
T (·)

R(θ, T ) = Var(T (X)) s.t. E[T (X)] = θ. (A.10)

The optimal T ∗ is then called the uniformly minimum variance unbiased (UMVU)
estimate. Such a T ∗ often exists and in the absence of knowledge about θ, it seems
to be the best estimate one can hope to obtain.
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Definition A.4 (Complete Statistic). A statistic T is said to be complete if the only
real function g(·) which satisfies E[g(T )] = 0 for all θ is the function g(T ) ≡ 0.

Starting with a sufficient and complete statistic T (X), the following theorem
simplifies the computation of the UMVU estimate:

Theorem A.5 (Lehmann-Scheffé). If T (X) is a complete sufficient statistic and
S(X) is any unbiased estimate of θ, then T ∗(X) = E[S(X)|T (X)] is an UMVU
estimate of θ. If further Var(T ∗(X)) < ∞ for all θ, T ∗(X) is the unique UMVU
estimate.

Even so, the UMVU estimate is often too difficult to compute in practice.
Furthermore, the property of unbiasedness is not invariant under functional trans-
formation: if T (X) is an unbiased estimate for θ, g(T (X)) is in general not an
unbiased estimate for g(θ). To have the functional invariant property, we often
resort to the so-called Maximum Likelihood estimate.

A.1.2 Maximum Likelihood Estimates
If the N samples X = {xi}

N
i=1 are independently drawn from the same distribu-

tion p(x, θ), their joint distribution has the density p(X, θ) =
�N

i=1 p(xi, θ).
Consider p(X, θ) as a function of θ with X fixed. We call this function the

likelihood function, denoted as L(θ,X) = p(X, θ). The maximum likelihood
(ML) estimate of θ is given by the solution to the following optimization problem:

θ̂N = arg max
θ

�
L(θ,X) = p(X, θ) =

N�

i=1

p(xi, θ)

�
. (A.11)

As θ̂N maximizes the likelihood function L(θ,X), a necessary condition for
optimality is that

∂L(θ,X)
∂θ

���
θ̂N

= 0. (A.12)

It is easy to see that the ML estimate is invariant under functional transformations.
That is, if θ̂N is an ML estimate of θ, then g(θ̂N ) is an ML estimate of g(θ).

Since the logarithmic function is monotonic, we may choose to maximize the
log likelihood function instead:

θ̂N = arg max
θ

�
log(L(θ,X)) =

N�

i=1

log p(xi, θ)

�
, (A.13)

which often turns out to be more convenient to use in practice. The ML estimate is
a more popular choice than the UMVU estimate because its existence is easier to
establish and is usually easier to compute than the UMVU estimate. Furthermore,
when the sample size is large, the ML estimate is asymptotically optimal for a
wide variety of parametric models. Thus, both UMVU and ML estimates give
essentially the same answer in a way that we explain in more detail.
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A.1.3 Estimates from a Large Number of Samples

Definition A.6 (Consistency). An estimate θ̂N of θ is said to be consistent if, and
only if,

P
�
�θ̂N − θ� ≥ ε

�
→ 0 (A.14)

for all ε > 0 as N →∞.

In other words, θ̂N is consistent if it converges in probability to θ.

Definition A.7 (Asymptotic Unbiasedness). Let µN = E[θ̂N ] ∈ Rd and ΣN =
Cov(θ̂N ) ∈ Rd×d. We say that θ̂ is asymptotically unbiased if as N →∞

√
N(µN − θ) → 0, and NΣN → Σ > 0 (A.15)

for some positive-definite symmetric matrix Σ ∈ Rd×d.

It is easy to see that asymptotic unbiasedness is a stronger property than consis-
tency. That is, an estimate can be consistent but asymptotically biased. In addition,
most “reasonable” estimates θ̂N (e.g., the ML estimate) are often asymptotically
normally distributed with mean µN and covariance matrix ΣN due to the law
of large numbers. Therefore, the asymptotical distribution of an asymptotically
unbiased estimate is uniquely characterized by the parameters θ and Σ.

Between any two asymptotically unbiased estimates, say θ̂(1)
N and θ̂(2)

N , their
relative asymptotic efficiency of θ̂(1)

N to θ̂(2)
N is defined to be the ratio

e
�
θ̂(1)

N , θ̂(2)
N

� .=
det(Σ(2))
det(Σ(1))

, (A.16)

where Σ(i) = limN→∞NCov
�
θ̂(i)

N

�
, for i = 1, 2. The larger the efficiency ratio

e, the smaller the asymptotic variance of θ̂(1), relative to that of θ̂(2). Thus, θ̂(1)

gives a more accurate or “sharper” estimate for θ, although both θ̂(1) and θ̂(2) are
asymptotically unbiased.

Nevertheless, according to Theorem A.3, an estimate cannot be arbitrarily more
efficient than others. That is, for any asymptotically unbiased estimate θ̂N , using
(A.9) and (A.15), its covariance matrix is bounded asymptotically from below by
the Cramér-Rao bound:

lim
N→∞

NΣN = Σ ≥ I1(θ)
−1. (A.17)

Definition A.8 (Asymptotic Efficiency). An estimate θ̂N is said to be asymp-
totically efficient if it is asymptotically normal and it achieves equality in the
Cramér-Rao bound (A.17).

Obviously, an asymptotically efficient estimate has efficiency e ≥ 1 with
respect to any other asymptotically unbiased estimates that satisfy (A.17).

Asymptotic efficiency is a desirable property for an estimate and it is sometimes
referred to as asymptotic optimality. It often can be shown that UMVU estimates
are asymptotically efficient. We also have that:
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Proposition A.9. In general, the maximum likelihood estimate is asymptotically
efficient.

Proof. We here outline the basic ideas for a “proof,” which can also be used to es-
tablish for other estimates their asymptotic unbiasedness or efficiency with respect
to the ML estimate. Define the function

ψ(x, θ) .=
∂

∂θ
log p(x, θ) ∈ Rd. (A.18)

Assume that the maximum likelihood estimate θ̂N exists. It satisfies the equation

∂L(θ,X)
∂θ

���
θ̂N

=
N�

i=1

ψ(xi, θ̂N ) = 0. (A.19)

By the mean value theorem,

N�

i=1

ψ(xi, θ̂N )−
N�

i=1

ψ(xi, θ) =
� N�

i=1

∂ψ(xi, θ∗N )
∂θ

��
θ̂N − θ

�
, (A.20)

where θ∗N is a point between θ and θ̂N . Using (A.19),

√
N

�
θ̂N − θ

�
=

� 1
N

N�

i=1

∂ψ(xi, θ∗N )
∂θ

�−1�
−N− 1

2

N�

i=1

ψ(xi, θ)
�
. (A.21)

Under suitable conditions, θ̂N is consistent, and by the law of large numbers,
1
N

�N
i=1

∂ψ(xi,θ
∗
N )

∂θ behaves like 1
N

�N
i=1

∂ψ(xi,θ)
∂θ which converges to

E
�∂ψ(x1, θ)

∂θ

�
= E

� ∂2

∂θ2
log p(x1, θ)

�

= −E
� ∂

∂θ
log p(x1, θ)

� ∂

∂θ
log p(x1, θ)

�T
�

= −I1(θ).

It is easy to show that ψ(x, θ) is zero-mean and thus, by the central limit theorem,
the right-hand side of (A.21) converges to a normal distribution with zero mean
and variance I1(θ)−1. That is, the asymptotic variance of the ML estimate reaches
the Carmér-Rao lower bound.

When the sample size is large, one can appeal to the law of large numbers to
derive an information-theoretic justification for the ML estimate, which can be
somewhat more revealing. Notice that maximizing the log likelihood function is
equivalent to minimizing the following objective function:

min
θ

H(θ, N) .=
1
N

N�

i=1

− log p(xi, θ). (A.22)

In information theory, the quantity − log p(x, θ) is associated with the number of
bits required to represent a random event x that has the probability p(x, θ) [Cover
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and Thomas, 1991]. When the sample size N is large, due to the law of large
numbers, the quantity H(θ, N) converges to

lim
N→∞

H(θ, N) = H(θ) = E[− log p(x, θ)] =
� �

−log p(x, θ)
�
p(x, θ0) dx,

(A.23)
where p(x, θ0) is the true distribution. Notice that the above quantity is a measure
similar to the notion of “entropy”: H(θ) is asymptotically the average code length
of the sample set {xi} when we assume that it is of the distribution p(x, θ) while
x is actually drawn according to p(x, θ0). Thus, the goal of ML estimate is to
find the θ̂ that minimizes the empirical entropy of the given sample set. This is
obviously a smart thing to do as such estimate θ̂ gives the most compact repre-
sentation of the given sample data if an optimal coding scheme is adopted [Cover
and Thomas, 1991]. We refer to this as the “minimum entropy principle.”

Notice also that the θ̂ that minimizes
� �
−log p(x, θ)

�
p(x, θ0) dx is the same

as that minimizing the so-called Kullback-Leibler (KL) divergence between the
two distributions p(x, θ0) and p(x, θ), i.e.,

D
�
p(x, θ0)�p(x, θ)

� .=
� �

log
p(x, θ0)
p(x, θ)

�
p(x, θ0) dx, (A.24)

One may show that under general conditions, the KL divergence is always non-
negative and becomes zero if and only if θ = θ0. In essence, when the sample size
is large, the ML objective is equivalent to minimizing the KL divergence.

However, the ML estimate is known to have very bad performance in some
models even with a large number of samples. This is particularly the case when
the models have many redundant parameters or the distributions are degenerate.
Furthermore, both UMVU and ML estimates are not the optimal estimates in a
Bayesian1 or minimax2 sense. For instance, the ML estimate can be viewed as a
special Bayesian estimate only when the parameter θ is uniformly distributed.

In this book, the concepts introduced in this section can help us understand
under what assumptions on the distribution of the data, the estimates given
by the GPCA algorithms can be asymptotically unbiased (hence consistent), or
asymptotically efficient.

A.2 Expectation Maximization

In many practical situations, one is required to estimate a statistical model with
only part of the random states being observable and the rest being “missing,” or

1A bayesian estimate T
∗ is the solution to the following problem minT

R
R(θ, T )π(θ) dθ for a

given prior distribution π(θ) of θ. That is, T
∗ is the best estimate in terms of its average risk.

2A minimax estimate T
∗ is the solution to the problem minT maxθ R(θ, T ). That is, T

∗ is the
best estimate according to its worst performance. Of course, such a T

∗ does not have to always exist
or be easier to compute than the ML estimate.
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“hidden,” or “latent,” or “unobserved.” For instance, suppose that two random
vectors (x,z) have a joint distribution (density) p(x,z, θ) but only samples of x
are observable and z is not available. Our goal is, as before, to find an optimal
estimate θ̂ for θ from the observations.

As samples of z are not available, there is no way one can find the maximum
likelihood estimate of θ from the complete log likelihood function:

max
θ

Lc(θ,X,Z) =
N�

i=1

log p(xi,zi, θ). (A.25)

Thus, it makes sense to use only the marginal distribution of x: p(x, θ) =�
p(x,z, θ) dz and find the maximum likelihood estimate from

max
θ

L(θ,X) =
N�

i=1

log p(xi, θ), (A.26)

which, in this context, is often referred to as the incomplete log likelihood func-
tion in the statistical literature. The problem is now reduced to a standard ML
estimation problem and one can adopt any appropriate optimization method (say
conjugate gradient) to find the maximum. It seems that there is no need of
involving z at all.

An alternative approach to maximize L(θ,X) is to use the available data of x to
estimate the values ẑ of the latent variables, and then search for the ML estimate θ̂
from the complete log likelihood Lc(θ,X, Ẑ). There are several reasons why this
often turns out to be a better idea. First, for some models p(x,z, θ), marginalizing
z out can be difficult to do or that could destroy good structures in the models.
The alternative approach may better harness these structures. Second, directly
maximizing L(θ,X) may turn out to be a very difficult optimization problem
(e.g., high-dimension, many local minima), the introduction of intermediate latent
variables z actually makes the optimization easier (as we will see later). Third, in
some applications, it is desired to obtain an estimate of the unobservables z from
the observables x. The alternative approach can simultaneously estimate both θ
and z. Be aware that regardless of the introduction of the latent variables z or not,
as far as the parameter θ is concerned, the ultimate objective has always been to
maximize the objective function maxθ L(θ,X).

