
This is page i
Printer: Opaque this

Generalized Principal Component Analysis

Modeling & Clustering of High-Dimensional Data

René Vidal (JOHNS HOPKINS UNIVERSITY)

Yi Ma (UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN)

S. Shankar Sastry (UNIVERSITY OF CALIFORNIA AT BERKELEY)

May 20, 2010

Copyright 2004 Reserved
No parts of this draft may be reproduced without written permission from the authors.

This is page ii
Printer: Opaque this

This is page iii
Printer: Opaque this

Contents

1 Introduction 2
1.1 Modeling Data with a Parametric Model 3

1.1.1 The Choice of a Model Class 3
1.1.2 Statistical Models versus Geometric Models 5

1.2 Modeling Mixed Data with a Hybrid Model 7
1.2.1 Examples of Mixed Data Modeling 8
1.2.2 Mathematical Representations of Hybrid Models . . 12
1.2.3 Noise, Outliers, and Model Selection 15

I Theory, Analysis, and Algorithms 19

2 Data Modeling with a Single Subspace 21
2.1 Principal Component Analysis (PCA) 21

2.1.1 A Statistical View of PCA 22
2.1.2 A Geometric View of PCA 24
2.1.3 Probabilistic PCA 27

2.2 Determining the Number of Principal Components 30
2.3 Robust PCA: Classical Approaches 33

2.3.1 Dealing with Incomplete Data Points 33
2.3.2 Dealing with Outliers 35

2.4 Robust PCA: A Sparse Representation Approach 40
2.4.1 Basis Pursuit . 41
2.4.2 Rank Minimization and PCA with Missing Data . . . 41

iv Contents

2.4.3 Principal Component Pursuit and Robust PCA 42
2.5 Extensions to PCA . 43

2.5.1 Factor Analysis . 43
2.5.2 Nonlinear and Kernel PCA 44
2.5.3 Nonlinear and Kernel PCA 44
2.5.4 Locally Linear Embedding 48

2.6 Bibliographic Notes . 48
2.7 Exercises . 50

3 Algebraic Methods for Multiple-Subspace Segmentation 53
3.1 Problem Formulation of Subspace Segmentation 54

3.1.1 Projectivization of Affine Subspaces 55
3.1.2 Subspace Projection and Minimum Representation . 56

3.2 Introductory Cases of Subspace Segmentation 58
3.2.1 Segmenting Points on a Line 58
3.2.2 Segmenting Lines on a Plane 60
3.2.3 Segmenting Hyperplanes 63

3.3 Subspace Segmentation Knowing the Number of Subspaces . 65
3.3.1 An Introductory Example 66
3.3.2 Fitting Polynomials to Subspaces 68
3.3.3 Subspaces from Polynomial Differentiation 69
3.3.4 Point Selection via Polynomial Division 71
3.3.5 The Basic Generalized PCA Algorithm 75

3.4 Subspace Segmentation not Knowing the Number of Subspaces 76
3.4.1 Introductory Examples 76
3.4.2 Segmenting Subspaces of Equal Dimension 77
3.4.3 Segmenting Subspaces of Different Dimensions . . . 79

3.5 Model Selection for Multiple Subspaces 81
3.5.1 Effective Dimension of Samples of Multiple Subspaces 82
3.5.2 Minimum Effective Dimension of Noisy Samples . . 83
3.5.3 The Recursive GPCA Algorithm 85

3.6 Bibliographic Notes . 87
3.7 Exercises . 89

4 Iterative Methods for Multiple-Subspace Segmentation 93
4.1 Statistical Methods for Data Clustering 93

4.1.1 K-Means . 95
4.1.2 Expectation Maximization (EM) 97

4.2 Subspace-Segmentation Algorithms 103
4.2.1 K-Subspaces . 103
4.2.2 Expectation Maximization for Subspaces 105
4.2.3 Relationships between K-Subspaces and EM 108

4.3 Relationships between GPCA, K-Subspaces, and EM 110
4.4 Bibliographic Notes . 111
4.5 Exercises . 111

Contents v

5 Agglomerative Methods for Multiple-Subspace Segmentation 113
5.1 Basic Ideas and Algorithm 115

5.1.1 Lossy Coding of Multivariate Data 115
5.1.2 Segmentation via Data Compression 116
5.1.3 Minimizing the Coding Length 117

5.2 Lossy Coding of Multivariate Data 118
5.2.1 The Rate Distortion Function 119
5.2.2 The Coding Length Function 121
5.2.3 Properties of the Coding Length Function 121

5.3 Coding Length of Segmented Data 122
5.3.1 Segmentation and Compression 122
5.3.2 Optimality of Deterministic Segmentation 123

5.4 Simulation and Experimental Results 127
5.4.1 Simulations on Synthetic Data 127
5.4.2 Experiments on Real Data 133

5.5 Coding Length, Effective Dimension, and Sparse Representation 136
5.5.1 Compressed Sensing and Clustering 138
5.5.2 Dictionary Learning and Clustering 140

5.6 Bibliographic Notes . 141
5.7 Exercises . 143
5.A Lossy Coding Length for Subspace-Like Data 143
5.B Nonzero Mean Case . 145

II Applications in Image Processing & Computer Vision 147

6 Image Representation 149
6.1 Image Representation as a GPCA Problem 149
6.2 Image Representation with Hybrid Linear Models 152

6.2.1 Linear versus Hybrid Linear Models 152
6.2.2 Multi-Scale Hybrid Linear Models 158
6.2.3 Experiments and Comparisons 162
6.2.4 Limitations . 165

6.3 Multi-Scale Hybrid Linear Models in Wavelet Domain 166
6.3.1 Imagery Data Vectors in Wavelet Domain 167
6.3.2 Estimation of Hybrid Linear Models in Wavelet Domain 168
6.3.3 Comparison with Other Lossy Representations 169
6.3.4 Limitations . 171

6.4 Bibliographic Notes . 172

7 Image Segmentation 175
7.1 Image Segmentation as a GPCA Problem 176
7.2 Image Segmentation via Lossy Compression 178

7.2.1 Constructing Feature Vectors 178
7.2.2 Initialization with Superpixels 179

vi Contents

7.2.3 Enforcing Connected Segments 180
7.2.4 Choosing the Distortion 181

7.3 Experiments . 183
7.3.1 Visual Verification 183
7.3.2 Quantitative Verification 184
7.3.3 Difficulties and Possible Extensions 186

7.4 Bibliographic Notes . 188

8 3-D Motion Segmentation from Point Correspondences 193
8.1 The Motion Estimation Problem 194

8.1.1 Rigid-Body Motions and Camera Projection Models . 194
8.1.2 The Fundamental Matrix 195
8.1.3 The Homography Matrix 196
8.1.4 The Trifocal Tensor 197

8.2 The Motion Segmentation Problem 198
8.3 Segmentation of Linear Motion Models 199

8.3.1 The Affine Motion Subspaces 199
8.3.2 Segmenting Affine Motion Subspaces 200
8.3.3 Experimental Results 201

8.4 Segmentation of Bilinear Motion Models 201
8.4.1 Segmenting Fundamental Matrices 202
8.4.2 Segmenting Homography Matrices 206

8.5 Segmentation of Trilinear Motion Models 213
8.5.1 The Multibody Trifocal Tensor 213
8.5.2 Segmenting Trifocal Tensors 215

8.6 Bibliographical Notes . 218
8.7 Exercises . 219

III Appendices 223

A Basic Facts from Mathematical Statistics 225
A.1 Estimation of Parametric Models 225

A.1.1 Uniformly Minimum Variance Unbiased Estimates . 227
A.1.2 Maximum Likelihood Estimates 228
A.1.3 Estimates from a Large Number of Samples 229

A.2 Expectation Maximization 231
A.3 Estimation of Mixture Models 234

A.3.1 Maximum-Likelihood Estimates 234
A.3.2 Minimax Estimates 235

A.4 Model Selection Criteria . 235
A.4.1 Akaike Information Criterion 236
A.4.2 Bayesian Information Criterion 237

A.5 Robust Statistical Methods 238
A.5.1 Influence-Based Outlier Detection 239

Contents 1

A.5.2 Probability-Based Outlier Detection 241
A.5.3 Random Sampling-Based Outlier Detection 243

B Basic Facts from Algebraic Geometry 246
B.1 Polynomial Ring . 246
B.2 Ideals and Algebraic Sets 248
B.3 Algebra and Geometry: Hilbert’s Nullstellensatz 250
B.4 Algebraic Sampling Theory 251
B.5 Decomposition of Ideals and Algebraic Sets 253
B.6 Hilbert Function, Polynomial, and Series 254

C Algebraic Properties of Subspace Arrangements 257
C.1 Ideals of Subspace Arrangements 258
C.2 Subspace Embedding and PL-Generated Ideals 260
C.3 Hilbert Functions of Subspace Arrangements 262

C.3.1 Relationships between the Hilbert Function and GPCA 262
C.3.2 Special Cases of the Hilbert Function 265
C.3.3 Formulae for the Hilbert Function 268

C.4 Bibliographic Notes . 270

References 272

This is page 2
Printer: Opaque this

Chapter 1
Introduction

“The sciences do not try to explain, they hardly even try to inter-
pret, they mainly make models. By a model is meant a mathematical
construct which, with the addition of certain verbal interpretations,
describes observed phenomena. The justification of such a mathe-
matical construct is solely and precisely that it is expected to work.”

– John von Neumann

The primary goal of this book is to study how to model a data set that consists
of multiple subsets, each one drawn from a different primitive model. In different
contexts, such a data set is sometimes referred to as “mixed,” or “multi-modal,” or
“multi-model,” or “piecewise,” or “heterogeneous,” or “hybrid.” To unify the ter-
minology, in this book, we will refer to such data as “mixed data” and the model
used to fit the data as a “hybrid model.” Thus, a hybrid model typically consists
of multiple constituent (primitive) models. Modeling mixed data with a hybrid
model implies grouping the data into multiple (disjoint) subsets and fitting each
subset with one of the constituent models. In the literature, the words “group,”
or “cluster,” or “partition,” or “decompose,” or “segment” are often used inter-
changeably. However, in this book, we will use the words “group,” or “cluster,”
or “partition” primarily for the data points,1 and use the words “decompose” or
“segment” for the associated models.2

1For instance, we may say “group (or cluster or partition) the data into multiple subsets,” or “a
group (or a cluster) of sample points.”

2For instance, we may say “decompose (or segment) a hybrid model into its constituent primitive
models.”

1.1. Modeling Data with a Parametric Model 3

P

L

x1
x2

x3

x4

Figure 1.1. Four sample points on a plane are fitted by a straight line. However, they can
also be fitted by many other smooth curves, for example the one indicated by the dashed
curve.

In this chapter, we give a brief introduction to several concepts involved in
modeling mixed data with hybrid models. First, we discuss some basic concepts
associated with data modeling in general, such as the choice of the model class.
Next, we motivate the problem of modeling mixed data with hybrid models by
using several examples from computer vision, image processing, pattern recog-
nition, system identification and system biology. We then give a brief account of
geometric, statistical and algebraic methods for estimating hybrid models from
data, with an emphasis on the particular case of modeling data with an arrange-
ment of subspaces,3 also called hybrid linear models. We finish the chapter with a
discussion about how noise and outliers make the estimation problem extremely
difficult, especially when the complexity of the model to be estimated is unknown.