Using the following identities

∀z p(x, θ) =
p(x,z, θ)
p(z|x, θ)

and
�

p(z|x, θ) dz = 1, (A.27)

we have

L(θ,X) =
N�

i=1

log p(xi, θ) =
N�

i=1

�
p(z|xi, θ) log

p(xi,z, θ)
p(z|xi, θ)

dz

=
N�

i=1

� �
p(z|xi, θ) log p(xi,z, θ)− p(z|xi, θ) log p(z|xi, θ)

�
dz. (A.28)
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Although the last expression seems more complicated than the original log like-
lihood L(θ,X), it reveals that the likelihood is a function of the a posterior
probability wi(z) .= p(z|xi, θ). The a posterior distribution of z gives us the
best estimate of z given xi and θ. In turn, we can update the parameter θ based
on the estimate of z. This leads to the well-known Expectation and Maximization
(EM) algorithm for optimizing the log likelihood L(θ,X):

Step 1 (Expectation): For fixed θk and every i = 1, 2, . . . , N ,

wk+1
i (z) = arg max

wi

�
wi(z) log p(xi,z, θk)− wi(z) log wi(z)

�
.

Step 2 (Maximization): For fixed wk+1
i ,

θk+1 = arg max
θ

N�

i=1

�
wk+1

i (z) log p(xi,z, θ) dz.

The Maximization step does not involve the second term in (A.28) because it is
constant with wi fixed. The Expectation step is decomposed to every i because
the a posterior wi(z) depends only on xi. It is important to know that each step
of the EM algorithm is in general a much simpler optimization problem than
directly maximizing the log likelihood L(θ,X) as the sum

�N
i=1 log p(xi, θ).

For many popular models (e.g., mixtures of Gaussians), one might even be able
to find closed-form formulae for both steps (see Chapter 3).

Notice that the EM algorithm is an iterative algorithm. Like gradient ascent, it
is essentially a hill-climbing algorithm that each iteration increases the value of
the log likelihood.

Proposition A.10. The Expectation Maximization process converges to one of the
stationary points (extrema) of the (log) likelihood function L(θ,X).

Proof. We here give a sketch of the basic ideas of the proof. Notice that the a
posterior wi defined above depend on both z and the parameter θ. By substituting
w = {wi} into the incomplete log-likelihood, we can view L(θ,X) as

L(θ,X) .= g(w, θ) (A.29)

for some function g(·). Instead of directly maximizing the L(θ,X) with respect
to θ, the EM algorithm maximizes the functional g(w(θ), θ) in a “hill-climbing”
style by iterating between the following two steps:

E Step: partially maximizing g(w, θ) with respect to w with the second variable
θ fixed;

M Step: partially maximizing g(w, θ) with respect to the second variable θ with
w fixed.

Notice that at each step the value of g(w, θ) does not decrease, so does L(θ,X).
When both steps become stationary and no longer increase the value, the process
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reaches a (local) extremum θ∗ of the function L(θ,X). To see this, examine the
equation3

dL(θ,X)
dθ

=
∂g(w, θ)

∂w

∂w

∂θ
+

∂g(w, θ)
∂θ

. (A.30)

Since at θ∗, each step is stationary, we have ∂g(w,θ)
∂w = 0 and ∂g(w,θ)

∂θ = 0.

Therefore, dL(θ,X)
dθ

���
θ∗

= 0.

For a more thorough exposition and complete proof of the convergence of the
EM algorithm, one may refer to the book of [McLanchlan and Krishnan, 1997].
However, for the EM algorithm to converge to the maximum-likelihood estimate
(usually the global maximum) of L(θ,X), a good initialization is crucial.

A.3 Estimation of Mixture Models

A.3.1 Maximum-Likelihood Estimates
The EM algorithm is often used for estimating a mixture model. By that, we mean
the data x is sampled from a distribution which is a superposition of multiple
distributions:

p(x, θ) = π1p1(x, θ) + π2p2(x, θ) + · · ·+ πnpn(x, θ). (A.31)

Such a distribution can be easily interpreted as the marginal distribution of a
model with a latent random variable z that takes discrete values in {1, 2, . . . , n}:

p(x, θ) =
�

z

p(x,z, θ) =
�

z

p(x|z, θ)p(z, θ)

= p(x|z = 1, θ)p(z = 1, θ) + · · ·+ p(x|z = n, θ)p(z = n, θ)

with p(z = j, θ) = πj > 0, j = 1, 2, . . . , n. Obviously, one can use the EM
algorithm to estimate the mixture model, with the mixing weights πj as part of
the unknown model parameters.

Once the model parameters are estimated from the EM algorithm, for a given
sample point xi, its “membership” c(i) ∈ {1, 2, . . . , n}, i.e., the component dis-
tribution from which xi is most likely drawn, can be determined by the Bayesian
rule from its a posterior probability:

c(i) = arg max
j

p(z = j | xi) =
pj(xi)

π1p1(xi) + · · ·+ πnpn(xi)
. (A.32)

3Here the “derivative” with respect to w is formal as w is in general a function if z is a continuous
random variable. To make the proof here rigorous, one needs to resort to the calculus of variation. For
a more careful proof of the convergence of the EM algorithm, one should refer to [McLanchlan and
Krishnan, 1997].
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A.3.2 Minimax Estimates
Obviously, for the mixture model (A.31), we need to estimate both the distribution
parameters θ and the unknown mixing weights πj . This increases the dimension
of the optimization problem that needs to be solved. In practice, we often seek
for alternative estimates of the mixture model which do not depend on the mix-
ing weights. Such estimates may no longer be optimal with respect to the above
mixture model (A.31) but can be much easier to compute than the ML estimate.

If the mixing weights are not known or not of any interest, the membership of
a given sample xi can be directly determined by the component distribution that
returns the highest likelihood: c(i) = arg maxj pj(xi) = arg minj − log pj(xi).

Therefore, the parameters of the distributions pj can be estimated by solving
the following optimization problem:

min
θ

N�

i=1

�
min

j
− log pj(xi, θ)

�
. (A.33)

One may interpret the above objective as the follows: For each sample, we find
the component distribution for which xi achieves the highest likelihood; once we
have decided to “assign” xi to the distribution pj(x, θ), it takes − log pj(xi, θ)
bits to encode xi. Thus, the above objective function is equivalent to minimize
the sum of coding length given the membership of all the samples.

A straightforward way to solve the above optimization problem is to iterate
between the following two steps:

Step 1: For fixed θk and every i = 1, 2, . . . , N ,

ck+1(i) = arg max
j

log pj(xi, θ). (A.34)

Step 2: With all ck+1(i) known,

θk+1 = arg min
θ

N�

i=1

�
− log pck+1(i)(xi, θ)

�
. (A.35)

Notice that the two steps resemble the two steps of the EM algorithm introduced
earlier. The difference is that here each sample xi is assigned to only one of the
n groups while in the EM algorithm the hidden variable zi gives a probabilistic
assignment of xi to the n groups. In fact, the well-known K-means algorithm for
clustering (see Chapter 2) is essentially based upon the above iteration.

A.4 Model Selection Criteria

So far, we have studied how to solve the following problem: Given N independent
samples X = {xi}

N
i=1 drawn from a distribution p(x, θ), where p(x, θ) belongs

to a family of distributions indexed by the parameter θ, how to obtain the (approx-
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imate) optimal estimate θ∗ of the model parameter. In doing so, we have assumed
that the function p(x, θ) depends smoothly on the parameter θ.

In practice, however, we may not know exactly to which family of distribu-
tions the model belongs to. We might only know it belongs to several possible
families, p(x, θ(m)), where m is a (discrete) index for the model families. For
instance, in the context of GPCA, we try to fit multiple subspaces to a given set
of data. However, the number of subspaces and their exact dimensions are some-
times not known or given a priori. Thus, determining the number of subspaces
and their dimensions is now part of the model estimation problem. Notice that the
number of subspaces and their dimensions are discrete variables as opposed to the
continuous parameters (e.g., the subspace bases) needed to specify each subspace.

The problem of determining both the model type m and its parameter θ(m) is
conventionally referred to as a model selection problem (as opposed to parame-
ter estimation). Many important model-selection criteria have been developed in
the statistics community and the algorithmic complexity community for general
classes of models. These criteria include

• Akaike Information Criterion (AIC) [Akaike, 1977] (also known as the Cp

statistics [Mallows, 1973]) and Geometric AIC (G-AIC) [Kanatani, 2003],

• Bayesian Information Criterion (BIC) (also known as the Schwartz
criterion),

• Minimum Description Length (MDL) [Rissanen, 1978] and Minimum
Message Length (MML) [Wallace and Boulton, 1968].

Although these criteria are originally motivated and derived from different view-
points (or in different contexts), they all share a common characteristic: The
optimal model should be the one that strikes a good balance between the model
complexity (typically depends on the dimension of the parameter space) and the
data fidelity to the chosen model (typically measured as the sum of squared er-
rors). In fact, some of the criteria are essentially equivalent to each other despite
their different origins: To a large extent, the BIC is equivalent to MDL; and the
AIC is equivalent to the Cp statistics. Even so, it is impossible to give a detailed
review here of all the model selection criteria.

In what follows, we give a brief review of the AIC and the BIC to illustrate the
key ideas behind model selection. In Chapter 5, we will further discuss how to
modify the AIC in the context of GPCA.

A.4.1 Akaike Information Criterion
Given N independent sample points X = {xi}

N
i=1 drawn from a distribution

p(x, θ0), recall that the maximum-likelihood estimate θ̂N of the parameter θ is the
one that maximizes the log-likelihood function L(θ,X) =

�N
i=1 log p(xi, θ).

The Akaike information criterion (AIC) for model selection is motivated from
an information-theoretic viewpoint. In this approach, the quality of the obtained
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model is measured by the average code length used by the optimal coding scheme
of p(x, θ̂N ) for a random variable with actual distribution p(x, θ0), i.e.,

E[− log p(x, θ̂N )] =
� �

− log p(x, θ̂N )
�
p(x, θ0) dx. (A.36)

The AIC relies on an approximation to the above expected log-likelihood loss that
holds asymptotically as N →∞:

2E[− log p(x, θ̂N )] ≈ −
2
N

L(θ̂N ,X) + 2
d

N
.= AIC, (A.37)

where d is the number of free parameters for the class of models of interest.
For Gaussian noise models with variance σ2, we have

L(θ̂N ,X) = −
1

2σ2

N�

i=1

�xi − x̂i�
2,

where x̂i is the best estimate of xi given the model p(x, θ̂N ). Thus, if σ2 is
known (or approximated by the empirical sample variance), minimizing the AIC
is equivalent to minimizing the so-called Cp statistic:

Cp =
1
N

N�

i=1

�xi − x̂i�
2 + 2

d

N
σ2, (A.38)

where the first term is obviously the mean squared error (a measure of data fi-
delity) and the second term depends linearly on the dimension of the parameter
space (a measure of the complexity of the model).

Now consider multiple classes of models whose parameter spaces are of differ-
ent dimensions. Let us denote the dimension of model class m as d(m). Then the
AIC selects the model class m∗ that minimizes the following objective function:

AIC(m) =
1
N

N�

i=1

�xi − x̂i�
2 + 2

d(m)
N

σ2. (A.39)

A.4.2 Bayesian Information Criterion
The Bayesian information criterion (BIC) for model selection is motivated from
a Bayesian inference viewpoint. In this approach, we assume a prior distribution
of the model p(θ|m) and wish to choose the model class m∗ that maximizes the
posterior probability p(m|X). Using Bayes rule, this is equivalent to maximizing

p(m|X) ∝ p(m) · p(X|m) = p(m) ·
�

p(X|θ,m)p(θ|m) dθ. (A.40)

If we assume that each model class is equally probable, this further reduces
to maximizing the likelihood p(X|m) among all the model classes. This is
equivalent to minimizing the negative log-likelihood −2 log p(X|m). With cer-
tain approximations, one can show that for general distributions the following
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relationship holds asymptotically as N →∞:

BIC(m) .= −2 log p(X|m) = −2L(X, θ̂N ) + (log N)d(m) (A.41)

=
N

σ2

� 1
N

N�

i=1

�xi − x̂i�
2 + (log N)

d(m)
N

σ2
�
. (A.42)

As before, θ̂N is the maximum-likelihood estimate of θ given m, d(m) is the
number of parameters for class m and σ2 is the variance of a Gaussian noise
model.

Notice that when N and σ are known, the BIC is very similar to the AIC except
that the factor 2 in front of the second term in the AIC is replaced by log N in
the BIC. Because we normally have N � e2, the BIC penalizes complex models
much more than the AIC does. Thus, the BIC tends to choose simpler models.
In general, no model selection criterion is always better than others under all
circumstances and the best criterion depends on the purpose of the model. From
our experience, the AIC tends to provide more satisfactory results for estimation
of subspaces. That makes it more favorable in the context of GPCA.

A.5 Robust Statistical Methods

For all the model estimation and selection techniques discussed above, we have
always assumed that the given data samples {xi}

N
i=1 are independent samples

drawn from the same distribution p(x, θ0). By an appeal to the law of large num-
bers (or the central limit theorems), the asymptotic optimality of the estimate
normally does not depends the particular set of samples given.4

However, in many practical situations, the validity of the given data as inde-
pendent samples of the model becomes questionable. Sometimes, the given data
can be corrupted by or mixed with samples of different (probabilistic) nature; or
it can simply be the case that the given data are not a typical set of i.i.d. samples
from the distribution in question.

For the purpose of model estimation, these seemingly different interpretations
are actually equivalent: We need to somehow infer the correct model while accom-
modating an atypical set of samples of the distribution (or the model). Obviously,
this is an impossible task unless we impose some restrictions on how “atypical”
the samples are. It is customary to assume that only a portion of the samples are
somehow different from or inconsistent with the rest of the data. Those samples
are often referred to as “outliers” and they may have significant effect on the
model inferred from the data.

4The fact that almost all sets of i.i.d sample are “typical” or “representative” of the given
distribution has been at the heart of the development of Shannon’s information theory.
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Unfortunately, despite centuries of interest and study5, there is no univer-
sally agreed definition of what an outlier is, especially for multivariate data.
Roughly speaking, most definitions (or tests) for an outlier are based on one of
the following guidelines:

1. The outliers are a set of samples that have relatively large influence on
the estimated model parameters. A measure of influence is normally the
difference between the model estimated with or without the sample in
question.

2. The outliers are a set of small-probability samples with respect to the dis-
tribution in question. The given data set is therefore an atypical set if such
small-probability samples constitute a significant portion of the data.

3. The outliers are a set of samples that are not consistent with (the model
inferred from) the remainder of the data. A measure of inconsistency is
normally the error residual of the sample in question with respect to the
model.

Nevertheless, as we will soon see, for popular distributions such as Gaussian,
they all lead to more or less equivalent ways of detecting or accommodating out-
liers. However, under different conditions, different approaches that follow each
of the above guidelines may give rise to solutions that can be more convenient
and efficient than others.

A.5.1 Influence-Based Outlier Detection
When we try to estimate the parameter of the distribution p(x, θ) from a set of
samples {xi}

N
i=1, every sample xi might have uneven effect on the estimated

parameter θ̂N . The samples that have relatively large effect are called influential
samples and they can be regarded as outliers.

To measure the influence of a particular sample xi, we may compare the dif-
ference between the parameter θ̂N estimated from all the N samples and the
parameter θ̂(i)

N estimated from all but the ith sample. Without loss of generality,
we here consider the maximum-likelihood estimate of the model:

θ̂N = arg max
θ

N�

j=1

log p(xi, θ), (A.43)

θ̂(i)
N = arg max

θ

�

j �=i

log p(xi, θ), (A.44)

5Earliest documented discussions among astronomers about outliers or “erroneous observations”
date back to mid 18th century. See [Barnett and Lewis, 1983, Huber, 1981, Bickel, 1976] for a more
thorough exposition of the studies of outliers in statistics.
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and measure the influence of xi on the estimation of θ by the difference

I(xi; θ)
.= θ̂N − θ̂(i)

N . (A.45)

Assume that p(x, θ) is analytical in θ. Then we have

f(θ) .=
N�

j=1

1
p(xi, θ)

∂p(xi, θ)
∂θ

���
θ=θ̂N

= 0, (A.46)

f(θ)(i) .=
�

j �=i

1
p(xi, θ)

∂p(xi, θ)
∂θ

���
θ=θ̂(i)

N

= 0. (A.47)

If we now evaluate the function f(θ) at θ = θ̂(i)
N using the Taylor series of f(θ)

θ = θ̂N we obtain:

f(θ̂(i)
N ) = f(θ̂N ) + f �(θ̂N )(θ̂(i)

N − θ̂N ) + o(�θ̂N − θ̂(i)
N �). (A.48)

Since we have f(θ̂N ) = 0 and f (i)(θ̂(i)
N ) = 0, the difference in the estimate

caused by the ith sample is

θ̂(i)
N − θ̂N ≈

�
f �(θ̂N )

�†� 1

p(xi, θ̂
(i)
N )

∂p(xi, θ̂
(i)
N )

∂θ

�
. (A.49)

Notice that in the expression on the right hand side, the factor
�
f �(θ̂N )

�† is
common for all samples.

Proposition A.11 (Approximate Sample Influence). The difference between the
ML estimate θ̂N from N samples and the ML estimate θ̂(i)

N without the ith sample
xi depends approximately linearly on the quantity:

d(xi; θ)
.=

1

p(xi, θ̂
(i)
N )

∂p(xi, θ̂
(i)
N )

∂θ
. (A.50)

In the special case when p(x, θ) is the Gaussian distribution N (µ, σ2) with σ2

known, the above equation gives the influence of the ith sample on the estimate
of µ:

µ̂(i)
N − µ̂N ≈ α(xi − µ̂(i)

N ), (A.51)

where α is some constant depending on σ. That is, the sample influence is very
much proportional to the distance between the sample and the mean estimated
without the sample; or equivalently, the smaller the probability of a sample is
with respect to the estimated (Gaussian) distribution, the larger is its influence on
the estimated mean. Therefore, the three guidelines for defining outliers become
very much equivalent for a Gaussian distribution.

In general, to evaluate the influence of all the samples, one needs to compute
the estimate of the model for N + 1 times. That is reasonable to do only if each
estimate is not so costly to compute. In light of this drawback, some first order
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approximations of the influence values were developed at roughly the same pe-
riod as the sample influence function was proposed [Campbell, 1978, Critchley,
1985], when the computational resources were scarcer than they are today. In ro-
bust statistics, formulae that approximate an influence function are referred to as
theoretical influence functions. One such formula for the influence function of
PCA can be found in [Jolliffe, 2002].

A.5.2 Probability-Based Outlier Detection
In general, we assume that the data are drawn from a zero-mean6 multivariate
Gaussian distribution N (0,Σx). Ideally, the principal d-dimensional subspace is
spanned by the first d eigenvectors of the covariance matrix Σx. Thus, in order to
improve the robustness of PCA in the presence of outliers, we essentially seek for
a robust estimate of Σx.

If there were no outliers, the maximum likelihood estimate of Σx would be
given by �ΣN = 1

N

�N
i=1 xix�i ∈ RD×D. Therefore, we could approximate the

probability that a sample xi comes from this Gaussian model by

p(xi; �ΣN ) =
1

(2π)D/2 det(�ΣN )1/2
exp

�
−

1
2
x�i �Σ−1

N xi

�
. (A.52)

If we adopt the guideline that outliers are samples that have a small probability
with respect to the estimated model, then the outliers are exactly those samples
that have a relatively large residual:

εi = x�i �Σ−1
N xi, i = 1, 2, . . . , N, (A.53)

also known as the Mahalanobis distance.7 In terms of the principal components
y = U�d x, the Mahalanobis distance can also be written as

εi = y�i Σ−1
d yi =

d�

j=1

y2
ij

σ2
j

, (A.54)

where Σd ∈ Rd×d is a diagonal matrix whose jth diagonal entry, σ2
j , is the jth

eigenvalue of �Σx, or equivalently σj is the jth singular value of 1√
N

X .

In principle, we could use p(xi, �ΣN ) or εi to determine if xi is an outlier.
However, the above estimate of the covariance matrix Σx is obtained using all the
samples, including the outliers themselves. Therefore, if �ΣN is very different from

6We here are only interested in how to robustly estimate the covariance, or “scale,” of the distribu-
tion. In case the mean, or “location,” of the distribution is not known, a separate robust procedure can
be employed to determine the mean before the covariance, see [Barnett and Lewis, 1983].

7 In fact, it can be shown that [Ferguson, 1961], if the outliers have a Gaussian distribution of a dif-
ferent covariance matrix aΣ, then εi is a sufficient statistic for the test that maximizes the probability
of correct decision about the outlier (in the class of tests that are invariant under linear transforma-
tions). Interested reader may want to find out how this distance is equivalent (or related) to the sample
influence bΣ(i)

N − bΣN or the approximate sample influence given in (A.50).
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Σx, the outliers could be incorrectly detected. In order to improve the estimate
of Σx, one can recompute �ΣN by discarding or down-weighting samples that
have low probability or large Mahalanobis distance. Let wi ∈ [0, 1] be a weight
assigned to the ith point such that wi ≈ 1 if xi is an inlier and wi ≈ 0 if xi is an
outlier. Then a new estimate of Σx can be obtained as:

�ΣN =
w2

1x1x�1 + w2
2x2x�2 + · · ·+ w2

NxNx�N
w2

1 + w2
2 + · · ·+ w2

N − 1
. (A.55)

Maximum Likelihood Type Estimators (M-Estimators).

If w(ε) ≡ ε, the above expression gives the original estimate (??) of the covari-
ance matrix. Or, if we want to simply discard all samples with a Mahalanobis
distance larger than certain threshold ε0 > 0, we can choose the following weight
function:

w(ε) =
�

ε, for ε ≤ ε0,
0, for ε > ε0.

(A.56)

Nevertheless, under the assumption that the distribution is elliptically symmetric
and is contaminated by an associated normal distribution, the following weight
function gives a more robust estimate of the covariance matrix [Hampel, 1974,
Campbell, 1980]:

w(ε) =
�

ε, for ε ≤ ε0,
ε0 exp[− 1

2a (ε− ε0)2] for ε > ε0,
(A.57)

with ε0 =
√

p + b for some suitable choice of positive values for a and b and p
denotes the dimension of the space.

Notice that calculating the robust estimate Σ̂N in term of (A.55) is not easy
because the weights wi also depend on the resulting Σ̂N . There is no surprise that
many known algorithms are based on Monte Carlo [Maronna, 1976, Campbell,
1980].

Many other weight functions have also been proposed in the statistics lit-
erature. They serve as the basis for a class of robust estimators, known as
M-estimators (maximum-likelihood type estimators) [Huber, 1981, Barnett and
Lewis, 1983]. Nevertheless, most M-estimators differ only in how the samples
are down-weighted but no one seems to dominate others in terms of performance
in all circumstances.

Multivariate Trimming (MVT).

One drawback of the M-estimators is that its “breakdown point” is inversely pro-
portional to the dimension of the space. The breakdown point is an important
measure of robustness of any estimator: Roughly speaking, it is the smallest
proportion of contamination that the estimator can tolerate (or does not di-
verge). Thus, the M-estimators become much less robust when the dimension
is high. This makes M-estimators of limited use in the context of GPCA since the
dimension of the space is typically very high (≥ 70).
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One way to resolve this problem is to modify the M-estimators by simply trim-
ming out a percentage of the samples with relatively large Mahalanobis distance
and then use the remaining samples to re-estimate the covariance matrix. Then
each time we have a new estimate of the covariance matrix, we can recalculate
the Mahalanobis distance of every sample and reselect samples that need to be
trimmed. We can repeat the above process until a stable estimate of the covari-
ance matrix is obtained. This iterative scheme is known as multivariate trimming
(MVT) – another popular robust estimator. By construction, the breakdown point
of MVT does not depend on the dimension of the problem and only depends on
the chosen trimming percentage.

When the percentage of outliers is somehow known, it is relatively easy to
determine how many samples need to be trimmed. It usually takes only a few
iterations for the iteration to converge. However, if the percentage is wrongfully
specified, the MVT is known to have trouble to converge or it may converge to
a wrong estimate of the covariance matrix. In Chapter ??, we will discuss in the
context of GPCA, how MVT can be modified when the percentage is not known.

A.5.3 Random Sampling-Based Outlier Detection
When the outliers constitute of a large portion (up to 50% or even more than 50%)
of the data set, the (ML) estimate θ̂N obtained from all the samples can be so
severely corrupted that the sample influence and the Mahalanobis distance com-
puted based on it become useless in discriminating outliers from valid samples.8
This motivates estimating the model parameter θ using only a (randomly sam-
pled) small subset of the samples to begin with. Least median of squares (LMS)
and random sample consensus (RANSAC) are two such methods and we now
give a brief discussion below.