1.1 Modeling Data with a Parametric Model

In scientific studies or engineering practice, one is frequently called upon to infer
(or learn) a quantitative model M for a given set of sample points, denoted as
X = {x1,x2, . . . ,xN} ⊂ RD. For instance, Figure 1.1 shows a simple example
in which one is given a set of four sample points on a two dimensional plane.

Obviously, these points can be fitted perfectly by a (one-dimensional) straight
line. The line can then be called a “model” for the given points. The reason for
inferring such a model is because it serves many useful purposes. For instance,
it can reveal the information encoded in the data or the underlying mechanisms
from which the data were generated. Alternatively, it can significantly simplify the
representation of the given data set or help to predict effectively future samples.

1.1.1 The Choice of a Model Class

A first important consideration to keep in mind is that inferring the “correct”
model for a given data set is an elusive, if not impossible, task. The fundamen-

3In this book, we will use interchangeably “a mixture,” “a collection,” “a union,” or “an arrange-
ment” of subspaces or models. But be aware that, in the case of subspaces, the formal terminology in
Algebraic Geometry is “an arrangement of subspaces.”

4 Chapter 1. Introduction

tal difficulty is that, if we are not specific about what we mean by a “correct”
model, there could easily be many different models that fit the given data set
“equally well.” For instance, in the example shown in Figure 1.1, any smooth
curve that passes through the sample points would seem to be as valid a model as
the straight line. Furthermore, if there were noise in the given sample points, then
any curve, including the line, passing through the points exactly would unlikely
be the “ground truth.”

The question now is: in what sense can we say that a model is correct or
optimal for a given data set? On the one hand, to make the model inference prob-
lem meaningful, we need to impose additional assumptions or restrictions on the
class of models considered. That is, we should not be looking for any model that
can describe the data. Instead, we should look for a model M∗ that is the best
among a restricted class of modelsM = {M}.4 In fact, the well-known No Free
Lunch Theorem5 in computational learning implies that, in the absence of prior
information or preference about the final model, there is no reason to prefer one
optimization or learning algorithm over another [?]. On the other hand, to make
the model inference problem tractable, we need to specify how restricted the class
of models needs to be. A common strategy, known as the principle of Occam’s
Razor6, is to try to get away with the simplest possible class of models that is
just necessary to describe the data or solve the problem at hand. More precisely,
the model class should be rich enough to contain at least one model that can fit
the data to a desired accuracy and yet be restricted enough so that it is relatively
simple to find the best model for the given data.

Thus, in engineering practice, the most popular strategy is to start from the
simplest class of models, and only increase the complexity of the models when
the simpler models become inadequate. For instance, to fit a set of sample points,
one may try first the simplest class of models, namely linear models, followed
by the class of hybrid (piecewise) linear models, then followed by the class of
(piecewise) quadratic models, and finally followed by the class of general topolog-
ical manifolds. One of the goals of this book is to demonstrate that among them,
piecewise linear (and quadratic) models can already achieve an excellent balance
between expressiveness and simplicity for many important practical problems.

4Or equivalently, we may impose a non-uniform prior distribution over all models.
5Or more precisely, the ”No Free Lunch Theorem for Search,” attributed to Wolpert and Macready

(1995), states “...all algorithms that search for an extremum of a cost function perform exactly the
same, when averaged over all possible cost functions. In particular, if algorithm A outperforms algo-
rithm B on some cost functions, then loosely speaking there must exist exactly as many other functions
where B outperforms A.”

6Occam’s (or Ockham’s) razor is a principle attributed to the 14th century logician and Franciscan
friar; William of Occam: “Pluralitas non est ponenda sine neccesitate,” which translates literally
as “entities should not be multiplied unnecessarily.” In science, this principle is often interpreted as
“when you have two competing theories which make exactly the same predictions, the simpler one is
better.”

1.1. Modeling Data with a Parametric Model 5

1.1.2 Statistical Models versus Geometric Models

In this book, we consider the problem of modeling mixed data under the assump-
tion that the group memberships of the given data points are not known a priori.
As a consequence, the problem of modeling mixed data falls into the category of
unsupervised learning. In the literature, almost all unsupervised learning methods
fall into one of two categories. The first category of methods model the data as
random samples from a probability distribution and tries to learn this distribution
from the data. We call such models statistical models. The second category of
methods models the overall geometric shape of the data set as smooth manifolds
or topological spaces.7 We call such models geometric models.

Statistical Learning.

In the statistical paradigm, one assumes that the points xi in the data set X are
drawn independently from a common probability distribution p(x). So the task
of learning a model from the data becomes one of inferring the most likely prob-
ability distribution within a family of distributions of interest (for example the
Gaussian distributions). Normally the family of distributions is parameterized and
denoted asM .= {p(x|θ) : θ ∈ Θ}, where p(x|θ) is a probability density func-
tion parameterized by θ ∈ Θ, and Θ is the space of parameters. Consequently, the
optimal model p(x|θ∗) is given by the maximum likelihood (ML) estimate8

θ∗ML
.= arg max

θ∈Θ

N∏
i=1

p(xi|θ). (1.1)

If a prior distribution (density) p(θ) of the parameter θ is also given, then, follow-
ing the Bayesian rule, the optimal model is given by the maximum a posteriori
(MAP) estimate

θ∗MAP
.= arg max

θ∈Θ

N∏
i=1

p(xi|θ)p(θ). (1.2)

Many effective methods and algorithms have been developed in the statistics and
machine learning literature to infer the optimal distribution p(x|θ∗) or a good
approximation of it if the exact solution is computationally prohibitive. A brief
review is given in Appendix A. The estimated probability distribution gives a
generative description of the samples and can be used to generate new samples or
predict the outcomes of new observations.

7Roughly speaking, a smooth manifold is a special topological space that is locally smooth –
Euclidean space-like, and has the same dimension everywhere. A general topological space may have
singularities and consist of components of different dimensions.

8If the true distribution from which the data are drawn is q(x), then the maximum likelihood
estimate p(x|θ∗) minimizes the Kullback-Leibler (KL) divergence: D(q‖p) =

R
q(x) log

q(x)
p(x)

dx

among the given class of distributions, see Appendix A.

6 Chapter 1. Introduction

Geometric Modeling.

In many practical scenarios, we may not know a priori the statistical origins of the
data. Also, the amount of data may not be sufficient to determine a unique optimal
distribution within a large class of possible distributions. In such cases, we may
exploit the fact that the data points are often subject to topological or geometric
constraints, e.g., they must lie in a low-dimensional subspace. This implies that
the data can only be represented with a probability distribution that is close to
being singular.9

In general, it is very ineffective to learn such a singular or approximately
singular distribution via statistical means [Vapnik, 1995]. Thus, an alternative
data-modeling paradigm is to directly learn the overall geometric shape of the
given data set. Typical methods include fitting one or more geometric primitives
such as points10, lines, subspaces, surfaces, and manifolds to the data set. For
instance, the approach of classical principal component analysis (PCA) is essen-
tially to fit a lower-dimensional subspace, say S .= span{u1,u2, . . . ,ud}, to a
data set in a high-dimensional space, say X = {xi} ⊂ RD. That is, we try to
represent the data points as:

xi = yi1u1 + yi2u2 + · · ·+ yidud + εi, ∀ xi ∈X, (1.3)

where d < D, yij ∈ R, andu1,u2, . . . ,ud ∈ RD are unknown model parameters
that need to be determined – playing the role of the parameters θ in the foregoing
statistical model. The line model in Figure 1.1 can be viewed as an example of
PCA for the four points on the plane. In the above equation, the term εi ∈ RD
denotes the error between the sample and the model. PCA minimizes the error∑
i ‖εi‖2 for the optimal subspace (see Chapter 2 for details).11 In general, a geo-

metric model gives an intuitive description of the samples, and it is often preferred
to a statistical one as a “first-cut” description of the given data set. Its main pur-
pose is to capture global geometric, topological, or algebraic characteristics of the
data set, such as the number of clusters and their dimensions. A geometric model
always gives a more compact representation of the original data set, which makes
it useful for data compression and dimensionality reduction.

As two competing data-modeling paradigms, the statistical modeling tech-
niques in general are more effective in the high-noise (or high-entropy) regime
when the generating distribution is (piecewise) non-singular; while the geomet-
ric techniques are more effective in the low-noise (or low-entropy) regime when
the underlying geometric space is (piecewise) smooth, at least locally. The two
paradigms thus complement each other in many ways. On the one hand, once
the overall geometric shape, the clusters and their dimensions are obtained from

9Singular distributions are probability distributions concentrated on a set of Lebesgue measure
zero. Such distributions are not absolutely continuous with respect to the Lebesgue measure. The
Cantor distribution is one example of a singular distribution.

10As the means of clusters.
11When the errors εi are independent samples drawn from a zero-mean Gaussian distribution, the

geometric formulation of PCA coincides with the classical statistical formulation [?].

1.2. Modeling Mixed Data with a Hybrid Model 7

P

L1 L2

R3

Figure 1.2. A set of sample points in R3 are well fitted by a hybrid model with two straight
lines and a plane.

geometric modeling, one can choose the class of probability distributions more
properly for further statistical inference. On the other hand, since samples are
often corrupted by noise and sometimes contaminated with outliers, in order to
robustly estimate the optimal geometric model, one often resorts to statistical
techniques. Thus, although this book puts more emphasis on geometric and alge-
braic modeling techniques, we will also thoroughly investigate their connection
to and combination with various statistical techniques (see Chapter ??).

1.2 Modeling Mixed Data with a Hybrid Model

As we alluded to earlier, many data sets X cannot be modeled well by a single
primitive model M in a pre-chosen or preferred model classM. Nevertheless, it
is often the case that if we group such a data setX into multiple disjoint subsets:

X = X1 ∪X2 ∪ · · · ∪Xn, with X l ∩Xm = ∅, for l 6= m, (1.4)

then each subset Xj can be modeled sufficiently well by a model in the chosen
model class:

M∗j = arg min
M∈M

[
Error(Xj ,M)

]
, j = 1, 2, . . . , n, (1.5)

where Error(Xj ,M) represents some measure of the error incurred by using the
model M to fit the data setXj . Each model M∗j is called a primitive or a compo-
nent model. Precisely in this sense, we call the data set X mixed (with respect to
the chosen model classM) and call the collection of primitive models {M∗j }nj=1

a hybrid model for X . For instance, suppose we are given a set of sample points
shown in Figure 1.2. These points obviously cannot be fitted well by any single
line, plane or smooth surface in R3; but once they are grouped into three subsets,
each subset can be fitted well by a line or a plane. Note that in this example the
topology of the data is indeed “hybrid” – two of the subsets are of dimension one
and the other is of dimension two.

8 Chapter 1. Introduction

1.2.1 Examples of Mixed Data Modeling

The problem of modeling mixed data is quite representative of many data sets that
one often encounters in practical applications. To motivate further the importance
of modeling mixed data, we give below a few real-world problems that arise in
image processing and computer vision. Most of these problems will be revisited
later in this book and more detailed and principled solutions will be given.

Image Representation and Segmentation

A first example arises in the context of image representation and segmentation.
It is commonplace that, in an image, pixels at different regions have significantly
different local color/texture profiles (normally in an N × N window around a
pixel). Conventional image representation/compression schemes, such as JPEG
or JPEG2000, often ignore such differences and apply the same linear filters or
bases (for example the Fourier transform, discrete cosine transform, wavelets, or
curvelets) to the entire set of local profiles. Nevertheless, modeling the set of
local profiles as a mixed data set allows us to segment the image into different
regions and represent each region differently. Each region consists of only those
pixels whose local profiles span the same low-dimensional linear subspace.12 The
subspace basis can be viewed as a bank of adaptive filters for the associated
image region. Figure 5.2 shows regions of an image segmented by such a hy-
brid representation. The obtained subspaces (and their bases) normally provide a

(a) Input image (b) First segment (c) Second segment (d) Third segment

Figure 1.3. Image segmentation based on fitting different linear subspaces (and bases) to
regions of different textures. The three segments (or subspaces) correspond to the ground,
the clouds, and the sky.

very compact representation of the image, often more compact than any of the
aforementioned fixed-basis schemes. Therefore, they are very useful for purposes
such as image compression, classification, or retrieval. More details on this image
representation/segmentation scheme can be found in Chapter 6.

Face Classification under Varying Illumination

The next example arises in the context of image-based face classification. Given
a collection of unlabeled images {Ii}ni=1 of several different faces taken under

12Unlike the previous two examples, there is no rigorous mathematical justification that local pro-
files from a region of similar texture must span a low-dimensional linear subspace. However, there is
strong empirical evidence that a linear subspace is normally a very good approximation.

1.2. Modeling Mixed Data with a Hybrid Model 9

varying illumination, we would like to classify the images corresponding to the
face of the same person. For a Lambertian object, it has been shown that the set
of all images taken under all lighting conditions forms a cone in the image space,
which can be well approximated by a low-dimensional subspace [?]. Since the
images of different faces will live in different “illumination subspaces”, we can
classify the collection of images by estimating a basis for each one of those sub-
spaces. This is obviously another subspace-segmentation problem. In the example
shown in Figure 1.4, we use a subset of the Yale Face Database B consisting of
n = 64 × 3 frontal views of three faces (subjects 5, 8 and 10) under 64 vary-
ing lighting conditions. For computational efficiency, we first down-sample each
image to a size of 30 × 40 pixels. We then project the data onto their first three
principal components using PCA, as shown in Figure 1.4(a).13 By modeling the
projected data with a hybrid linear model in R3, we obtain three affine subspaces
of dimension 2, 1, and 1, respectively. Despite the series of down-sampling and
projection, the subspaces lead to a perfect classification of the images, as shown
in Figure 1.4(b).

(a) Several images of three faces projected onto
the first three principal components

0 50 100 150 200

Face 10

Face 5

Face 8

(b) Classification of the images according to the
three different faces

Figure 1.4. Classifying a subset of the Yale Face Database B consisting of 64 frontal views
under varying lighting conditions for subjects 2, 5 and 8.

Segmentation of Moving Objects in Video

The next example is the motion segmentation problem that arises in the field of
computer vision: given a sequence of images of multiple moving objects in a
scene, how does one segment the images so that each segment corresponds to
only one moving object? This is a very important problem in applications such as
motion capture, vision-based navigation, target tracking, surveillance, etc.

One way of solving this problem is to extract a set of feature points in the first
image and track these points through the video sequence. As a result one obtains

13The legitimacy of the projection process will be addressed in Chapter 4.

10 Chapter 1. Introduction

a set of point trajectories such that each trajectory corresponds to a different mov-
ing object in the video. It is well known from the computer vision literature [?, ?]
that feature points from two corresponding views of the same object are related
by either linear or quadratic constraints depending on the type of motions and
camera projection models (see Chapter 8). Therefore, mathematically, the prob-
lem of motion segmentation is equivalent to segmentation of points to different
linear subspaces and quadratic surfaces. Figure 1.5 shows two images of a mov-
ing checker board and cube. The image on the left shows the starting positions of

(a) First frame of a video sequence containing
two moving objects

(b) Segmentation of feature points in the second
frame according to different 3-D motions

Figure 1.5. Clustering feature points according to different 3-D motions.

the board and the cube and their directions of motion; and the image on the right
shows the final positions. The image on the right also shows the segmentation re-
sults obtained by fitting the motion flow of points on the cube and the board with
a hybrid linear model. We will describe in detail the motion segmentation method
used to achieve this result in Chapters ?? and 8.

Temporal Video Segmentation and Event Detection

Another example arises in the context of detecting events from video sequences.
A typical video sequence contains multiple activities or events separated in time.
For instance, Figure 1.6(a) shows a news sequence where the host is interview-
ing a guest and the camera is switching between the host, the guest and both of
them. The problem is to separate the video sequence into subsequences, so that
each subsequence corresponds to one of the three events. For this purpose, we as-
sume that all the frames associated with the same event live in a low-dimensional
subspace of the space spanned by all the images in the video, and that different
events correspond to different subspaces. The problem of segmenting the video
into multiple events is then equivalent to a subspace-segmentation problem. Since
the image data live in a very high-dimensional space (∼ 105, the number of pix-
els), we first project the image data onto a low-dimensional subspace (∼ 10)
using principal component analysis (PCA) and then fit a hybrid linear model to
the projected data to identify the different events. Figure 1.6 shows the segmen-

1.2. Modeling Mixed Data with a Hybrid Model 11

tation results for two video sequences. In both cases, a perfect segmentation is
obtained. We will describe in detail the segmentation method used to achieve the
these results in Chapter ??.

0 5 10 15 20 25 30

1

2

3

(a) Thirty frames of a video sequence of a televi-
sion show clustered into three groups: host, guest,
and both of them

0 10 20 30 40 6050

1

2

3

(b) Sixty frames of a news video sequence clus-
tered into three groups: car with a burning wheel,
burnt car with people, and burning car

Figure 1.6. Clustering frames of a news video sequence into groups of scenes by modeling
each group with a linear subspace.

Identification of Hybrid Dynamical Models

The last example arises in the context of modeling time series data with dynamical
models. A popular dynamical model used to analyze a time series {yt ∈ R}t∈Z is
the linear auto-regressive (AR) model:

yt = a1yt−1 + a2yt−2 + · · ·+ anyt−n + εt, ∀t,∈ Z, (1.6)

where εt ∈ R models the modeling error or noise and it is often assumed to be
a white-noise random process. In order to capture more complex dynamics in the
data, one can assume that yt is the output of a piece-wise AR model, where the
output at each time instant is drawn from one out of finitely many ARX models.
Notice that at each time instant, the vector xt = [yt, yt−1, . . . , yt−n]> lies on an
n-dimensional hyperplane in Rn+1. Therefore, the vectors xt for all t lie in a col-
lection of hyperplanes. As a consequence, the identification of the parameters of a
piece-wise AR model can be viewed as another subspace-segmentation problem.
We will discuss this and more general classes of hybrid dynamical models, to-
gether with algorithms for identifying the parameters of such models, in Chapters
?? and ??.

As we see from the foregoing examples, in some cases, one can rigorously
show that a given data set belongs to a collection of linear and quadratic surfaces
of the same or of possibly different dimensions (motion segmentation example).
In many other cases, one can use piecewise linear structures to approximate the
data set and obtain a more compact and meaningful geometric representation of
the data, including segments, dimensions, and bases (image representation, face

12 Chapter 1. Introduction

classification and video segmentation examples). Subspace (or surface) segmen-
tation is a natural abstraction of all these problems and thus merits systematic
investigation. From a practical standpoint, the study will lead to many general and
powerful modeling tools that are applicable also to many types of data, such as
feature points, images, videos, audio data, dynamic data, genomic data, proteomic
data, etc.

1.2.2 Mathematical Representations of Hybrid Models

The examples presented in the previous subsection argue forcefully for the de-
velopment of modeling and estimation techniques for hybrid models. Obviously,
whether the model associated with a given data set is hybrid or not depends on
the class of primitive models considered. In this book, the primitives are normally
chosen to be simple classes of smooth manifolds or non-singular distributions.

For instance, one may choose the primitive models to be linear subspaces. Then
one can use an arrangement of linear subspaces {Si}ni=1 ⊂ RD,

Z
.= S1 ∪ S2 ∪ · · · ∪ Sn, (1.7)

also called a hybrid linear model, to approximate many nonlinear manifolds or
piecewise smooth topological spaces. This is the typical model in Generalized
Principal Component Analysis (GPCA) and it is to be studied for most part of
this book.

The statistical counterpart of the algebraic model in (1.7) is to assume that the
samples points are drawn independently from a mixture of near singular Gaussian
distributions {pi(x),x ∈ RD}ni=1 with probability density function

q(x) .= π1p1(x) + π2p2(x) + · · ·+ πnpn(x), (1.8)

where πi > 0 and π1 + π2 + · · · + πn = 1. This is the typical model studied
in mixtures of probabilistic principal component analysis (MPPCA) [Tipping and
Bishop, 1999a]. A classical way of estimating such a mixture model is the Ex-
pectation Maximization (EM) algorithm, which infers the membership of each
sample as a hidden random variable (see Appendix A for a review).

In this book, we will study and clarify the similarities and differences between
these geometric models and statistical models (see Chapter 4 and 3).

Difficulties with Conventional Data-Modeling Methods.

The reader may have been wondering why not simply enlarge the class of primi-
tive models to include such hybrid models so that we can deal with them by the
conventional single-model paradigms for learning distribution- or manifold-like
models? If this were the case, then there would be no need of developing special
theory and algorithms for hybrid models and thus no need of this book! However,
the most compelling reason why we do need hybrid models is that smooth man-
ifolds and non-singular distributions are not rich or flexible enough to describe
the structure of many commonly observed data, as we have seen in the exam-
ples from the previous subsection. On the one hand, the underlying topological

1.2. Modeling Mixed Data with a Hybrid Model 13

space of a mixed data set may contain multiple manifolds of different dimensions
which will probably intersect with each other, as is the case with a collection of
multiple subspaces. Conventional estimation techniques for manifold-like models
such as [?, ?] do not apply well to mixtures of manifolds. On the other hand, if
one represents a hybrid model with a probability distribution, then the distribution
will typically be close to singular. Conventional statistical-learning techniques be-
come rather ineffective in inferring such (close to) singular distributions [Vapnik,
1995].

An alternative approach to modeling mixed data is to first segment the data set
into coherent subsets and then model each subset using the classical single-model
methods. This is a popular approach adopted by many practitioners in the industry.
The fundamental difficulty with this approach is that, without knowing which
subset of sample points belongs to which constituent model, there is seemingly a
“chicken-and-egg” relationship between data segmentation and model estimation:
If the segmentation of the data were known, one could fit a model to each subset
of samples using classical model estimation techniques; and conversely, if the
constituent models were known, one could easily find the subset of samples that
best fit each model. This relationship has been the rationale behind the iterative
modeling techniques for mixed data, such as the well-known EM and K-means
algorithms (see Appendix A). These iterative methods share several drawbacks:

• The iteration needs to start with a good initial guess of the solution;
otherwise the iteration is likely to converge to a local minimum.

• Without knowing a priori the number of models and the dimension of each
model, the algorithm may diverge if it starts with a wrong guess on these
key parameters.

• There are cases in which it is difficult to solve the grouping problem
correctly, yet it is possible to obtain a good estimate of the models. In
such cases a direct estimation of the models without grouping seems more
appropriate than one based on incorrectly segmented data.

Hybrid Models as Algebraic Sets.

In this book, instead of manifolds or distributions, we will represent hybrid mod-
els mainly as algebraic sets.14 To see the merit of such a representation, let us
consider a simple example where the data corresponding to the ith constituent
model belong to a hyperplane of RD of the form

Zi = {x : b>i x = 0} for i = 1, . . . , n. (1.9)

In other words, the set Zi is the zero-level set of the polynomial pi(x) = b>i x.
Therefore, we can interpret a mixed data set drawn from a union of n hyperplanes

14Roughly speaking, an algebraic set is the common zero-level set of a family of algebraic
equations, see Appendix B.