Least Median Estimation

If we know that only less than half of the samples are potential outliers, it is then
reasonable to use only half of the samples to estimate the model parameter. But
which half of the samples? We know the maximum-likelihood estimate minimizes
the sum of negative log-likelihoods:

θ̂N = arg min
θ

N�

i=1

− log p(xi, θ). (A.58)

As outliers are the ones of small probability hence large negative log-likelihood,
we can order the values of the negative log-likelihood and eliminate from the

8Thus, the iterative process is likely to converge to a local minimum other than the true model
parameter. Sometimes, it can even be the case that the role of inliers and outliers are exchanged with
respect to the converged estimate.
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above objective half of the samples that have relatively larger values:

θ̂N/2 = arg min
θ

�

j

− log p(xj , θ), where

− log p(xj , θ) ≤ medianxi∈X − log p(xi, θ). (A.59)

A popular approximation to the above objective is to simply minimize the median
value of the negative log-likelihood:

θ̂M
.= arg min

θ
medianxi∈X − log p(xi, θ). (A.60)

We call θ̂M the least median estimate. In the case of Gaussian noise model,
− log p(xi, θ) is proportional to the squared error:

− log p(xi, θ) ∝ �xi − x̂i�
2.

For this reason, the estimate θ̂M is more often known as the least median of
squares (LMS) estimate9.

However, without knowing θ, it is impossible to order the log-likelihoods or
the squared errors, let alone to compute the median. A typical method to resolve
this difficulty is to randomly sample a number of small subsets of the data:

X1,X2, . . . ,Xm ⊂ X, (A.61)

where each subset Xj is independently drawn and contains k � N samples.
So, if p is the fraction of valid samples (the “inliers”), then with probability q =
1− (1− pk)m, one of the above subsets will contain only valid samples. In other
words, if we want to be of probability q that one of the selected subsets contains
only valid samples, we need to randomly sample at least

m ≥
log(1− q)
log(1− pk)

(A.62)

subsets of k samples.
Using each subset Xj , we can compute an estimate θ̂j of the model and use

the estimate to compute the median for the remaining N − k samples in X \Xj :

M̂j
.= medianxi∈X\Xj

− log p(xi, θ̂j). (A.63)

Then the least median estimate θ̂M is approximated by the θ̂j∗ that gives the
smallest median M̂j∗ = minj M̂j .

In the case of Gaussian noise model, based on the order statistics of squared
errors, we can use the median statistic to obtain an (asymptotically unbiased)
estimate of the variance, or scale, of the error as follows:

σ̂ =
N + 5

NΦ−1(0.5 + p/2)
�

medianxi∈X�xi − x̂i�
2, (A.64)

9The importance of median for robust estimation were pointed out first in the article of [Hampel,
1974].
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where p = 0.5 for the median statistic. One then can use σ̂ to find “good” samples
in X whose squared errors are less than λσ2 for some chosen constant λ (nor-
mally less than 5). Using such good samples, we can recompute a more efficient
(ML) estimate θ̂ of the model.

Random Sample Consensus (RANSAC)

In theory, the breakdown point of the least median estimate is up to 50% outliers.
In many practical situations however, there might be more than half outlying sam-
ples in the data. Random Sample Consensus (RANSAC) [Fischler and Bolles,
1981] is a method that is designed to work for such highly contaminated data.

In many aspects, RANSAC is actually very much similar to LMS. The main
difference is that instead of looking at the median statistic,10 RANSAC try to
find, among all the estimates {θ̂j} obtained from the subsets {Xj}, the one that
maximizes the number of samples that have error residual (measured either by
the negative log-likelihood or the squared error) smaller than a pre-specified error
tolerance:

θ̂j∗
.= arg max

θ̂j

#{xi ∈ X : − log(xi, θ̂j) ≤ τ}. (A.65)

In other words, θ̂j∗ achieves the highest “consensus” among all the sample esti-
mates {θ̂j}, hence the name “random sample consensus” (RANSAC). To improve
the efficiency of the estimate, we can recompute an ML estimate θ̂ of the model
from all the samples that are consistent with θ̂j∗ .

Notice that for RANSAC, one needs to specify the error tolerance τ a priori.
In other words, RANSAC requires to know the variance σ2 of the error a priori,
while LMS normally does not. There have been a few variations of RANSAC in
the literature that relax this requirement. We here do not elaborate on them and
interested readers may refer to [Steward, 1999] and references therein.

However, in the context of GPCA, the random sampling techniques have not
been so effective. The reason is largely because the number of subsets needed
grows prohibitively high when the dimension of the model is large or the model
is a mixture model such as an arrangement of subspaces. Other complications
may also arise when dealing with a mixture model. We will give a more detailed
account of these complications in Chapter 5.

10which becomes meaningless when the fraction of outliers is over 50%.
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Appendix B
Basic Facts from Algebraic Geometry

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain

As a centuries-old practice in science and engineering, people often fit poly-
nomials to a given set of data points. In this book, we often use the set of zeros
of (multivariate) polynomials to model a given data set. In mathematics, poly-
nomials and their zero sets are studied in Algebraic Geometry, with Hilbert’s
Nullstellensatz establishing the basic link between Algebra (polynomials) and
Geometry (the zero set of polynomials, a geometric object). In order to make
this book self-contained, in this appendix, we review some of the basic notions
and facts that are frequently used in this book. For a more systematic introduction
to this topic, the reader may refer to the classic texts of Lang [Lang, 1993] and
Eisenbud [Eisenbud, 1996].

B.1 Polynomial Ring

Consider a D-dimensional vector space over a field R (of characteristic 0), de-
noted by RD, where R is usually the field of real numbers R or the field of
complex numbers C.

Let R[x] = [x1, x2, . . . , xD] be the set of all polynomials of D variables
x1, x2, . . . , xD. Then R[x] is a commutative ring with two basic operations:
“summation” and “multiplication” of polynomials. The elements of R are called
scalars or constants. A monomial is a product of the variables; its degree is the
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number of the variables (counting repeats). A monomial of degree n is of the form
xn = xn1

1 xn2
2 · · ·xnD

D with 0 ≤ nj ≤ n and n1 + n2 + · · ·+ nD = n. There are
a total of

Mn(D) .= ( D+n−1
n ) =

�
D+n−1

D−1

�

different degree-n monomials.

Definition B.1 (Veronese Map). For given n and D, the Veronese map of degree
n, denoted as νn : RD → RMn(D), is defined as:

νn : [x1, . . . , xD]T �→ [. . . ,xn, . . .]T , (B.1)

where xn are degree-n monomials of the form xn1
1 xn2

2 · · ·xnD
D with n =

(n1, n2, . . . , nD) chosen in the degree-lexicographic order.

Example B.2 (The Veronese Map of Degree 2 in 3 Variables). If x = [x1, x2, x3]
T
∈

R
3, the Veronese map of degree 2 is given by:

ν2(x) = [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3]

T
∈ R

6
.

In the context of Kernel methods (Chapter 2), the Veronese map is usually
referred to as the polynomial embedding and the ambient space RMn(D) is called
the feature space.

A term is a scalar multiplying a monomial. A polynomial p(x) is said to be
homogeneous if all its terms have the same degree. Sometimes, the word form is
used to mean a homogeneous polynomial. Every homogeneous polynomial p(x)
of degree n can be written as:

p(x) = cT
nνn(x) =

�
cn1,...,nDxn1

1 · · ·xnD
D , (B.2)

where cn1,...,nD ∈ R are the coefficients associated with the monomials xn =
xn1

1 · · ·xnD
D .

In this book, we are primarily interested in the algebra of homogeneous
polynomials with D variables.1 Because of that, we view RD as a projective
space – the set of one-dimensional subspaces (meaning lines through the ori-
gin). Any one-dimensional subspace, say a line L, can be represented by a point
[a1, a2, . . . , aD]T �= [0, 0, . . . , 0]T on the line. The result is a projective (D−1)-
space over R which can be regarded as the D-tuples [a1, a2, . . . , aD]T of elements
of R, modulo the equivalence relation [a1, a2, . . . , aD]T ∼ [ba1, ba2, . . . , baD]T
for all b �= 0 in R.

If p(x1, x2, . . . , xD) is a homogeneous polynomial of degree n, then for b ∈ R
we have

p(ba1, ba2, . . . , baD) = bnp(a1, a2, . . . , aD). (B.3)

1For algebra of polynomials defined on R
D as an affine space, the reader may refer to [Lang,

1993].
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Therefore, whether p(a1, a2, . . . , aD) = 0 or not on a line L does not depend on
the representative point chosen on the line L.

We may view R[x] as a graded ring which can be decomposed as

R[x] =
∞�

i=0

Ri = R0 ⊕R1 ⊕ · · ·⊕Rn ⊕ · · · , (B.4)

where Ri consists of all polynomials of degree i. In particular, R0 = R is the
set of nonzero scalars (or constants). It is convention (and convenient) to define
the degree of the zero element, 0, in R to be infinite or −1. R1 is the set of all
homogeneous polynomials of degree one, i.e., the set of 1-forms,

R1
.=

�
b1x1 + b2x2 + · · ·+ bDxD : [b1, b2, . . . , bD]T ∈ RD

�
. (B.5)

Obviously, the dimension of R1 as a vector space is also D. R1 can also be viewed
as the dual space (RD)∗ of RD. For convenience, we also define the following
two sets

R≤m
.=

m�

i=0

Ri = R0 ⊕R1 ⊕ · · ·⊕Rm,

R≥m
.=

∞�

i=m

Ri = Rm ⊕Rm+1 ⊕ · · · ,

which are the set of polynomials of degree up to degree m and those of degree
higher and equal to m, respectively.

B.2 Ideals and Algebraic Sets

Definition B.3 (Ideal). An ideal in the (commutative) polynomial ring R[x] is an
additive subgroup I (with respect to the summation of polynomials) such that if
p(x) ∈ I and q(x) ∈ R[x], then p(x)q(x) ∈ I .

From the definition, it is easy to verify that if I, J are two ideals of R[x], their
intersection K = I ∩ J is also an ideal. The previously defined set R≥m is an
ideal for every m. In particular, R≥1 is the so-called irrelevant ideal, sometimes
denoted by R+.

An ideal is said to be generated by a subset G ⊂ I if every element p(x) ∈ I
can be written in the form

p(x) =
k�

i=1

qi(x)gi(x), with qi(x) ∈ R[x] and gi(x) ∈ G. (B.6)

We write (G) for the ideal generated by a subset G ⊂ R[x]; if G contains only
a finite number of elements {g1, . . . , gk}, we usually write (g1, . . . , gk) in place
of (G). An ideal I is principal if it can be generated by one element (i.e., I =
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p(x)R[x] for some polynomial p(x)). Given two ideals I and J , the ideal that is
generated by the product of elements in I and J

{f(x)g(x), f(x) ∈ I, g(x) ∈ J}

is called the product ideal, denoted as IJ .
An ideal I of the polynomial ring R[x] is prime if I �= R[x] and if p(x), q(x) ∈

R[x] and p(x)q(x) ∈ I implies that p(x) ∈ I or q(x) ∈ I . If I is prime, then for
any ideals J,K with JK ⊆ I we have J ⊆ I or K ⊆ I .

A polynomial p(x) is said to be prime or irreducible if p(x) generates a prime
ideal. Equivalently, if p(x) is irreducible if p(x) is not a nonzero scalar and
whenever p(x) = f(x)g(x), then one of f(x) and g(x) is a nonzero scalar.

Definition B.4 (Homogeneous Ideal). A homogeneous ideal of R[x] is an ideal
that is generated by homogeneous polynomials.

Note that the sum of two homogeneous polynomials of different degrees
is no longer a homogeneous polynomial. Thus, a homogeneous ideal contains
nonhomogeneous polynomials too.

Definition B.5 (Algebraic Set). Given a set of homogeneous polynomials J ⊂

R[x], we may define a corresponding (projective) algebraic set Z(J) as a subset
of RD to be

Z(J) .= {[a1, a2, . . . , aD]T ∈ RD
|f(a1, a2, . . . , aD) = 0,∀f ∈ J}. (B.7)

If we view algebraic sets as the closed sets of RD, this assigns a topology to
the space RD, which is called the Zariski topology.2

If X = Z(J) is an algebraic set, an algebraic subset Y ⊂ X is a set of the form
Y = Z(K) (where K is a set of homogeneous polynomials) that happens to be
contained in X . A nonempty algebraic set is said to be irreducible if it is not the
union of two nonempty smaller algebraic subsets. We call irreducible algebraic
sets as algebraic varieties. For instance, any subspace of RD is an irreducible
algebraic variety.