14 Chapter 1. Introduction

as the zero-level set of the polynomial p(x) = (b>1 x)(b>2 x) · · · (b>nx), i.e.,

Z
.= Z1 ∪ Z2 ∪ · · · ∪ Zn =

{
x : p1(x)p2(x) · · · pn(x) = 0

}
. (1.10)

This polynomial can be determined from a number of (random) sample points
on the algebraic set X .= {xj ∈ Z} using techniques analogous to those used
for fitting a circle to three points in R2. Given the polynomial p(x), we can use
polynomial factorization techniques to obtain the factors pi(x) = b>i x, and hence
the parameters for each constituent model, namely the vector bi normal to the
hyperplane.

This simple example of modeling the data with a union of hyperplanes can
be immediately generalized to modeling the data with a union of algebraic va-
rieties.15 More specifically, let us suppose that the data corresponding to the ith
constituent model can be described as the zero-level set of some polynomials in a
prime ideal pi,16

Zi
.= {x : p(x) = 0, p ∈ pi} ⊂ RD, i = 1, 2, . . . , n. (1.11)

The (mixed) data from a union of n such models then belong to an algebraic set:17

Z
.= Z1 ∪ Z2 ∪ · · · ∪ Zn
=
{
x : p1(x)p2(x) · · · pn(x) = 0, ∀pi ∈ pi, i = 1, 2, . . . , n

}
.

(1.12)

From a number of (random) sample points on the algebraic set X .= {xj ∈ Z},
one can determine the (radical) ideal of polynomials that vanish on the set Z:18

X → q(Z) .=
{
q(xj) = 0, ∀xj ∈ Z

}
. (1.13)

Obviously, the ideal q is no longer a prime ideal. Nevertheless, once the ideal q
is obtained, the constituent models pi (or Zi) can be subsequently retrieved by
decomposing the ideal q into irreducible prime ideals via algebraic means.19

q → q = p1 ∩ p2 ∩ · · · ∩ pn. (1.14)

Clearly, the above representation establishes a natural correspondence between
terminologies developed in algebraic geometry and the heuristic languages used
in modeling mixed data: the constituent models become algebraic varieties, the
hybrid model becomes an algebraic set, the mixed data become samples from an
algebraic set, and the estimation of hybrid models becomes the estimation and

15An algebraic variety is an irreducible algebraic set. An algebraic set is called irreducible if it
cannot be written as the union of two proper algebraic subsets. A subspace is one such example.

16A prime ideal is an ideal that cannot be decomposed further as the intersection of two other ideals,
see Appendix B. The zero-level set of a prime ideal is an irreducible algebraic set, i.e., an algebraic
variety.

17Notice that the “union” of algebraic varieties corresponds to the “multiplication” of the
polynomials associated with the varieties.

18According to Hilbert’s Nullstellensatz (see Appendix B), there is a one-to-one correspondence
between algebraic sets and radical ideals [Eisenbud, 1996].

19For the special case in which the ideal is generated by a single polynomial, the decomposition is
equivalent to factoring the polynomial into factors.

1.2. Modeling Mixed Data with a Hybrid Model 15

Algebraic VarietyManifold Distribution

Figure 1.7. Comparison of three representations of the same data set: 1. a (nonlinear)
manifold, 2. a (mixed Gaussian) distribution, or 3. a (piecewise linear) algebraic set.

decomposition of a radical ideal. Although this nomenclature may seem abstract
and challenging at first, we will see in Chapter 3 how to make this very concrete
for the case of an arrangement of subspaces.

Modeling Hybrid Topologies and Degenerate Distributions.

Despite its pure algebraic nature, the above algebraic representation is closely
related to and complements well the two aforementioned geometric and statistical
data modeling paradigms.

From the geometric viewpoint, unlike a smooth manifold M which sometimes
can be implicitly represented as the level set of a single function, an algebraic set
Z is the zero-level set of a family of polynomials. Because of that, an algebraic
set Z allows components with different dimensions as well as singularities that
the zero-level set of a single smooth function does not have.

From the statistical viewpoint, one can also view the irreducible components
{Zi} of Z as the “means” of a collection of probability distributions {pi(·)} and
the overall set Z as the “skeleton” of their mixture q(·). For instance, a piecewise
linear structure can be viewed as the skeleton of a mixture of Gaussian distri-
butions (see Figure 7.1). Therefore, hybrid models represented by algebraic sets
can be interpreted as a special class of generative models such that the random
variables have small variance outside the algebraic sets, but large variance inside.

As we will show in this book, if the primitive models are simple models such
as linear subspaces (or quadratic surfaces), then in principle, the problem of seg-
menting mixed data and estimating a hybrid model can be solved non-iteratively
(see Chapter 3). Moreover, the correct number of models and their dimensions can
also be correctly determined via purely algebraic means, at least in the noise-free
case (see Chapter 3).

1.2.3 Noise, Outliers, and Model Selection

In many real-world applications, the given data samples may be corrupted with
noise or contaminated with outliers. Figure 1.8 shows one such example. Unlike
the noiseless or low-noise scenario, the problem of finding the “correct” model

16 Chapter 1. Introduction

b) noisy samples c) noisy samples with outliers a) sample points

oS1

S2 S3 Z = S1 ∪ S2 ∪ S3

Figure 1.8. Inferring a hybrid linear model Z, consisting of one plane (S1) and two lines
(S2, S3), from a set of mixed data, which can be: a) noiseless samples from the plane and
lines; b) noisy samples; c) noisy samples with outliers.

becomes much more challenging in presence of a significant amount of noise or
outliers. Proper statistical and robust statistical techniques therefore need to be
developed for the estimation and segmentation of algebraic sets such as subspace
arrangements. These issues will be carefully treated in Chapter ??.

Another important observation is that, in the presence of noise and outliers, a
hybrid linear model is not necessarily the best if it has the highest fidelity to the
data. This is especially the case when the number of subspaces and their dimen-
sions are not known a priori. In fact, for every point in the data set, one can fit a
separate line to it, which results in no modeling error at all. But such a model is
not so appealing since it has exactly the same complexity as the original data.

In general, the higher the model complexity, the smaller the modeling error.20

A good model should strike a balance between the complexity of a model M
and its fidelity to the data X .21 Many general model selection criteria have been
proposed in the statistics or machine learning literature, including the Akaike
Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Min-
imum Description Length (MDL), and the Minimum Message Length (MML).
(See Appendix A for a brief review.) Despite some small differences, these crite-
ria all tradeoff modeling error for model complexity and minimize an objective of
the following form:

min
M∈M

J(M) .= [α · Complexity(M) + β · Error(X,M)].

20For example, any function can be approximated arbitrarily well by a piecewise linear function
with a sufficient number of pieces.

21For instance, the complexity of a model can be measured as the minimum number of bits needed
to fully describe the model and the data fidelity can be measured by the distance from the sample
points to the model.

1.2. Modeling Mixed Data with a Hybrid Model 17

In this book, we will introduce a model complexity measure that is specially de-
signed for an arrangement of linear subspaces of arbitrary dimensions, namely the
effective dimension (see Chapter ??).

YM: BUG IN THE
FIGURE. If the
alpha and beta
are the same the
line should be
tangent to the
Prediction Error
Curve

There is yet another fundamental tradeoff that is often exploited for model se-
lection. When the model complexity is too high, the model tends to over-fit the
given data, including the noise in it. Such a model does not generalize well in the
sense that it would not predict well the outcome of new samples. When the model
complexity is too low, the model under-fits the data, which results in a large error
in the prediction. Therefore, a good model should minimize the prediction error.

E
rr

or

Model Complexity

Modeling Error

Prediction Error

min(αx + βy)

Figure 1.9. Modeling and prediction error versus model complexity.

The relationship between modeling error and prediction error as a function of
model complexity is plotted in Figure 1.9. Unfortunately, the “optimal” models
obtained by trading off modeling error and prediction error can be different, as
illustrated in the figure. In such a case, a choice between the two objectives has to
be made. In the unsupervised learning setting, it is often difficult to obtain the pre-
diction error curve;22 and for purposes such as data compression, the prediction
error is of less concern than the modeling error. In these cases, we often choose
the tradeoff between the modeling error and the model complexity (see Chapter
??).

22Unless one does cross-validation within the given data set itself.

This is page 18
Printer: Opaque this

This is page 19
Printer: Opaque this

Part I

Theory, Analysis, and
Algorithms

This is page 20
Printer: Opaque this

This is page 21
Printer: Opaque this

Chapter 2
Data Modeling with a Single Subspace

“Principal component analysis is probably the oldest and best
known of the techniques of multivariate analysis.”

– I. T. Jolliffe

In this chapter, we give a brief review of principal component analysis (PCA),
i.e., the method for finding an optimal (affine) subspace to fit a set of data points.
The solution to PCA has been well established in the literature and it has become
one of the most useful tools for data modeling, compression, and visualization.
We introduce both the statistical and geometric formulation of PCA and establish
their equivalence. Specifically, we show that the singular value decomposition
(SVD) provides an optimal solution to PCA. We also establish the similarities
and differences between PCA and two generative subspace models, namely Fac-
tor Analysis (FA) and Probabilistic PCA (PPCA). When the dimension of the
subspace is unknown, we introduce some conventional model selection methods
to determine the number of principal components. When the data points are in-
complete or contain outliers, we review some robust statistical techniques that
help resolve these difficulties. Finally, some nonlinear extensions to PCA such as
nonlinear PCA and kernel PCA are also reviewed.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S to a set of points {x1,x2, . . . ,xN} in a

22 Chapter 2. Data Modeling with a Single Subspace

high-dimensional space RD, the ambient space. Mathematically, this problem can
be formulated as either a statistical problem or a geometric one, and they both lead
to the same solution, as we will show in this section.

2.1.1 A Statistical View of PCA

Historically, PCA was first formulated in a statistical setting to estimate the prin-
cipal components of a multivariate random variable x [Pearson, 1901, Hotelling,
1933]. Specifically, given a multivariate random variable x ∈ RD and any integer
d < D, the d “principal components” of x are defined as the d uncorrelated linear
components of x:

yi = u>i x ∈ R, ui ∈ RD, i = 1, 2, . . . , d, (2.1)

such that the variance of yi is maximized subject to

u>i ui = 1 and Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd). (2.2)

For example, to find the first principal component, y1, we seek a vector u∗1 ∈ RD
such that

u∗1 = arg max
u1∈RD

Var(u>1 x), s.t. u>1 u1 = 1. (2.3)

Without loss of generality, in what follows, we will assume x has zero-mean.

Theorem 2.1 (Principal Components of a Random Variable). The first d principal
components of a multivariate random variable x are given by yi = u>i x, where
{ui}di=1 are the d leading eigenvectors of its covariance matrix Σx

.= E[xx>].

Proof. Notice that for any u ∈ RD,

Var(u>x) = E[(u>x)2] = E[u>xx>u] = u>Σxu. (2.4)

Therefore, the optimization in problem in (2.3) for finding the first principal
component is equivalent to

max
u1∈RD

u>1 Σxu1, s.t. u>1 u1 = 1. (2.5)

In order to solve the above constrained minimization problem, we use the
Lagrange multiplier method. The Lagrangian is given by

L = u>1 Σxu1 + λ(1− u>1 u1) (2.6)

for some Lagrange multiplier λ ∈ R. The necessary condition for u1 to be an
extrema is

Σxu1 = λu1, (2.7)

and the associated extremum value is u>1 Σxu1 = λ. It follows that the optimal
solution u∗1 is exactly the eigenvector of Σx associated with the largest eigenvalue.

2.1. Principal Component Analysis (PCA) 23

To find the remaining principal components, since u>1 x and u>i x (i > 1) need
to be uncorrelated, we have

E[(u>1 x)(u>i x)] = E[u>1 xx
>ui] = u>1 Σxui = λ1u

>
1 ui = 0. (2.8)

That is, u2, . . . , ud are all orthogonal to u1. More generally, u>i uj = 0 for all
i 6= j = 1, . . . d. To find u2 we define the Lagrangian

L = u>2 Σxu2 + λ2(1− u>2 u2) + γu>1 u2. (2.9)

The necessary condition for u2 to be an extrema is

Σxu2 + γu1 = λ2u2, (2.10)

from which it follows that u>1 Σxu2 + γu>1 u1 = λ1u
>
1 u2 + γ = λ2u

>
1 u2, and so

γ = 0. Since the associated extremum value is u>2 Σxu2 = λ2, u∗2 is the leading
eigenvector of Σx restricted to the orthogonal complement of u1.1 Assuming that
Σx does not have repeated eigenvalues, u∗2 is the eigenvector of Σx associated
with the second largest eigenvalue. Inductively, one can show that u3, u4, . . . , ud
are the top third, fourth, . . . , dth eigenvectors of Σx and that the corresponding
eigenvalues give the variance of the principal components, i.e., λi = Var(yi).

The solution to PCA provided by Theorem 2.1 suggests that we may find the
d principal components of x simultaneously, rather than one by one. Specifically,
we can define a matrix a random vector y = [y1, y2, . . . , yd]> ∈ Rd and a matrix
Ud = [u1, u2, · · · , ud] ∈ RD×d. Since y = U>d x, we have that

Σy = E(yy>) = U>d E(xx>)Ud = U>d ΣxUd. (2.11)

Since were are looking for uncorrelated random variables, the matrix Σy must be
diagonal and the matrix Ud must be orthonormal, i.e., U>d Ud = Id.

Recall that any real, symmetric and positive semi-definite matrix A can be
transformed into a diagonal matrix Λ = V −1AV , where the columns of V are
the eigenvectors of A and the diagonal entries of Λ are the corresponding eigen-
values. Recall also that the eigenvalues are real and nonnegative, i.e., λi ≥ 0,
and that the eigenvectors can be chosen to be orthonormal, so that V −1 = V >.
Since the matrix Σx is real, symmetric and positive semi-definite, the equation
Σy = U>d ΣxUd suggests that the columns of Ud can be chosen as d eigenvectors
of Σx and that the diagonal entries of Σy can be chosen as the corresponding d
eigenvalues. Moreover, since our goal is to maximize the variance of each yi and
λi = Var(yi), we conclude that the columns of Ud are the top d eigenvectors of
Σx and the entries of Σy are the corresponding top d eigenvalues.

This alternative derivation of PCA allows us to understand what happens when
Σx has repeated eigenvalues. When the eigenvalues are different, each eigenvec-
tor ui is unique (up to sign), thus the principal components are unique (up to sign).

1The reason for this is that both u1 and its orthogonal complement u⊥1 are invariant subspaces of
Σx.

24 Chapter 2. Data Modeling with a Single Subspace

When an eigenvalue is repeated, Σx still admits a basis of orthonormal eigenvec-
tors. However, the eigenvectors corresponding to the repeated eigenvalue form an
eigensubspace and any orthonormal basis for this eigensubspace gives valid prin-
cipal components. As a consequence, the principal components are not always
uniquely defined.

In practice, we may not know the population covariance matrix, Σx. Instead,
we may be given N i.i.d. samples of x, {xi}Ni=1. Let X = [x1,x2, · · · ,xN]
be the sample data matrix. It is well known from statistics that an asymptotically
unbiased estimate of Σx is given by

Σ̂N
.=

1
N − 1

N∑
i=1

xix
>
i =

1
N − 1

XX>. (2.12)

We define the d “sample principal components” of x as

ŷi = û>i x, i = 1, . . . , d, (2.13)

where {ûi}di=1 are the top d eigenvectors of Σ̂N , or equivalently those ofXX>.
Notice also that, even though the principal components of x and the sample prin-
cipal components of x are different notions, under certain assumptions on the
distribution of x they can be related to each other. Specifically, one can show that,
if x is Gaussian, then every eigenvector û of Σ̂N is an asymptotically unbiased
estimate for the corresponding eigenvector u of Σx [Jolliffe, 1986].

2.1.2 A Geometric View of PCA

An alternative geometric view of PCA, which is very much related to the SVD
[Beltrami, 1873, Jordan, 1874], seeks to find an (affine) subspace S that fits the
given data points {xi}Ni=1.

Let us assume for now that the dimension of the subspace d is known. Then
every point xi on a d-dimensional affine subspace in RD can be represented as

xi = x0 + Udyi, i = 1, 2, . . . , N (2.14)

where x0 ∈ RD is a(ny) fixed point in the subspace, Ud is a D × d matrix whose
columns form a basis for the subspace, and yi ∈ Rd is simply the vector of new
coordinates of xi in the subspace.

Notice that there is some redundancy in the above representation due to the
arbitrariness in the choice of x0 and Ud. More precisely, for any y0 ∈ Rd, we
can re-represent xi as xi = (x0 +Udy0) +Ud(yi − y0). We call this ambiguity
the translational ambiguity. Also, for any A ∈ Rd×d we can re-represent xi as
xi = x0 +(UdA)(A−1yi). We call this ambiguity the change of basis ambiguity.
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace to for the data.

2.1. Principal Component Analysis (PCA) 25

A common constraint used to resolve the translational ambiguity is to impose
that the mean of yi is zero:2

ȳ
.=

1
N

N∑
i=1

yi = 0, (2.15)

while a common constraint used to resolve the change of basis ambiguity is to
impose that the columns of Ud be orthonormal. This last constraint eliminates
the change of basis ambiguity only up to a rotation, because we can still re-
represent xi as xi = x0 + (UdR)(R>yi) for some rotation R in Rd. However,
this rotational ambiguity can be easily deal with during optimization, as we shall
see.

In general the given points are imperfect and have noise. We define the “opti-
mal” affine subspace to be the one that minimizes the sum of squared distances
between xi and its projection onto the subspace x0 + Udyi, i.e.,

min
x0,Ud,{yi}

N∑
i=1

∥∥xi − x0 − Udyi
∥∥2
, s.t. U>d Ud = Id and ȳ = 0. (2.16)

In order to solve this optimization problem, we define the Lagrangian

L =
N∑
i=1

∥∥xi − x0 − Udyi
∥∥2 + γ>

N∑
i=1

yi + tr(Λ(Id − U>d Ud)), (2.17)

where γ ∈ Rd and Λ = Λ> ∈ Rd×d are, respectively, a vector and a matrix of
Lagrange multipliers.

The necessary condition for x0 to be an extrema is

− 2
N∑
i=1

(xi − x0 − Udyi) = 0 =⇒ x̂0 = x̄
.=

1
N

N∑
i=1

xi. (2.18)

The necessary condition for yi to be an extrema is

− 2U>d (xi − x0 − Udyi) + γ = 0. (2.19)

Summing over i yields γ = 0, from which we obtain

ŷi = U>d (xi − x̄). (2.20)

The vector ŷi ∈ Rd is simply the coordinates of the projection of xi ∈ RD onto
the subspace S. We may call such ŷ the “geometric principal components” of x.3

2In the statistical setting, xi and yi will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to be zero.

3As we will soon see in the next section, the geometric principal components coincide with the
sample principal components defined in a statistical sense.

26 Chapter 2. Data Modeling with a Single Subspace

Before optimizing over Ud, we can replace the optimal values for x0 and yi
into the objective function. This leads to the following optimization problem

min
Ud

N∑
i=1

∥∥(xi − x̄)− UdU>d (xi − x̄)
∥∥2

s.t. U>d Ud = Id. (2.21)

Note that this is a restatement of the original problem with the mean x̄ sub-
tracted from each of the sample points. Therefore, from now on, we will consider
only the case in which the data points have zero mean. If not, simply subtract the
mean from each point before computing Ud.

The following theorem gives a constructive solution for finding an optimal Ûd.

Theorem 2.2 (PCA via SVD). LetX = [x1,x2, . . . ,xN] ∈ RD×N be the matrix
formed by stacking the (zero-mean) data points as its column vectors. Let X =
UΣV > be the SVD of the matrix X . Then for any given d < D, an optimal
solution for Ud is given by the first d columns of U , and an optimal solution for
yi is given by the ith column of the top d×N submatrix ΣdV >d of ΣV >.

Proof. Recalling that x>Ax = tr(Axx>), we can rewrite the least-squares error

N∑
i=1

∥∥xi − UdU>d xi∥∥2 =
N∑
i=1

x>i (ID − UdU>d)xi (2.22)

as tr((ID − UdU>d)XX>). The first term tr(XX>) does not depend on Ud.
Therefore, we can transform the minimization of (2.22) to

max
Ud

tr(UdU>d XX
>) s.t. U>d Ud = Id. (2.23)

Since tr(AB) = tr(BA), the Lagrangian for this problem can be written as

L = tr(U>d XX
>Ud) + tr((Id − U>d Ud)Λ). (2.24)

The conditions for an extrema are given by

XX>Ud = UdΛ. (2.25)

Therefore, Λ = U>d XX
>Ud and the objective function reduces to tr(Λ). Now,

recall that Ud is defined only up to a rotation, i.e., U ′d = UdR is also a valid
solution, hence so is Λ′ = RΛR>. Since Λ is symmetric, it has an orthogonal
matrix of eigenvectors. Thus, if we choose R to be the matrix of eigenvectors of
Λ, then Λ′ is a diagonal matrix. As a consequence, we can choose Λ to be diagonal
without loss of generality. It follows from (2.25) that the columns of Ud must be
eigenvectors ofXX> with the corresponding eigenvalues in the diagonal entries
of Λ. Since the goal is to maximize tr(Λ), an optimal solution is given by the top d
eigenvectors ofXX>, i.e., the top d singular vectors ofX = UΣV >, which are
the first d columns of U . It then follows from (2.20) that Y = [y1, · · · ,yN] =
U>d X = U>d UΣV > = ΣdV >d . Finally, since Λ = U>d UΣ2U>Ud = Σ2

d, the
optimal least-squares error is given by tr(Σ2)− tr(Σ2

d) =
∑D
i=d+1 σ

2
i , where σi

is the ith singular value ofX .

2.1. Principal Component Analysis (PCA) 27

According to the theorem, the SVD gives an optimal solution to the PCA
problem. The resulting matrix Ûd (together with the mean x̄ if the data is not zero-
mean) provides a geometric description of the dominant subspace structure for all
the points4; and the columns of the matrix ΣdV >d = [ŷ1, ŷ2, . . . , ŷN] ∈ Rd×N ,
i.e., the principal components, give a more compact representation for the points
X = [x1,x2, . . . ,xN] ∈ RD×N , as d is typically much smaller than D.

Theorem 2.3 (Equivalence of Geometric and Sample Principal Components). Let
X = [x1,x2, . . . ,xN] ∈ RD×N be the data matrix (with x̄ = 0). The vectors
û1, û2, . . . , ûd ∈ RD associated with the d sample principal components for X
are exactly the columns of the matrix Ûd ∈ RD×d that minimizes the least-squares
error (2.22).