There is an inverse construction of algebraic sets. Given any subset X ⊆ RD,
we define the vanishing ideal of X to be the set of all polynomials that vanish on
X:

I(X) .= {f(x) ∈ R[x]|f(a1, a2, . . . , an) = 0,∀[a1, a2, . . . , an]T ∈ X}. (B.8)

One can easily verify that I(X) is an ideal. Treating two polynomials as equiva-
lent if they agree at all the points of X , we get the coordinate ring A(X) of X as
the quotient R[x]/I(X).

Now, consider a set of homogeneous polynomials J ⊂ R[x] (which is not
necessarily an ideal) and a subset X ⊂ RD (which is not necessarily an algebraic
set.)

2This is because the intersection of any algebraic sets is an algebraic set; and the union of finitely
many algebraic sets is also an algebraic set.
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Proposition B.6. The following facts are true:

1. I(Z(J)) is an ideal that contains J;

2. Z(I(X)) is an algebraic set that contains X .

Proposition B.7. If X is an algebraic set and I(X) is the ideal of X , then X is
irreducible if and only if I is a prime ideal.

Proof. If X is irreducible and f(x)g(x) ∈ I , since Z({I, f(x)})∪Z({I, g(x)}) =
X , then either X = Z({I, f(x)}) or X = Z({I, g(x)}). That is, either f(x) or
g(x) vanishes on X and is in I . Conversely, suppose X = X1 ∪X2. If both X1

and X2 are algebraic sets strictly smaller than X , then there exist polynomials
f1(x) and f2(x) that vanish on X1 and X2 respectively, but not on X . Since the
product f1(x)f2(x) vanishes on X , we have f1(x)f2(x) ∈ I but neither f1(x)
or f2(x) is in I . So I is not prime.

B.3 Algebra and Geometry: Hilbert’s Nullstellensatz

In practice, we often use an algebraic set to model a given set of data points
and the (ideal of) polynomials that vanish on the set provide a natural parametric
model for the data. One question that is of particular importance in this context is:
Is there an one-to-one correspondence between ideals and algebraic sets? This is
in general not true as the ideals I = (f2(x)) and J = (f(x)) both vanish on the
same algebraic set as the zero-set of the polynomial f(x). Fortunately, this turns
out to be essentially the only case that prevents the one-to-one correspondence
between ideals and algebraic sets.

Definition B.8 (Radical Ideal). Given a (homogeneous) ideal I of R[x], the
(homogeneous) radical ideal of I is defined to be

rad(I) .= {f(x) ∈ R[x]|f(x)m
∈ I for some integer m}. (B.9)

We leave it to the reader to verify that rad(I) is indeed an ideal and furthermore,
if I is homogeneous, so is rad(I).

Hilbert proved in 1893 the following important theorem that establishes one of
the fundamental results in algebraic geometry:

Theorem B.9 (Nullstellensatz). Let R be an algebraically closed field (e.g., R =
C). If I ⊂ R[x] is an (homogeneous) ideal, then

I(Z(I)) = rad(I). (B.10)

Thus, the correspondences I �→ Z(I) and X �→ I(X) induce a one-to-one
correspondence between the collection of (projective) algebraic sets of RD and
(homogeneous) radical ideals of R[x].
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One may find up to five different proofs for this theorem in [Eisenbud, 1996].3
The importance of the Nullstellensatz cannot be exaggerated. It is a natural ex-
tension of Gauss’ fundamental theorem of algebra4 to multivariate polynomials.
One of the remarkable consequences of the Nullstellensatz is that it identifies a
geometric object (algebraic sets) with an algebraic object (radical ideals).

In our context, we often assume our data points are drawn from an algebraic
set and use the set of vanishing polynomials as a parametric model for the data.
Hilbert’s Nullstellensatz guarantees such a model for the data is well-defined and
unique. To some extent, when we fit vanishing polynomials to the data, we are
essentially inferring the underlying algebraic set. In the next section, we will dis-
cuss how to extend Hilbert’s Nullstellensatz to the practical situation in which we
only have finitely many sample points from an algebraic set.

B.4 Algebraic Sampling Theory

We often face a common mathematical problem: How to identify a (projective)
algebraic set Z ⊆ RD from a finite, though maybe very large, number of sample
points in Z? In general, the algebraic set Z is not necessarily irreducible5 and the
ideal I(Z) is not necessarily prime.

From an algebraic viewpoint, it is impossible to recover a continuous algebraic
set Z from a finite number of discrete sample points. To see this, note that the set
of all polynomials that vanish on one (projective) point z is a submaximal ideal6
m in the (homogeneous) polynomial ring R[z]. The set of polynomials that vanish
on a set of sample points {z1,z2, . . . ,zi} ⊆ Z is the intersection

ai
.= m1 ∩m2 ∩ · · · ∩mi, (B.11)

which is a radical ideal that is typically much larger than I(Z).
Thus, some additional assumptions must be imposed on the algebraic set in

order to make the problem of inferring I(Z) from the samples well-defined. Typi-
cally, we assume that the ideal I(Z) of the algebraic set Z in question is generated
by a set of (homogeneous) polynomials whose degrees are bounded by a relatively
small n. That is,

I(Z) .=
�
f1, f2, . . . , fs

�
s.t. deg(fj) ≤ n,

Z(I) .=
�
z ∈ RD

| fi(z) = 0, i = 1, 2, . . . , s
�
.

3Strictly speaking, for homogeneous ideals, for the one-to-one correspondence to be exact, one
should only consider proper radical ideals.

4Every degree-n polynomial in one variable has exactly n roots in an algebraically closed field
such as C (counting repeats).

5For instance, it is often the case that Z is the union of many subspaces or algebraic surfaces.
6The ideal of a point in the affine space is a maximal ideal; and the ideal of a point in the projective

space is called a submaximal ideal. They both are “maximal” in the sense that they cannot be a subideal
of any other homogeneous ideal of the polynomial ring.
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We are interested in retrieving I(Z) uniquely from a set of sample points
{z1,z2, . . . ,zi} ⊆ Z. In general, I(Z) is always a proper subideal of ai, regard-
less of how large i is. However, the information about I(Z) can still be retrieved
from ai in the following sense.

Theorem B.10 (Sampling of an Algebraic Set). Consider a nonempty set Z ⊆

RD whose vanishing ideal I(Z) is generated by polynomials in R≤n. Then there
is a finite sequence FN = {z1, . . . ,zN} such that the subspace I(FN ) ∩ R≤n

generates I(Z).

Proof. Let I≤n = I(Z) ∩ R≤n. This vector space generates I(Z). Let a0 =
R[x] = I(∅). Let b0 = a0 ∩ R≤n and let A0 = (b0), the ideal generated by
polynomials in a0 of degree less than or equal to n. Since 1 ∈ R[x] ∩ R≤n is
the generator of this ideal, we have A0 = R[x]. Since Z �= ∅, then A0 �= I(Z).
Set N = 1 and pick a point z1 ∈ Z. Then 1(z1) �= 0 (1 is the function that
assigns 1 to every point of Z.). Let a1 be the ideal that vanishes on {z1} and
define b1 = a1 ∩ R≤n. Further let A1 = (b1).7 Since I(Z) ⊆ a1, it follows that
I≤n ⊆ b1. If A1 = I(Z), then we are done. Suppose then that I(Z) ⊂ A1.

Let us do the induction at this point. Suppose we have found a finite sequence
FN = {z1,z2, . . . ,zN} ⊂ Z with

I(FN ) = aN (B.12)
bN = aN ∩R≤n (B.13)
AN = (bN ) (B.14)

b0 ⊃ b1 ⊃ · · · ⊃ bN ⊇ I≤n. (B.15)

It follows that I≤n ⊆ bN and that I(Z) ⊆ AN . If equality holds here, then we
are done. If not, then there is a function g ∈ bN not in I(Z) and an element
zN+1 ∈ Z for which g(zN+1) �= 0. Set FN+1 = {z1, . . . ,zN ,zN+1}. Then
one gets aN+1, bN+1, AN+1 as before with

b0 ⊃ b1 ⊃ · · · ⊃ bN ⊃ bN+1 ⊇ I≤n. (B.16)

We obtain a descending chain of subspaces of the vector space R≤n. This chain
must stabilize, since the vector space is finite dimensional. Hence there is an N
for which bN = I≤n and we are done.

We point out that in the above proof, no clear bound on the total number N of
points needed is given.8 Nevertheless, from the proof of the theorem, the set of
finite sequences of samples that satisfy the theorem is an open set. This is of great

7Here we are using the convention that (S) is the ideal generated by the set S. Recall also that
the ring R[x] is noetherian by the Hilbert basis theorem and so all ideals in the ring are finitely
generated [Lang, 1993].

8However, loose bounds can be easily obtained from the dimension of R≤n as a vector space. In
fact, in the algorithm, we implicitly used the dimension of R≤n as a bound for N .
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practical importance: With probability one, the vanishing ideal of an algebraic set
can be correctly determined from a randomly chosen sequence of samples.

Example B.11 (A Hyperplane in R3). Consider a plane P = {z ∈ R
3 : f(z) = az1 +

bz2 + cz3 = 0}. Given any two points in general position in the plane P , f(x) = ax1 +
bx2 + cx3 will be the only (homogeneous) polynomial of degree 1 that fits the two points.
In terms of the notation introduced earlier, we have I(P ) =

`
a2 ∩R≤1

´
.

Example B.12 (Zero Polynomial). When Z = R
D , the only polynomial that vanishes on

Z is the zero polynomial, i.e., I(Z) = (0). Since the zero polynomial is regarded to be of
degree −1, we have (aN ∩R≤n) = ∅ for any given n (and large enough N ).

The above theorem can be viewed as a first step towards an algebraic analogy
to the well-known Nyquist-Shannon sampling theory in signal processing, which
stipulates that a continuous signal with a limited frequency bandwidth Ω can be
uniquely determined from a sequence of discrete samples with a sampling rate
higher than 2Ω. Here a signal is replaced by an algebraic set and the frequency
bandwidth is replaced by the bound on the degree of polynomials. It has been
widely practiced in engineering that a curve or surface described by polynomial
equations can be recovered from a sufficient number of sample points in general
configuration, a procedure often loosely referred to as “polynomial fitting.” How-
ever, the algebraic basis for this is often not clarified and the conditions for the
uniqueness of the solution are usually not well characterized or specified. This
problem certainly merits further investigation.

B.5 Decomposition of Ideals and Algebraic Sets

Modeling a data set as an algebraic set does not stop at obtaining its vanishing
ideal (and polynomials). The ultimate goal is to extract all the internal geometric
or algebraic structures of the algebraic set. For instance, if an algebraic set consists
of multiple subspaces, called a subspace arrangement, we need to know how to
derive from its vanishing ideal the number of subspaces, their dimensions, and a
basis of each subspace.

Thus, given an algebraic set X or equivalently its vanishing ideal I(X), we
want to decompose or segment it into a union of subsets each of which can no
longer be further decomposed. As we have mentioned earlier, an algebraic set
that cannot be decomposed into smaller algebraic sets is called irreducible. As
one of the fundamental finiteness theorem of algebraic geometry, we have:

Theorem B.13. An algebraic set can have only finitely many irreducible
components. That is, for some n,

X = X1 ∪X2 ∪ · · · ∪Xn, (B.17)

where X1, X2, . . . ,Xn are irreducible algebraic varieties.
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Proof. The proof is essentially based on the fact that the polynomial ring R[x]
is Noetherian (i.e., finitely generated), and there are only finitely many prime
ideals containing I(X) that are minimal with respect to inclusion (See [Eisenbud,
1996]).

The vanishing ideal I(Xi) of each irreducible algebraic variety Xi must be a
prime ideal that is minimal over the radical ideal I(X) – there is no prime subideal
of I(Xi) that includes I(X). The ideal I(X) is precisely the intersection of all
the minimal prime ideals:

I(X) = I(X1) ∩ I(X2) ∩ · · · ∩ I(Xn). (B.18)

This intersection is called a minimal primary decomposition of the radical ideal
I(X). Thus the primary decomposition of a radical ideal is closely related to
the notion of “segmenting” or “decomposing” an algebraic set into multiple irre-
ducible algebraic varieties: If we know how to decompose the ideal, we can easily
find the irreducible algebraic variety corresponding to each primary component.

We are particularly interested in a special class of algebraic sets known as sub-
space arrangements. One of the goals of generalized principal component analysis
(GPCA) is to decompose a subspace arrangement into individual (irreducible)
subspaces (see Chapter 3). In Appendix C, we will further study the algebraic
properties of subspace arrangements.

B.6 Hilbert Function, Polynomial, and Series

Finally, we introduce an important invariant of algebraic sets, given by the Hilbert
function. Knowing the values of Hilbert function can be very useful in the identi-
fication of subspace arrangements, especially the number of subspaces and their
dimensions.

Given a (projective) algebraic set Z and its vanishing ideal I(Z), We can grade
the ideal by degree as

I(Z) = I0(Z)⊕ I1(Z)⊕ · · ·⊕ Ii(Z)⊕ · · · . (B.19)

The Hilbert function of Z is defined to be

hI(i)
.= dim(Ii(Z)). (B.20)

Notice that hI(i) is exactly the number of linearly independent polynomials of
degree i that vanish on Z. In this book, we also refer to hI as the Hilbert function
of the algebraic set Z.9

9In the literature, however, the Hilbert function of an algebraic set Z is sometimes defined to be
the dimension of the homogeneous components of the coordinate ring A(Z)

.
= R[x]/I(Z) of Z,

which is the codimension of Ii(Z) as a subspace in Ri.
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The Hilbert series, also known as the Poincaré series, of the ideal I is defined
to be the power series10

H(I, t) .=
∞�

i=0

hI(i)ti = hI(0) + hI(1)t + hI(2)t2 + · · · . (B.21)

Thus, given H(I, t), we know all the values of the Hilbert function hI from its
coefficients.

Example B.14 (Hilbert Series of the Polynomial Ring). The Hilbert series of the
polynomial ring R[x] = R[x1, x2, . . . , xD] is

H(R[x], t) =
∞X

i=0

dim(Ri)t
i =

∞X

i=0

`
D+i−1

i

´
t
i =

1
(1− t)D

. (B.22)

One can easily verify the correctness of the formula with the special case D = 1. Obvi-
ously, the coefficients of the Hilbert series of any ideal (as a subset of R[x]) are bounded
by those of H(R[x], t) and hence the Hilbert series converges.

Example B.15 (Hilbert Series of a Subspace). The above formula can be easily general-
ized to the vanishing ideal of a subspace S of dimension d in RD . Let the co-dimension of
the subspace be c = D − d. We have

H(I(S), t) =

„
1

(1− t)c
− 1

«
·

„
1

(1− t)D−c

«
=

1− (1− t)c

(1− t)D
. (B.23)

The following theorem, also due to Hilbert, reveals that the values of the Hilbert
function of an ideal have some remarkable properties:

Theorem B.16 (Hilbert Polynomial). Let I(Z) be the vanishing ideal of an al-
gebraic set Z over R[x1, . . . , xD], then the values of its Hilbert function hI(i)
agree, for large i, with those of a polynomial of degree ≤ D. This polynomial,
denoted as HI(i), is called the Hilbert polynomial of I(Z).

Then in the above example, for the polynomial ring, the Hilbert function itself
is obviously a polynomial in i

HR(i) = hR(i) =
�

D+i−1
i

�
=

1
(D − 1)!

(D + i− 1)(D + i− 2) · · · (i + 1).

However, for a general ideal I (of an algebraic set), it is not necessarily true
that all values of its Hilbert function hI agree with those of its Hilbert polynomial
HI . They might agree only when i is large enough. Thus, for a given algebraic set
(or ideal), it would be interesting to know how large i needs to be in order for the
Hilbert function to coincide with a polynomial. As we will see in Appendix B, for
subspace arrangements, there is a very elegant answer to this question. One can

10In general, the Hilbert series can be defined for any finitely-generated graded module E =L∞
i=1 Ei using any Euler-Poincaré Z-valued function hE(·) as H(E, t)

.
=

P∞
i=0 hE(i)ti [Lang,

1993]. Here, for E = I , we choose hI(i) = dim(Ii).
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even derive closed-form formulae for the Hilbert polynomials. These results are
very important and useful for Generalized Principal Component Analysis, both
conceptually and computationally.
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Appendix C
Algebraic Properties of Subspace
Arrangements

“He who seeks for methods without having a definite problem in mind
seeks in the most part in vain.”

– David Hilbert

In this book, the main problem that we study is how to segment a collection of
data points drawn from a subspace arrangement A = {S1, S2, . . . , Sn}, formally
introduced in Chapter 4.1 ZA = S1∪S2∪· · ·∪Sn is the union of all the subspaces.
ZA can be naturally described as the zero set of a set of polynomials, which makes
it an algebraic set. The solution to the above problem typically relies on inferring
the subspace arrangement ZA from the data points. Thus, knowing the algebraic
properties of ZA may significantly facilitate this task.

Although subspace arrangements seem to be a very simple class of algebraic
sets, a full characterization of their algebraic properties is a surprisingly difficult,
if not impossible, task. Subspace arrangements have been a centuries-old subject
that still actively interweaves many mathematical fields: algebraic geometry and
topology, combinatorics and complexity theory, graph and lattice theory, etc. Al-
though the results are extremely rich and deep, in fact only a few special classes
of subspace arrangements have been well characterized.

In this appendix, we examine some important concepts and properties of
subspace arrangements that are closely related to the subspace-segmentation
problem. The purpose of this appendix is two-fold: 1. to provide a rigorous jus-

1Unless stated otherwise, the subspace arrangement considered will always be a central
arrangement, as in Definition 3.4.



132 Appendix C. Algebraic Properties of Subspace Arrangements

tification for the GPCA algorithms derived in the book, especially Chapter 3; 2.
to introduce important properties of subspace arrangements, which may suggest
potential improvements of the algorithms. For readers who are interested only in
the basic GPCA algorithms and their applications, this appendix can be skipped
at first read.

C.1 Ideals of Subspace Arrangements

Vanishing Ideal of a Subspace.

A d-dimensional subspace S can be defined by k = D − d linearly independent
linear forms {l1, l2, . . . , lk}:

S
.= {x ∈ RD : li(x) = 0, i = 1, 2, . . . , k = D − d}, (C.1)

where li is of the form li(x) = ai1x1 + ai2x2 + · · · aiDxD with aij ∈ R. Let S∗

denote the space of all linear forms that vanish on S, then dim(S∗) .= k = D−d.
The subspace S is also called the zero set of S∗, i.e., points in the ambient space
that vanish on all polynomials in S∗, which is denoted as Z(S∗). We define

I(S) .= {p ∈ R[x] : p(x) = 0,∀x ∈ S}. (C.2)

Clearly, I(S) is an ideal generated by linear forms in S∗, and it contains poly-
nomials of all degrees that vanish on the subspace S. Every polynomial p(x) in
I(S) can be written as a superposition:

p = l1h1 + l2h2 + · · ·+ lkhk (C.3)

for some polynomials h1, h2, . . . , hk ∈ R[x]. Furthermore, I(S) is a prime
ideal.2

Vanishing Ideal of a Subspace Arrangement.

Given a subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn, its vanishing ideal is

I(ZA) = I(S1) ∩ I(S2) ∩ · · · ∩ I(Sn). (C.4)

The ideal I(ZA) can be graded by the degree of the polynomial

I(ZA) = Im(ZA)⊕ Im+1(ZA)⊕ · · ·⊕ Ii(ZA)⊕ · · · . (C.5)

Each Ii(ZA) is a vector space that consists of forms of degree i in I(ZA), and
m ≥ 1 is the least degree of the polynomials in I(ZA). Notice that forms that
vanish on ZA may have degrees strictly less than n. One example is an arrange-
ment of two lines and one plane in R3. Since any two lines lie on a plane, the
arrangement can be embedded into a hyperplane arrangement of two planes, and

2It is a prime ideal because for any product p1p2 ∈ I(S), either p1 ∈ I(S) or p2 ∈ I(S).
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there exist forms of second degree that vanish on the union of the three subspaces.
The dimension of Ii(ZA) is known as the Hilbert function hI(i) of ZA.

Example C.1 (Boolean Arrangement). The Boolean arrangement is the collection of co-
ordinate hyperplanes Hj

.
= {x : xj = 0}, 1 ≤ j ≤ D. The vanishing ideal of the Boolean

arrangement is generated by a single polynomial p(x) = x1x2 · · ·xD of degree D.

Example C.2 (Braid Arrangement). The Braid arrangement is the collection of hyper-
planes Hjk

.
= {x : xj − xk = 0}, 1 ≤ j �= k ≤ D. Similarly, the vanishing ideal the

Braid arrangement is generated by a single polynomial p(x) =
Q

1≤j<k≤D(xj − xk).

Theorem C.3 (Regularity of Subspace Arrangements). The vanishing ideal
I(ZA) of a subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn is n-regular. This
implies that I(Z) has a set of generators with degree ≤ n.

Proof. For the concept of n-regularity and the proof of the above statement,
please refer to [Derksen, 2005] and references therein.

Due to the above theorem, the subspace arrangement ZA is uniquely deter-
mined as the zero set of all polynomials of degree up to n in its vanishing ideal,
i.e., as the zero set of polynomials in

ZA = Z(I(n)),

where I(n)
.= I0 ⊕ I1 ⊕ · · ·⊕ In.

Product Ideal of a Subspace Arrangement

Let J(ZA) be the ideal generated by the products of linear forms

{l1 · l2 · · · ln, ∀lj ∈ S∗j , j = 1, . . . , n}.

Or equivalently, we can define J(ZA) to be the product of the n ideals
I(S1), I(S2), . . . , I(Sn):

J(ZA) .= I(S1) · I(S2) · · · I(Sn).

Then, the product ideal J(ZA) is a subideal of I(ZA). Nevertheless, the two
ideals share the same zero set:

ZA = Z(J) = Z(I). (C.6)

By definition I is the largest ideal that vanishes on ZA. I is in fact the radical
ideal of the product ideal J , i.e., I = rad(J). We may also grade the ideal J(ZA)
by the degree

J(ZA) = Jn(ZA)⊕ Jn+1(ZA)⊕ · · ·⊕ Ji(ZA)⊕ · · · . (C.7)

Notice that, unlike I , the lowest degree of polynomials in J always starts from
n, the number of subspaces. The Hilbert function of J is denoted as hJ(i) =
dim(Ji(ZA)). As we will soon see, the Hilbert functions (or polynomials, or se-
ries) of the product ideal J and the vanishing ideal I have very interesting and
important relationships.
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C.2 Subspace Embedding and PL-Generated Ideals

Let ZA be a central subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn. Let ZA� =
S�1 ∪ S�2 ∪ · · ·∪ S�n� be another (central) subspace arrangement. If we have ZA ⊆
ZA� , then it is necessary that for all Sj ⊂ ZA there exists S�j� ⊂ ZA� such that
Sj ⊆ S�j� . If so, we call

ZA ⊆ ZA�

a subspace embedding. Beware that it is possible n� < n for a subspace embed-
ding as more than one subspace Sj of ZA may belong to the same subspace Sj� of
ZA� . The subspace arrangements in Theorem 3.13 are examples of subspace em-
bedding. If ZA� happens to be a hyperplane arrangement, we call the embedding
a hyperplane embedding.

Is the zero-set of each homogeneous component of I(ZA), in particular
Im(ZA), a subspace embedding of ZA? Unfortunately, this is not true as counter
examples can be easily constructed.

Example C.4 (Five Lines in R3). Consider five points in P2 (or equivalently, five lines
in R3) The Veronese embedding of order two of a point x = [x1, x2, x3] ∈ R3

is [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3] ∈ R6. For five points in general position, the matrix

V 2 = [ν2(x1), ν2(x2), . . . ν2(x5)] is of rank 5. Let cT be the only vector in the left null
space of V 2: cT V 2 = 0. Then p(x) = cT

ν2(x) is in general an irreducible quadratic
polynomial. Thus, the zero-set of I2(ZA) = p(x) is not a subspace arrangement but an
(irreducible) cone in R3.

Nevertheless, the following statement allows us to retrieve a subspace embed-
ding from any polynomials in the vanishing ideal I(ZA).

Theorem C.5 (Hyperplane Embedding via Differentiation). For every polyno-
mial p in the vanishing ideal I(ZA) of a subspace arrangement ZA = S1 ∪ S2 ∪

· · · ∪ Sn and n points {xj ∈ Sj}
n
j=1 in general position, the union of the hy-

perplanes ∪n
j=1Hj = {x : Dp(xj)T x = 0} is a hyperplane embedding of the

subspace arrangement.

Proof. The proof is based on the simple fact that the derivative (gradient)∇f(x)
of any smooth function f(x) is orthogonal to (the tangent space of) its level set
f(x) = c.

In the above statement, if we replace p with a collection of polynomials in the
vanishing ideal, their derivatives give a subspace embedding in a similar fashion
as the hyperplane embedding. When the collection contains all the generators of
the vanishing ideal, the subspace embedding becomes tight – the resulting sub-
space arrangement coincides with the original one. This property has been used
in the development of GPCA algorithms in Chapter 3.