Proof. The proof is simple. Notice that ifX has the singular value decomposition
X = UΣV >, thenXX> = UΣ2U> is the eigenvalue decomposition ofXX>.
If Σ is ordered, then the first d columns ofU are exactly the leading d eigenvectors
ofXX>, which give the d sample principal components.

Therefore, both the geometric and statistical formulation of PCA lead to exactly
the same solutions/estimates of the principal components. The geometric formu-
lation allows us to apply PCA to data even if the statistical nature of the data is
unclear; the statistical formulation allows to quantitatively evaluate the quality of
the estimates. For instance, for Gaussian random variables, one can derive explicit
formulae for the mean and covariance of the estimated principal components. For
a more thorough analysis of the statistical properties of PCA, we refer the reader
to the classical book [Jolliffe, 1986].

2.1.3 Probabilistic PCA

The PCA model described so far allows us to find a low-dimensional representa-
tion {yi ∈ Rd} of a set of points {xi ∈ RD}, with d � D. However, the PCA
model is not a proper generative model, because the low-dimensional representa-
tion y and the error ε are treated as parameters, rather than as random variables.
As a consequence, the PCA model cannot be used to generate new samples x.

To address this issue, assume that the low-dimensional representation y and the
error ε are independent random variables with pdfs p(y) and p(ε), respectively.
This allows us to generate a new sample of x from samples of y and ε as

x = x0 + Udy + ε. (2.26)

Assume that mean and covariance of y are denoted as µy and Σy , respectively.
Assume also that ε is zero mean with covariance Σε. The mean and covariance of

4From a statistical standpoint, the column vectors of Ud give the directions in which the data X
has the largest variance, hence the name “principal components.” See the next section for detail.

28 Chapter 2. Data Modeling with a Single Subspace

the observations are then given by

µx = x0 + Udµy and Σx = UdΣyU>d + Σε. (2.27)

The remainder of the section discusses different methods for estimating the
parameters of this model, x0, Ud, µy , Σy and Σε, from the mean and covariance
of the population, µx and Σx, or from i.i.d. samples {xi}Ni=1.

PPCA from Population Mean and Covariance

Observe that, in general, we cannot recover model parameters from µx and Σx.
For instance, notice that x0 and µy cannot be uniquely recovered from µx. Sim-
ilarly to what we did in the case of PCA, this issue can be easily resolved by
assuming that µy = 0. This leads to the following estimate of x0

x̂0 = µx, (2.28)

which is the same estimate as that of PCA.
Another ambiguity that cannot be resolved in a straightforward manner is that

Σy and Σε cannot be uniquely recovered from Σx. For instance, Σy = 0 and
Σε = Σx is a valid solution. However, this solution is not meaningful, because it
assigns all the information in Σx to the error, rather than to the low-dimensional
representation. Intuitively we would like Σy to capture as much information about
Σx as possible. Thus it makes sense for Σy to be full rank and for Σε to be as
close to zero as possible. Probabilistic PCA (PPCA) resolves the aforementioned
ambiguity by assuming that

1. the low-dimensional representation has unit covariance Σy = Id ∈ Rd×d
and

2. the noise covariance matrix Σε ∈ RD×D is isotropic, i.e., Σε = σ2ID.

These assumptions lead to the following relationship

Σx = UdU
>
d + σ2ID. (2.29)

The following theorem allows us to compute the parameters Ud and σ.

Theorem 2.4. The optimal solution for Ud and σ with the smallest σ is given by

Ûd = U1(Σ1 − σ̂2I)1/2 and σ̂2 =
1

D − d

D∑
i=d+1

λi, (2.30)

where U1 is the matrix with the top d eigenvectors of Σx, Σ1 is the matrix with
the corresponding d top eigenvalues, and λi is the ith eigenvalue of Σx.

Proof. Multiplying (2.29) on the right by Ud leads to

(Σx − σ2ID)Ud = UdΛ. (2.31)

Therefore, the columns of Ud must be eigenvectors of Σx − σ2ID, which are the
same as the eigenvectors of Σx. Since we want σ to be as small as possible, it
makes sense to choose the top d eigenvectors of Σx. So see this, let Ud = U1Γ,

2.1. Principal Component Analysis (PCA) 29

where the columns of U1 ∈ RD×d are any d orthonormal eigenvectors of Σx and
Γ ∈ Rd×d is a diagonal matrix, which scales these eigenvectors so that they satisfy
U>d Ud = Λ. Since U>1 U1 = Id, we obtain Γ2 = Λ = Σ1 − σ2Id, where Σ1 is a
diagonal matrix with the d eigenvalues of Σx corresponding to the d eigenvectors
in U1. Now, recalling that Σx = UdU

>
d + σ2ID we have that

tr(Σx) = tr(UdU>d) + tr(σ2ID) = tr(U>d Ud) +Dσ2 (2.32)

= tr(Λ) +Dσ2 = tr(Σ1) + (D − d)σ2. (2.33)

Therefore, the smallest possible σ is obtained when tr(Σ1) is maximized, which
happens if we choose the diagonal entries of Σ1 to be the top d eigenvalues of
Σx.

PPCA by Maximum Likelihood

In general, we may not know the true covariance matrix Σx. Instead, we are given
samples {xi}Ni=1 from which we can estimate the sample covariance matrix Σ̂N .
The question is whether the model parameters can be estimated as in the previous
section after replacing Σx by Σ̂N . As it turns out, the maximum likelihood esti-
mates of the model parameters can be computed almost as before when y and ε
are assumed to be Gaussian random variables.

More specifically, assume that both y and ε are Gaussian random variables
y ∼ N (µy,Σy) and ε ∼ N (0,Σε). This implies that x is also Gaussian, because
it is a linear combination of Gaussians. Specifically, x ∼ N (µx,Σx), where µx
and Σx are given in (2.27). Assume also that Σy = Id and that Σε = σ2I . The
maximum likelihood estimate for µx is 1

N

∑N
i=1 xi. The maximum likelihood

estimates for Ud and Σε are obtained by maximizing

L(Ud,Σε) = −ND
2

log(2π)− N

2
log det(Σx)− N

2
tr(Σ−1

x Σ̂x) (2.34)

subject to Σx = UdU
>
d + Σε.

After taking derivatives with respect to Ud, we obtain

∂L
∂Ud

= −NΣ−1
x Ud +NΣ−1

x Σ̂xΣ−1
x Ud = 0 =⇒ Σ̂xΣ−1

x Ud = Ud. (2.35)

One possible solution is Ud = 0, which leads to a minimum of the log-likelihood
and violates our assumption that Ud should be full rank. Another possible solution
is Σx = Σ̂x, where the covariance model is exact. This corresponds to the case
discussed in the previous section, after replacing Σx by Σ̂x. Thus, the model
parameters can be computed as before. A third solution is obtained when Ud 6= 0
and Σx 6= Σ̂x. In this case, we have,

ΣxUd = Ud(Λ + σ2Ud) =⇒ Ud = Σ−1
x Ud(Λ + σ2Id) (2.36)

=⇒ Σ̂xUd = Ud(Λ + σ2Id) (2.37)

30 Chapter 2. Data Modeling with a Single Subspace

Notice that the last equation is the same as that in (2.31) with Σx replaced by Σ̂x.
Therefore, the optimal solution is of the form Ud = U1(Σ1 − σ2I)1/2, where U1

is a matrix with d eigenvectors of Σ̂x with the corresponding eigenvalues in Σ1.
Before replacing this solution into (2.34), recall two well known identities,

the matrix determinant lemma det(A + UV >) = det(I + V >A−1U) det(A)
and the matrix inversion lemma (A + UCV)−1 = A−1 − A−1U(C−1 +
V A−1U)−1V A−1. Applying the matrix determinant lemma to det(Σx) leads to

|UdU>d + σ2ID| = |Id + σ−2U>d Ud)||σ2ID| = |(Σ1/σ
2)|σ2D = |Σ1|σ2(D−d),

(2.38)

while applying the matrix inversion lemma to Σx leads to

(UdU>d + σ2ID)−1 =
ID
σ2
− Ud
σ2

(Id +
1
σ2
U>d Ud)

−1U
>
d

σ2
(2.39)

=
1
σ2

(ID − UdΛ−1U>d) =
1
σ2

(ID − U1U
>
1) (2.40)

Therefore, the log-likelihood can be rewritten as

L = −ND
2

log(2π)− N

2
(
(D − d) log σ2 + log det(Σ1)

)
(2.41)

− N

2σ2
tr(Σ̂x − U1U

>
1 Σ̂x) (2.42)

The condition for an extrema in σ2 is given by

∂L
∂σ2

= −N
2
D − d
σ2

+
N

2σ4

(
tr(Σ̂x)− tr(U>1 Σ̂xU1)

)
= 0. (2.43)

Since tr(U>1 Σ̂xU1) = tr(Σ1), we conclude that

σ2 =
1

D − d
(

tr(Σ̂x)− tr(Σ1)
)
. (2.44)

This expression is minimized when tr(Σ1) is maximized, which happens when
Σ1 is chosen as the matrix with the top d eigenvalues of Σ̂x.

In summary, we have shown that the optimal solution to PPCA is given by

Ûd = U1(Σ1 − σ̂2I)1/2 and σ̂2 =
1

D − d

D∑
i=d+1

λi, (2.45)

where U1 is the matrix with the top d eigenvectors of Σ̂x, Σ1 is the matrix with
the corresponding d top eigenvalues, and λi is the ith eigenvalue of Σ̂x.

2.2 Determining the Number of Principal Components

In the above discussions, we have assumed that the dimension of the subspace
S (the number of principal components) is given and that all the sample points

2.2. Determining the Number of Principal Components 31

can be fit with the same geometric or statistical model: a subspace. In this sec-
tion, we discuss various robustness issues for PCA, such as how to determine
the dimension of the subspace from noisy data and how to determine the principal
components when the data are contaminated by outliers or incomplete data points.

Notice that the SVD of the noisy data matrix X gives a solution to PCA not
only for a particular dimension of the subspace, d, but also for all d = 1, 2, . . . , D.
This has an important side-benefit: If the dimension of the subspace S is not
known or specified a priori, rather than optimizing for both d and S simultane-
ously, we can easily look at the entire spectrum of solutions for different values
of d to decide on the “best” estimate d̂ for the dimension of the subspace d given
the dataX .

The problem of determining the optimal dimension d̂ is in fact a “model selec-
tion” problem. As we discussed in the introduction of the book, the conventional
wisdom is to strike a good balance between the complexity of the chosen model
and the fidelity of the data to the model. The dimension d of the subspace S is a
natural measure of model complexity, while the least-squares error between the
given dataX and its projection X̂ = [x̂1, x̂2, . . . , x̂N] onto the subspace S, i.e.,

‖X − X̂‖2F =
N∑
i=1

‖xi − x̂i‖2, (2.46)

is a natural measure of the data fidelity.
As shown in the proof of Theorem 2.2, the optimal least-squares error is given

by the sum of the squares of the remaining singular values of X ,
∑D
i=d+1 σ

2
i .