Another concept that is closely related to subspace embedding is a pl-generated
ideal.

Definition C.6 (pl-Generated Ideals). An ideal is said to be pl-generated if it is
generated by products of linear forms.
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If the ideal of a subspace arrangement ZA is pl-generated, then the zero-set of
every generator gives a hyperplane embedding of ZA.

Example C.7 (Hyperplane Arrangements). If ZA is a hyperplane arrangement, I(ZA)
is always pl-generated as it is generated by a single polynomial of the form:3

p(x) = (bT
1 x)(bT

2 x) · · · (bT
nx), (C.8)

where bi ∈ R
D are the normal vectors to the hyperplanes.

Obviously, the vanishing ideal I(S) of a single subspace S is always pl-
generated. The following example shows that this is also true for an arrangement
of two subspaces.

Example C.8 (Two Subspaces). Let us show that for an arrangement ZA of two subspaces,
I(ZA) is always pl-generated. Let ZA = S1 ∪ S2 and define U

∗ .
= S

∗
1 ∩ S

∗
2 and V

∗ .
=

S
∗
1 \ U

∗
, W

∗ .
= S

∗
2 \ U

∗. Let (u1, u2, . . . , uk) be a basis for U
∗, (v1, v2, . . . , vl) a basis

for V
∗, and (w1, w2, . . . , wm) a basis for W

∗. Then obviously I(ZA) = I(S1) ∩ I(S2)
is generated by (u1, . . . , uk, v1w1, v1w2, . . . , vlwm).

Now consider an arrangement of n subspaces: ZA = S1∪S2∪ · · ·∪Sn. By its
definition, the product ideal J(ZA) is always pl-generated. Now, is the vanishing
ideal I(ZA) always pl-generated? Unfortunately, this is not true. Below are some
counterexamples.

Example C.9 (Lines in R3 [?]). For a central arrangement ZA of r lines in general position
in R3, I(ZA) is not pl-generated when r = 5 or r > 6. Example C.4 gives a proof for the
case with r = 5.

Example C.10 (Planes in R4 [?]). For a central arrangement ZA of r planes in general
position in R4, I(ZA) is not pl-generated for all r > 2.

However, can each homogeneous component Ii(ZA) be “pl-generated” when i
is large enough? For instance, can it be that In = Jn = S∗1 · S

∗
2 · · ·S

∗
n? This is in

general not true for an arbitrary arrangement and below is a counterexample.

Example C.11 (Three Subspaces in R5 – due to R. Fossum). Consider R[x] =
R[x1, . . . , x5] and an arrangement ZA of three three-dimensional subspaces in R5 whose
vanishing ideals are given by, respectively:

I(S1) = (x1, x2), I(S2) = (x3, x4), I(S3) = ((x1 + x3), (x2 + x4)).

Denote their intersection as I = I(S1) ∩ I(S2) ∩ I(S3). The intersection contains the
element

x1x4 − x2x3 = (x1 + x3)x4 − (x2 + x4)x3 = x1(x2 + x4)− x2(x1 + x3).

Then any element (x1x4 − x2x3)l(x1, . . . , x5) with l a linear form is in I3(ZA), the
homogeneous component of elements of degree three. In particular, (x1x4 − x2x3)x5 is
in I3(ZA). However, it is easy to check that this element cannot be written in the form

X

i

(aix1 + bix2)(cix2 + dix4)(ei(x1 + x3) + fi(x2 + x4))

3In algebra, an ideal which is generated by a single generator is called a principal ideal.
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for any ai, bi, ci, di, ei, fi ∈ R. Thus, I3(ZA) is not spanned by S
∗
1 · S

∗
2 · S

∗
3 .

However, notice that the subspaces in the above example are not in “general
position” – their intersections are not of the minimum possible dimension. Could
In = Jn = S∗1 · S

∗
2 · · ·S

∗
n be instead true for n subspaces if they are in general

position? The answer is yes. In fact, we can say more than that. As we will see in
the next section, from the Hilbert functions of I and J , we actually have

Ii = Ji, ∀i ≥ n

if S1, S2, . . . , Sn are “transversal” (i.e., all intersections are of minimum possible
dimension). In other words, Ji could differ from Ii only for i < n.

C.3 Hilbert Functions of Subspace Arrangements

In this section, we study the Hilbert functions of subspace arrangements defined
in Section B.6. We first discuss a few reasons why in the context of general-
ized principal component analysis, it is very important to know the values of the
Hilbert function for the vanishing ideal I or the product ideal J of a subspace
arrangement. We then examine the values of the Hilbert function for a few special
examples. Finally, we give a complete characterization of the Hilbert function,
the Hilbert polynomial, and the Hilbert series of a general subspace arrangement.
In particular, we give a closed-form formula for the Hilbert polynomial of the
vanishing ideal and the product ideal of the subspace arrangement.

C.3.1 Relationships between the Hilbert Function and GPCA
In general, for a subspace arrangement ZA = S1∪S2∪· · ·∪Sn in general position,
the values of the Hilbert function hI(i) of its vanishing ideal I(ZA) are invariant
under a continuous change of the positions of the subspaces. They depend only
on the dimensions of the subspaces d1, d2, . . . , dn or their co-dimensions ci =
D − di, i = 1, 2, . . . , n. Thus, the Hilbert function gives a rich set of invariants
of subspace arrangements. In the context of GPCA, such invariants can help to
determine the type of the subspace arrangement, such as the number of subspaces
and their individual dimensions from a given set of (possibly noisy) sample points.

To see this, consider a sufficiently large number of sample points in general
position are drawn from the subspaces X = {x1,x2, . . . ,xN} ⊂ ZA, let the
embedded data matrix (via the Veronese map of degree i) to be

V i
.= [νi(x1), νi(x2), . . . , νi(xN )]T . (C.9)

According to the Algebraic Sampling Theorem of Appendix B, the dimension of
Null(V i) is exactly the number of linearly independent polynomials of degree i
that vanish on ZA. That is, the following relation holds

dim(Null(V i)) = hI(i) (C.10)
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or equivalently,

rank(V i) = dim(Ri)− hI(i). (C.11)

Thus, if we know the Hilbert function for different subspace arrangements in ad-
vance, we can determine from the rank of the data matrix from which subspace
arrangement the sample data points are drawn. The following example illustrates
the basic idea.

Example C.12 (Three Subspaces in R3). Suppose that we only know our data are drawn
from an arrangement of three subspaces in R3. There are in total four different types of such
arrangements, shown in Figure C.1. The values of their corresponding Hilbert function are
listed in Table C.1. Given a sufficiently large number N of sample points from one of the

(a) (1, 1, 1) (b) (1, 1, 2) (c) (1, 2, 2) (d) (2, 2, 2)

Figure C.1. Four configurations of three subspaces in R3
. The numbers are the

co-dimensions (c1, c2, c3) of the subspaces.

c1 c2 c3 hI(ZA)(1) hI(ZA)(2) hI(ZA)(3)
1 1 1 0 0 1
1 1 2 0 0 2
1 2 2 0 1 4
2 2 2 0 3 7

Table C.1. Values of the Hilbert function of the four arrangements (assuming the subspaces
are in general position).

above subspace arrangements, the rank of the embedded data matrix V 3 ∈ RN×10 can be,
instead of any value between 1 and 10, only 10 − hI(3) = 9, 8, 6, 3, which correspond
to the only four possible configurations of three subspaces in R3: three planes, two planes
and one line, one plane and two lines, or three lines, respectively, as shown in Figure C.1.

This suggests that, given the dimensions of individual subspaces, we may know the rank
of the embedded data matrix. Conversely, given the rank of the embedded data matrix,
we can determine to a large extent the possible dimensions of the individual subspaces.
Therefore, knowing the values of the Hilbert function will help us to at least rule out in
advance impossible rank values for the embedded data matrix or the impossible subspace
dimensions. This is particularly useful when the data is corrupted by noise so that there is
ambiguity in determining the rank of the embedded data matrix or the dimensions of the
subspaces.

The next example illustrates how the values of Hilbert function can help
determine the correct number of subspaces.
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Example C.13 (Over-Fit Hyperplane Arrangements in R5). Consider a dataset sampled
from a number of hyperplanes in general position in R5. Suppose we only know that the
number of the hyperplanes is at most 4, and we embed the data via the degree-4 Veronese
map anyway. Table C.2 gives the possible values of the Hilbert function for an arrangement
of 4, 3, 2, 1 hyperplanes in R5, respectively. Here we use the convention that an empty set
has co-dimension 5 in R5.

c1 c2 c3 c4 hI(ZA)(4) rank(V 4)
1 1 1 1 1 69
1 1 1 5 5 65
1 1 5 5 15 55
1 5 5 5 35 35

Table C.2. Values of the Hilbert function of (codimension-1) hyperplane arrangements in
R5.

The first row shows that if the number of hyperplanes is exactly equal to the degree of
the Veronese map, then hI(4) = 1, i.e., the data matrix V 4 has a rank-1 null space. The
following rows show the values of hI(4) when the number of hyperplanes is n = 3, 2, 1,
respectively. If the rank of the matrix V 4 matches any of these values, we know exactly
the number of hyperplanes in the arrangement. Figure C.2 shows a super-imposed plot of
the singular values of V 4 for samples points drawn from n = 1, 2, 3, 4 hyperplanes in R5,
respectively.

Figure C.2. A super-imposed semi-log plot of the singular values of the embedded data ma-
trix V 4 for n = 1, 2, 3, 4 hyperplanes in R5, respectively. The rank drops at 35, 55, 65, 69,
which confirm the theoretical values of the Hilbert function.

Thus, in general, knowing the values of hI(i) even for i > n may significantly help
determine the correct number of subspaces in case the degree i of the Veronese map used
for constructing the data matrix V i is strictly higher than the number n of non-trivial
subspaces in the arrangement.

The above examples show merely a few cases in which the values of Hilbert
function may facilitate solving the GPCA problem. In Chapter ??, we will see
how the Hilbert function can help to improve the performance of GPCA. It now
remains as a question how to compute the values of Hilbert function for arbitrary
subspace arrangements.

Mathematically, we are interested in finding closed-form formulae, if exist at
all, for the Hilbert function (or the Hilbert polynomial, or the Hilbert series) of
the subspace arrangements. As we will soon show, if the subspace arrangements
are transversal (i.e., any intersection of subset of the subspaces has the smallest
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possible dimension), we are able to show that the Hilbert function (of both I
and J) agrees with the Hilbert polynomial (of both I and J) with i ≥ n; and a
closed-form formula for the Hilbert polynomial is known (and will be given later).
However, no general formula is known for the Hilbert function (or series) of I ,
especially for the values hI(i) with i < n. For those values, one can still compute
them in advance numerically based on the identity

hI(i) = dim(Null(V i)) (C.12)

from a sufficient set of samples on the subspace arrangements. The values for
each type of arrangements need to be computed only once, and the results can
be stored in a table such as Table C.1 for each ambient space dimension D and
number of subspaces n. We may later query these tables to retrieve information
about the subspace arrangements and exploit relations among these values for
different practical purposes.

However, computing the values of hI numerically can be very expensive, es-
pecially when the dimension of the space (or the subspaces) is high. In order to
densely sample the high-dimensional subspaces, the number of samples grows
exponentially with the number of subspaces and their dimensions. Actually the
MATLAB package that we are using runs out of the memory limit of 2GB for
computing the table for the case D = 12 and n = 6.

Fortunately, for most applications in image processing, or computer vision, or
systems identification, it is typically sufficient to know the values of hI(i) up to
n = 10 and D = 12. For instance, for most images, the first D = 12 principal
components already keep up to 99% of the total energy of the image, which is
more than sufficient for any subsequent representation or compression purposes.
Furthermore, if one chooses to use two by two blocks to represent a color image,
then each block becomes one data point of dimension 2×2×3 = 12. The number
of segments sought for an image is typically less than ten. In system identification,
the dimensions of the subspaces correspond to the orders of the systems and they
are typically less than 10.

C.3.2 Special Cases of the Hilbert Function
Before we study the Hilbert function for general subspace arrangements in the
next section, we here give a few special cases for which we have computed certain
values of the Hilbert function.

Example C.14 (Hyperplane Arrangements). Consider ZA = S1 ∪S2 ∪ . . .∪Sn ⊂ RD

with each Si a hyperplane. The subspaces Si are of co-dimension 1, i.e., c1 = c2 = · · · =
cn = 1. Then we have hI(n) = 1, which is consistent with the fact there is exactly one
(factorable) polynomial of degree n that fits n hyperplanes. Furthermore, hI(i) = 0 for all
i < n and

hI(n + i) =
`

D+i−1
i

´
, ∀i ≥ 1.