Normally, the leading term σ2
d+1 of

∑D
i=d+1 σ

2
i is already a good index of

the magnitude of the remaining ones. Thus, one can simply seek for a balance
between d and σ2

d+1 by minimizing an objective function of the form:

J1(d) .= α · σ2
d+1 + β · d (2.47)

for some proper weights α, β > 0. A similar criterion that is often used to
determine the rank d of a noisy matrixX is:

J2(d) .=
σ2
d+1∑d
i=1 σ

2
i

+ κd, (2.48)

where κ > 0 is a proper weight (see [Kanatani, 2002]).
In general, the ordered singular values of the data matrix X versus the dimen-

sion d of the subspace resemble a plot similar to that shown in Figure 2.1. In the
statistics literature, this is known as the “Scree graph.” We should see a signif-
icant drop in the singular values right after the “correct” dimension d̂, which is
sometimes called the “knee” or “elbow” point of the plot. Such a point is a stable
minimum as it optimizes the above objective function (2.47) for a range of values
for α and β, or the objective function in (2.48) for a range of values of κ. One can
also select the optimal dimension d̂ from the Scree graph by specifying a toler-
ance τ for the fitting error and then using the plot to identify the model that has
the lowest dimension and satisfies the given tolerance, as indicated in the figure.

32 Chapter 2. Data Modeling with a Single Subspace

Subspace Dimension

Si
ng

ul
ar

 V
al

ue
s

knee point

d̂ D

τ

σd

min(αx + βy)

0 1

Figure 2.1. Singular value as a function of the dimension of the subspace.

A more principled approach to finding the optimal dimension of the subspace,
d̂, is to use some of the model selection criteria described in Appendix A. Such
criteria rely on a different choice of the model complexity term and provide an au-
tomatic way of choosing the parameters α and β or κ. Specifically, the complexity
of the model is measured by the number of parameters needed to describe the sub-
space. Using the Grassmannian coordinates, the dimension of the parameter space
for a d-dimensional subspace in RD is Dd− d2.5 With a model parameter space
of dimension Dd − d2 and a Gaussian noise model with known variance σ2, the
Bayesian information criterion (BIC) is equivalent to minimizing

BIC(d) .=
1
N
‖X − X̂‖2F + (logN)

(Dd− d2)
N

σ2, (2.49)

while the Akaike information criterion (AIC) minimizes

AIC(d) .=
1
N
‖X − X̂‖2F + 2

(Dd− d2)
N

σ2. (2.50)

More recently, a geometric version of the Akaike information criterion has been
proposed by [Kanatani, 2003]. The Geometric AIC minimizes

G-AIC(d) .=
1
N
‖X − X̂‖2F + 2

(Dd− d2 +Nd)
N

σ2, (2.51)

where the extra term Nd accounts for the number of coordinates needed to
represent (the closest projection of) the given N data points in the estimated d-

5Dd− d2 is the dimension of the Grassmannian manifold of d-dimensional subspaces in RD . To
specify a subspace, one can use the so-called Grassmannian coordinates which need exactlyDd− d2
entries: starting with a D × d matrix whose columns form a basis for the subspace, perform column-
reduction so that the first d × d block is the identity matrix. Then, one only needs to give the rest
(D − d)× d entries to specify the subspace.

2.3. Robust PCA: Classical Approaches 33

dimensional subspace. From an information-theoretic viewpoint, the additional
Nd coordinates are necessary if we are interested in encoding not only the model
but also the data themselves. This is often the case when we use PCA for purposes
such as data compression and dimension reduction. The quantity (Dd−d2+Nd)

N is
closely related to the so-called “effective dimension” of the data set defined in
Chapter 6, which can be generalized to multiple subspaces.

In some sense, all the above criteria can be loosely referred to as information-
theoretic model selection criteria, in the sense that most of these criteria can
be interpreted as variations to minimizing the optimal code length for both the
model and the data with respect to certain class of distributions and coding
schemes [Hansen and Yu, 2001].6 There are many other methods for determining
the number of principal componenrs. Interested readers may find more references
in [Jolliffe, 1986].

2.3 Robust PCA: Classical Approaches

In the above discussions, we have assumed that all the sample points can be fit
with the same statistical or geometric model: a subspace. In practical applications
it is often the case that the data points are contaminated not only by noise, but also
by outliers. Sometimes it is also the case that some entries of the of the data points
are missing. In this section, we discuss classical approaches from robust statistics
for dealing with outliers and incomplete data points in the context of PCA.

2.3.1 Dealing with Incomplete Data Points

In practice, it is often the case that some of the given data points are “incomplete.”
For an incomplete data point x = [x1, x2, . . . , xD]>, we mean that some of its
entries are missing or unspecified. For instance, if the xi-entry of x is missing,
then x is known only up to a line in RD:

x ∈ L
.=
{

[x1, . . . , xi−1, t, xi+1, . . . , xD]>, t ∈ R
}
. (2.52)

One should be aware that an incomplete data point is in nature rather different
from a noisy data point.7 In general, such incomplete data points can contain use-
ful information about the model, and in the case of PCA, the principal subspace.
For instance, if the principal subspace happens to contain the line L, the princi-
pal subspace can be determined from a sufficiently large number of such lines.

6Even if one chooses to compare models by their algorithmic complexity, such as the minimum
message length (MML) criterion [Wallace and Boulton, 1968] (an extension of the Kolmogrov com-
plexity to model selection), a strong connection with the above information-theoretic criteria, such
as MDL, can be readily established via Shannon’s optimal coding theory (see [Wallace and Dowe,
1999]).

7One can view incomplete data points as a very special type of noisy data points which have infinite
uncertainty only in certain directions.

34 Chapter 2. Data Modeling with a Single Subspace

In general, the line L may or may not lie in the principal subspace. We therefore
should handle incomplete data points with more care.

A useful observation here is that an incomplete data point x is just as good
as any point on the line L. Hence it is natural to choose a representative x̂ ∈ L
that is the closest to the principal subspace. If we let the columns of Ud for a
basis form an orthonormal basis for the subspace, then the closest point x∗ =
[x1, . . . , xi−1, t

∗, xi+1, . . . , xD]> on L to the principal subspace can be found by
minimizing the following quadratic function in t:

t∗ = arg min
t

(
x>(ID − UdU>d)x

)
. (2.53)

This problem has a unique solution as long as the line L is not parallel to the
principal subspace, i.e., ei 6∈ span(Ud).

In essence, the above process of finding x∗ on the principal subspace is to
give a rank-d approximation of the entire data set containing both complete and
incomplete data points. Mathematically, under the assumption that the samples
{xi}Ni=1 are zero-mean, PCA with incomplete data is equivalent to finding a rank-
d approximation/factorization of the data matrix X = [x1,x2, . . . ,xN] with
incomplete data entries (in a least-squares sense). That is, the goal is to find ma-
trices Ud ∈ RD×d and Y ∈ Rd×N that minimize ‖X − UdY ‖2F . The main issue
is that some entries ofX , {xij}, are missing.

Obviously, we cannot expect to always be able to find a solution to this problem.
For instance, suppose the first entry is missing from each one of the data points.
Then we cannot hope to be able to recover such an entry. Likewise, suppose that
all the entries of one data point are missing. While in this case we can find the
subspace from all other data points, we cannot recover the low-dimensional rep-
resentation for that point. Nevertheless, if the missing entries do not follow a
specific pattern, we should be able to recover both Ud and Y as long as the num-
ber of measurements (known entries of X) is sufficiently large relative to the
number of unknowns (D(D − d) + dN entries in Ud and Y). Intuitively, the
smallest the rank of the matrix d the larger the amount of missing information we
can tolerate.

In what follows, we discuss a few traditional approaches to PCA with incom-
plete data. Throughout the exposition, we will make use of a matrix W ∈ RD×N
whose entries {wij} encode the locations of the missing information, i.e.,

wij =

{
1 if xij is known
0 if xij is missing

. (2.54)

We will also make use of the Haddamart product of two matrices W �X , which
is defined as (W �X)ij = wijxij .

Incomplete Mean and Covariance

Since the optimal solution to PCA is obtained from the mean and covariance of
the data points, a straightforward method for dealing with missing entries is to
simply compute the mean and covariance over the missing entries. Specifically,

2.3. Robust PCA: Classical Approaches 35

the incomplete mean and incomplete covariance are given by

µ̂i =

∑N
j=1 wijxij∑N
j=1 wij

=⇒ x̂0 = diag(W1)−1(W �X)1, (2.55)

σ̂ij =

∑N
j=1 wij(xij − µi)∑N

j=1 wij
=⇒ x̂0 = diag(W1)−1(W �X)1, (2.56)

(2.57)

Power Factorization

Power Factorization (PF) is an iterative algorithm for finding a low-rank approx-
imation UdY of a matrix X with missing entries (see [Vidal and Hartley, 2004]
and references therein for further details). The main idea behind PF is to minimize
‖X − UdY ‖2F considering only the known entries of X . Given Y , the optimal
Ud can be computed linearly. Likewise, given Ud, the optimal Y can be computed
linearly. The PF algorithm then iterates between these two steps till convergence.

More specifically, the PF algorithm tries to minimize a cost function of the form

‖W � (X − UdY)‖2F =
D∑
i=1

N∑
j=1

wij(xij − u>i yj)2. (2.58)

Notice that this cost function is the same as that in (2.16), except that the errors
εij = xij−u>i yj associated with the missing entries (wij = 0) are removed from
the cost function.

2.3.2 Dealing with Outliers

Another issue that we encounter in practice is that a small portion of the data
points does not fit well the same model as the rest of the data. Such points
are called outliers. Their presence can lead to a completely wrong estimate of
the underlying subspace. Therefore, it is very important to develop methods for
detecting and eliminating outliers from the given data.

The true nature of outliers can be very elusive. In fact, there is really no unan-
imous definition for what an outlier is.8 Outliers could be atypical samples that
have an unusually large influence on the estimated model parameters. Outliers
could also be perfectly valid samples from the same distribution as the rest of the
data that happen to be small-probability instances. Alternatively, outliers could
be samples drawn from a different model, and therefore they will likely not be
consistent with the model derived from the rest of the data. In principle, however,
there is no way to tell which is the case for a particular “outlying” sample point.

In what follows, we discuss a few approaches to dealing with outliers that are
particularly related to PCA. We will distinguish between two types of outliers.

8For a more thorough exposition of outliers in statistics, we recommend the books of [Barnett and
Lewis, 1983, Huber, 1981].

36 Chapter 2. Data Modeling with a Single Subspace

The first kind, which we call sample outliers, corresponds to the case where the
entire sample data point is an atypical sample. The second kind, which we call
intra-sample outliers, corresponds to the case where only a few entries of a data
point are atypical, while the remaining entries are not. The main distinction to be
made is that in the latter case we do not want to discard the entire data point, but
only the atypical entries.

Influence-Based Outlier Detection

This approach relies on the assumption that an outlier is an atypical sample which
has an unusually large influence on the estimated model parameters. This leads
to an outlier detection scheme where the influence of a sample is determined
by comparing the difference between the model estimated with and without this
sample. For instance, for PCA one may use a sample influence function to measure
the difference:

I(xi, Ud)
.= 〈Ûd, Ûd(i)〉, (2.59)

where 〈·, ·〉 is the largest subspace angle (see Exercise 2.2) between the subspace
span(Ûd) estimated with the ith sample and the subspace span(Ûd(i)) without the
ith sample. The larger the difference, the larger the influence of xi on the estimate,
and the more likely that xi is an outlier. Thus, we may eliminate a sample xi as
an outlier if

I(xi, Ud) ≥ τ (2.60)

for some threshold τ > 0 or if I(xi, Ud) is relatively large among all the samples.
However, this method does not come without an extra cost. We need to com-

pute the principal components (and hence perform SVD) N times: one time with
all the samples together and anotherN−1 times with one sample eliminated from
each time. There have been many studies that aim to give a formula that can accu-
rately approximate the sample influence without performing SVD N times. Such
a formula is called a theoretical influence function. For more detailed discussion
of the sample influence for PCA, we refer the interested readers to [Jolliffe, 2002].