We can generalize the case of hyperplanes to the following example.
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Example C.15 (Subspaces Whose Duals Have No Intersection). Consider a subspace
arrangement ZA = S1 ∪ S2 ∪ . . . ∪ Sn ⊂ RD with S

∗
i ∩ S

∗
j = 0 for all i �= j. In

other words, if the co-dimensions of S1, S2, . . . , Sn are c1, c2, . . . , cn, respectively, we
have c1 + c2 + · · · + cn ≤ D. Notice that hyperplane arrangements are a special case
here. Generalizing the result in Example B.15, one can easily show that the Hilbert series
of I(ZA) (and J(ZA)) is

H(I(ZA), t) = H(J(ZA), t) = f(t)
.
=

Qn
i=1

`
1− (1− t)ci

´

(1− t)D
. (C.13)

The values of the Hilbert function hI(i) can be easily computed from the coefficients of
the function f(t) associated with t

i.

However, if the dual subspaces S∗i do have non-trivial intersections, the com-
putation of Hilbert series and function becomes much more complicated. Below
we give some special examples and leave the general study to the next section.

Example C.16 (Hilbert Function of Two Subspaces). We here derive a closed-form
formula of hI(2) for an arrangement of n = 2 subspaces ZA = S1 ∪ S2 in general
position (see also Example C.8). Suppose their co-dimensions are c1 and c2, respectively.
In R1 ∼ RD , the intersection of their dual subspaces S

∗
1 and S

∗
2 has the dimension

c
.
= max{c1 + c2 −D, 0}. (C.14)

Then we have

hI(2) = c · (c + 1)/2 + c · (c1 − c) + c · (c2 − c) + (c1 − c) · (c2 − c)

= c1 · c2 − c · (c− 1)/2. (C.15)

Example C.17 (Three Subspaces in R5). Consider an arrangement of three subspaces
ZA = S1 ∪ S2 ∪ S3 ⊂ R5 in general position. After a change of coordinates, we may
assume S

∗
1 = span{x1, x2, x3}, S

∗
2 = span{x1, x4, x5}, and S

∗
3 = span{x2, x3, x4, x5}.

The value of hI(3) in this case is equal to dim(S∗1 · S
∗
2 · S

∗
3 ). Firstly, we compute S

∗
1 · S

∗
2

and obtain a basis for it:

S
∗
1 · S

∗
2 = span{x2

1, x1x4, x1x5, x2x1, x2x4, x2x5, x3x1, x3x4, x3x5}.

From this, it is then easy to compute the basis for S
∗
1 · S

∗
2 · S

∗
3 :

S
∗
1 · S

∗
2 · S

∗
3 = span{x2

1x2, x1x2x4, x1x2x5, x1x
2
2, x

2
2x4, x

2
2x5, x1x2x3, x2x3x4,

x2x3x5, x
2
1x3, x1x3x4, x1x3x5, x1x

2
3, x

2
3x4, x

2
3x5, x

2
1x4, x1x

2
4,

x1x4x5, x2x
2
4, x2x4x5, x3x

2
4, x3x4x5, x

2
1x5, x1x

2
5, x2x

2
5, x3x

2
5}.

Thus, we have hI(3) = 26.

Example C.18 (Five Subspaces in R3). Consider an arrangement of five subspaces
S1, S2, . . . , S5 in R3 of co-dimensions c1, c2, . . . , c5, respectively. We want to compute
the value of hI(5), i.e., the dimension of homogeneous polynomials of degree five that
vanish on the five subspaces ZA = S1 ∪ S2 ∪ · · · ∪ S5. For all the possible values of
1 ≤ c1 ≤ c2 ≤ · · · ≤ c5 < 3, we have computed the values of D3

5 and listed them in
Table C.3. Notice that the values of hI(3) in the earlier Table C.1 is a subset of those of
hI(5) in Table C.3. In fact, many relationships like this one exist among the values of the
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c1 c2 c3 c4 c5 hI(5)
1 1 1 1 1 1
1 1 1 1 2 2
1 1 1 2 2 4
1 1 2 2 2 7
1 2 2 2 2 11
2 2 2 2 2 16

Table C.3. Values of the Hilbert function hI(5) for arrangements of five subspaces in R3.

Hilbert function. If properly harnessed, they can significantly reduce the amount of work
for computing the values of the Hilbert function.

Example C.19 (Five Subspaces in R4). Similar to the above example, we have computed
the values of hI(5) for arrangements of five linear subspaces in R4. The results are given in
Table C.4. In fact, using the numerical method described earlier, we have computed using
computer the values of hI(5) up to five subspaces in R12.

c1 c2 c3 c4 c5 hI(5)
1 1 1 1 1 1
1 1 1 1 2 2
1 1 1 1 3 3
1 1 1 2 2 4
1 1 1 2 3 6
1 1 1 3 3 8
1 1 2 2 2 8
1 1 2 2 3 11
1 1 2 3 3 14
1 1 3 3 3 17
1 2 2 2 2 15
1 2 2 2 3 19
1 2 2 3 3 23
1 2 3 3 3 27
1 3 3 3 3 31
2 2 2 2 2 26
2 2 2 2 3 31
2 2 2 3 3 36
2 2 3 3 3 41
2 3 3 3 3 46
3 3 3 3 3 51

Table C.4. Values of the Hilbert function hI(5) for arrangements of five subspaces in R4.
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C.3.3 Formulae for the Hilbert Function
In this section, we give a general formula for the Hilbert polynomial of the sub-
space arrangement ZA = S1 ∪ S2 ∪ · · ·∪ Sn. However, due to the limit of space,
we will not be able to give a detailed proof for all the results given here. Interested
readers may refer to [Derksen, 2005].

Let U be any subset of the set of indexes n
.= {1, 2, . . . , n}, we define the

following ideals

IU
.=

�

u∈U

I(Su), JU
.=

�

u∈U

I(Su). (C.16)

If U is empty, we use the convention I∅ = J∅ = R. We further define VU =�
u∈U Su, dU = dim(VU ), and cU = D − dU .
Let us define polynomials pU (t) recursively as follows. First we define

p∅(t) = 1.

For U �= ∅ and pW (t) is already defined for all proper subsets W of U , then pU (t)
is uniquely determined by the following equation

�

W⊆U

(−t)|W |pW (t) ≡ 0 mod (1− t)cU , deg(pU (t)) < cU . (C.17)

Here |W | is the number of indexes in the set W .
With the above definitions, the Hilbert series of the product ideal J is given by

H(J, t) =
pn(t)tn

(1− t)D
. (C.18)

That is, the Hilbert series of the product ideal J depends only on the numbers
cU , U ⊆ n. Thus, the values of the Hilbert function hJ(i) are all combinatorial
invariants – invariants that depend only on the values {cU} but not the particular
position of the subspaces.

Definition C.20 (Transversal Subspaces). The subspaces S1, S2, . . . , Sn are
called transversal if cU = min

�
D,

�
u∈U cu

�
for all U ⊆ n. In other words, the

intersection of any subset of the subspaces has the smallest possible dimension.

Notice that the notion of “transversality” defined here is less strong than the
typical notion of “general position.” For instance, according to the above defini-
tion, three coplanar lines (through the origin) in R3 are transversal. However, they
are not “in general position.”

Theorem C.21. Suppose that S1, S2, . . . , Sn are transversal, then H(I, t)−f(t)

and H(J, t)− f(t) are polynomials in t, where f(t) =
Qn

i=1

�
1−(1−t)ci

�

(1−t)D .

Thus, the difference between H(I, t) and H(J, t) is also a polynomial. As a
corollary to the above theorem, we have
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Corollary C.22. If S1, S2, . . . , Sn are transversal, then hI(i) = HI(i) =
hJ(i) = HJ(i) for all i ≥ n. That is, the Hilbert polynomials of both the vanish-
ing ideal I and the product ideal J are the same, and the values of their Hilbert
functions agree with the polynomial with i ≥ n.

One of the consequences of this corollary is that for transversal subspace ar-
rangements, we must have Ii = Ji for all i ≥ n. This is a result that we have
mentioned earlier in Section C.2.

Example C.23 (Hilbert Series of Three Lines in R3). For example, suppose that ZA is
the union of three distinct lines (through the origin) in R3. Regardless whether the three
lines are coplanar or not, they are transversal. We have

H(J(ZA), t) =
7t

3
− 9t

4 + 3t
5

(1− t)3
= 7t

3 + 12t
4 + 18t

5 + · · · .

However, one has

H(I(ZA), t) =
t + t

3
− t

4

(1− t)3
= t + 3t

2 + 7t
3 + 12t

4 + 18t
5 + · · ·

if the lines are coplanar, and

H(I(ZA), t) =
3t

2
− 2t

3

(1− t)3
= 3t

2 + 7t
3 + 12t

4 + 18t
5 + · · ·

if the three lines are not coplanar. Notice that the coefficients of these Hilbert series become
the same starting from the term t

3.

Then, using the recursive formula (C.18) of the Hilbert series H(J, t), we can
derive a closed-form formula for the values of the Hilbert function hI(i) with
i ≥ n:

Corollary C.24 (A Formula for the Hilbert Function). If S1, S2, . . . , Sn are
transversal, then

hI(i) = hJ(i) =
�

U

(−1)|U |
�

D + i− 1− cU

D − 1− cU

�
, i ≥ n, (C.19)

where cU =
�

m∈U cm and the sum is over all index subsets U of n for which
cU < D.

Example C.25 (Three Subspaces in R4). Suppose that ZA = S1 ∪ S2 ∪ S3 is a transver-
sal arrangement in R4. Let d1, d2, d3 (respectively c1, c2, c3) be the dimensions (resp.
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codimensions) of S1, S2, S3. We make a table of hI(n) for n = 3, 4, 5.

c1, c2, c3 d1, d2, d3 hI(3) hI(4) hI(5)
1, 1, 1 3, 3, 3 1 4 10
1, 1, 2 3, 3, 2 2 7 16
1, 1, 3 3, 3, 1 3 9 19
1, 2, 2 3, 3, 2 4 12 25
1, 2, 3 3, 2, 1 6 15 29
1, 3, 3 3, 1, 1 8 18 33
2, 2, 2 2, 2, 2 8 20 38
2, 2, 3 2, 2, 1 11 24 43
2, 3, 3 2, 1, 1 14 28 48
3, 3, 3 1, 1, 1 17 32 53

Note that the codimensions c1, c2, c3 are almost determined by hI(3). They are uniquely
determined by hI(3) and hI(4).

Corollary below is a general result that explains why the codimensions of the
subspaces c1, c2, c3 can be uniquely determined by hI(3), hI(4), hI(5) in the
above example. The corollary also reveals a strong theoretical connection between
the Hilbert function and the GPCA problem.

Corollary C.26 (Subspace Dimensions from the Hilbert Function). Consider a
transversal arrangements of n subspaces. The co-dimensions c1, c2, . . . , cn are
uniquely determined by the values of the Hilbert function hI(i) for i = n, n +
1, . . . , n + D − 1.

As we have alluded to earlier, in the context of GPCA, these values of the
Hilbert function are closely related to the ranks of the embedded data matrix V i

for i = n, n + 1, . . . , n + D − 1. Thus, knowing these ranks, in principle, we
should be able to uniquely determine the (co)dimensions of all the individual
subspaces. These results suggest that knowing the values of the Hilbert function,
one can potentially develop better algorithms for determining the correct subspace
arrangement from a given set of data.

C.4 Bibliographic Notes

Subspace arrangements constitute of a very special but important class of alge-
braic sets that have been studied in mathematics for centuries [?, ?, Orlik, 1989].
The importance as well as the difficulty of studying subspace arrangements can
hardly be exaggerated. Different aspects of their properties have been and are
still being investigated and exploited in many mathematical fields, including al-
gebraic geometry & topology, combinatorics and complexity theory, and graph
and lattice theory, etc. See [?] for a general review. Although the results about
subspace arrangements are extremely rich and deep, only a few special classes
of subspace arrangements have been fully characterized. Nevertheless, thanks
to the work of [Derksen, 2005], the Hilbert function, Hilbert polynomial, and
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Hilbert series of the vanishing ideal (and the product ideal) of transversal sub-
space arrangements have been well understood recently. This appendix gives a
brief summary of these theoretical developments. These results have provided a
sound theoretical foundation for many of the methods developed in this book for
GPCA.
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