Probability-Based Outlier Detection

In this approach a model is fit to all the sample points, including potential out-
liers. Outliers are then detected as the points that correspond to small-probability
events or that have large fitting errors with respect to the identified model. A new
model is then estimated with the detected outliers removed or down-weighted.
This process is then repeated until the estimated model stabilizes.

In the case of PCA, the goal is to find a low-dimensional subspace that best fits
a given set of data points {xi ∈ RD}Ni=1 by minimizing the least-squares errors

N∑
i=1

‖xi − x0 − Udyi‖2, (2.61)

2.3. Robust PCA: Classical Approaches 37

between a point xi and its projection onto the subspace x0 + Udyi, where x0 ∈
RD is any point in the subspace, Ud ∈ RD×d is a basis for the subspace, and
yi ∈ Rd are the coordinates of the point in the subspace. If there were no outliers,
an optimal solution to PCA could be obtained as described in Section 2.1.2, i.e.,

x̂0 =
1
N

N∑
i=1

xi and ŷi = Û>d (x− x̂0), (2.62)

where Ûd is a D × d matrix whose columns are the top d eigenvectors of

Σ̂N =
1

N − 1

N∑
i=1

(xi − x̂0)(xi − x̂0)>. (2.63)

If we adopt the guideline that outliers are samples that do not fit the model well
or have a small probability with respect to the estimated model, then the outliers
are exactly those samples that have a relatively large residual

ε2
i = ‖xi − x̂0 − Ûdŷi‖2 or ε2

i = x>i Σ̂−1
N xi, i = 1, 2, . . . , N. (2.64)

The first error is simply the distance to the subspace, while the second error is the
Mahalanobis distance,9 which is obtained when we approximate the probability
that a sample xi comes from this model by a multivariate Gaussian

p(xi; Σ̂N) =
1

(2π)D/2 det(Σ̂N)1/2
exp

(
− 1

2
x>i Σ̂−1

N xi
)
. (2.65)

In principle, we could use p(xi, Σ̂N) or either residual εi to determine if xi
is an outlier. However, the above estimate of the subspace is obtained using all
the samples, including the outliers themselves. Therefore, the estimated subspace
could be completely wrong and hence the outliers could be incorrectly detected.
In order to improve the estimate of the subspace, one can recompute the model
parameters after discarding or down-weighting samples that have large residuals.
More specifically, let wi ∈ [0, 1] be a weight assigned to the ith point such that
wi ≈ 1 if xi is an inlier and wi ≈ 0 if xi is an outlier. Then, similarly to (2.16),
a new estimate of the subspace can be obtained by minimizing a weighted least-
squares error:

N∑
i=1

wi‖xi − x0 − Udyi‖2 s.t. U>d Ud = Id and
N∑
i=1

wiyi = 0. (2.66)

9 In fact, it can be shown that [Ferguson, 1961], if the outliers have a Gaussian distribution of a dif-
ferent covariance matrix aΣ, then εi is a sufficient statistic for the test that maximizes the probability
of correct decision about the outlier (in the class of tests that are invariant under linear transforma-
tions). Interested reader may want to find out how this distance is equivalent (or related) to the sample
influence bΣ(i)

N − bΣN or the approximate sample influence given in (A.50).

38 Chapter 2. Data Modeling with a Single Subspace

If we follow the same steps as in Section 2.1.2, we can find that an optimal
solution to this problem is of the form:

x̂0 =
∑N
i=1 wixi∑N
i=1 wi

and ŷi = Û>d (x− x̂0), (2.67)

where Ûd is a D × d matrix whose columns are the top d eigenvectors of

Σ̂N =
∑N
i=1 wi(xi − x̂0)(xi − x̂0)>∑N

i=1 wi − 1
. (2.68)

As a consequence, under the least-squares criterion, finding a robust solution to
PCA reduces to finding a robust estimate of the sample mean and the sample
covariance of the data by properly setting the weights. In what follows, we discuss
two main approaches approaches for estimating the weights.

Multivariate trimming (MVT) is a popular robust method for estimating the
sample mean and covariance of a set of points. This method assumes discrete
weights

wi =

{
1 if xi is an inlier
0 if xi is an outlier

, (2.69)

and chooses the outliers as a certain percentage of the samples (say 10 percent)
that have relatively large residual. This can be done by simply sorting the residu-
als {εi} from the lowest to the highest and then choosing as outliers the desired
percentage of samples with the highest residuals. Once the outliers are trimmed
out, one can use the remaining samples to re-estimate the subspace as in (2.67)-
(2.68). Each time we have a new estimate of the subspace, we can recalculate the
residual of every sample and reselect samples that need to be trimmed. We can
repeat the above process until a stable estimate of the subspace is obtained. When
the percentage of outliers is somewhat known, it usually takes only a few itera-
tions for MTV to converge and the resulting estimate is in general more robust.
However, if the percentage is wrongfully specified, MVT may not converge or it
may converge to a wrong estimate of the subspace. In general, the ”breakdown
point” of MTV, i.e., the proportion of outliers that it can tolerate before giving a
completely wrong estimate, depends only on the chosen trimming percentage. In
Chapter ??, we will discuss how MVT can be modified in the context of GPCA
when the percentage of outliers is not known.

Maximum Likelihood Type Estimators (M-Estimators) uses continuous weights
wi = ρ(εi)/ε2

i for some robust loss function ρ(·). The objective function then
becomes

N∑
i=1

ρ(εi). (2.70)

Many loss functions ρ(·) have been proposed in the statistics literature [Huber,
1981, Barnett and Lewis, 1983]. When ρ(ε) = ε2, we obtain the standard least-
squares solution, which is not robust. Other robust loss functions include

2.3. Robust PCA: Classical Approaches 39

1. L1 or total variation loss: ρ(ε) = |ε|.

2. Cauchy loss: ρ(ε) = ε2
0 log(1 + ε2/ε2

0)

3. Huber loss [Huber, 1981]: ρ(ε) =

{
ε2 if |ε| < ε0

2ε0|ε| − ε2
0 otherwise

4. Geman-McClure loss [Geman and McClure, 1987]: ρ(ε) = ε2

ε2+b2

where ε > 0 is a parameter.
One way of minimizing (2.70) with respect to the subspace parameters is to ini-

tialize all the weights to wi = 1, i = 1, . . . , N . This will give an initial estimate
for the subspace which is the same as that given by PCA. Given this initial esti-
mate of the subspace, one may compute the weights as wi = ρ(ε)/ε2 using any
the aforementioned robust cost functions. Given these weights, one can reestimate
the subspace from (2.67)-(2.68). One can then iterate in between computing the
weights given the subspace and computing the subspace given the weights. This
iterative process, called iterative re-weighted least squares, converges to a local
minima of the cost function (2.70). An alternative method for minimizing (2.70)
is to simply do gradient descent. This method may be preferable for loss functions
ρ that are differentiable, e.g., the Geman-McClure loss function.

One drawback of the M-estimators is that its breakdown point is inversely pro-
portional to the dimension of the space. Thus, the M-estimators become much less
robust when the dimension is high. This makes M-estimators of limited use in the
context of GPCA since the dimension of the space is typically very high (≥ 70).

Consensus-Based Outlier Detection

This approach assumes that the outliers are not drawn from the same model as the
rest of the data. Hence it makes sense to try to avoid the outliers when we infer
the model in the first place. However, without knowing which points are outliers
beforehand, how can we avoid them? One idea is to fit a model, instead of to all
the data points at the same time, only to a subset of the data. This is possible when
the number of data points required for a unique solution for the estimate is much
smaller than that of the given data set. Of course, one should not expect that a
randomly chosen subset will have no outliers and always lead to a good estimate
of the model. Thus, one should try on many different subsets:

X1,X2, . . . ,Xn ⊂ X. (2.71)

The rationale is that if the number of subsets are large enough,10 one of the trial
subsets, say Xi, likely contains few or no outliers and hence the resulting model
would be the most consistent with the rest of the data points.

In the case of PCA, the minimum number of data points needed to define the
model is d for linear subspaces and d + 1 for affine subspaces. Therefore, each

10See Appendix A.5 for details on how large this number needs to be.

40 Chapter 2. Data Modeling with a Single Subspace

subset Xi is formed by randomly sampling d (or d + 1) data points and fitting
a subspace with basis Ûd(Xi) to the subset. The subset Xi gives a consistent
estimate Ûd(Xi) of the subspace if the number of data points that fit the subspace
well is large enough. For instance, we may claim that the subset Xi gives a con-
sistent estimate Ûd(Xi) if the following criterion is maximized (among all the
chosen subsets):

max
i

#
{
x ∈X :

∥∥x− Ûd(Xi)
∥∥ ≤ τ}, (2.72)

where # is the cardinality of the set and τ > 0 is a chosen error threshold.
This scheme is typically called Random Sample Consensus (RANSAC) [Fischler
and Bolles, 1981], and it normally improves the robustness of the estimate. As a
word of caution, in practice, in order to design a successful RANSAC algorithm,
one needs to carefully choose a few key parameters: the size of every subset,
the number of subsets, and the consensus criterion.11 There is a vast amount of
literature on RANSAC-type algorithms, especially in computer vision. For more
details on RANSAC and other related random sampling techniques, the reader
is referred to Appendix A.5. In Chapter ??, we will discuss some limitations of
RANSAC in the context of estimating multiple subspaces simultaneously.

2.4 Robust PCA: A Sparse Representation Approach

In this section, we discuss a sparse representation-based approach to dealing with
intra-sample outliers in PCA. In this approach, it is assumed that the given data
matrixX is generated as the sum of two matrices

X = L0 + E0. (2.73)

The matrix L0 represents the ideal low-rank matrix, while the matrix E0 rep-
resents the intra-sample outliers. Since many entries of X are not corrupted
(otherwise the problem is not well posed), many entries of E0 should be zero.
As a consequence, we can pose the robust PCA problem as one of decomposing
a given matrix X as the sum of two matrices L+ E, where L is of low-rank and
E is sparse. This problem can be formulated as

min
L,E

rank(L) + λ‖E‖0 s.t. X = L+ E, (2.74)

where ‖E‖0 is the number of non-zero entries inE and λ > 0 is a user parameter.
At a first sight, one may think that solving the problem in (2.74) is really impos-

sible. First of all, we have D×N equations and 2D×N unknowns. Second, it is
not clear that we can always decompose a matrix as the sum of a low-rank matrix
and a sparse matrix. For instance, ifX11 = 1 andXij = 0 for all (i, j) 6= (1, 1),

11That is, the criterion that verifies whether each sample is consistent with the model derived from
the subset.

2.4. Robust PCA: A Sparse Representation Approach 41

then the matrix X is both rank 1 and sparse. Thus, if λ = 1, we can choose
L = X and E = 0 or L = 0 and E = X as valid solutions. Last, but not least,
the cost function to be minimized is non-convex and non-differentiable. Moreover,
it is well known that this problem is in general NP hard [?].

In what follows, we will show that, under certain conditions on L0 and E0,
the optimal solution to (2.74) can be found by solving the following convex
optimization problem

min
L,E

‖L‖∗ + λ‖E‖1 s.t. X = L+ E, (2.75)

where ‖L‖∗ =
∑
i σi(L) is the nuclear norm of L, i.e., the sum of its singular

values, and ‖E‖1 =
∑
i,j |Eij | is the `1 norm of E considered as a vector. The

conditions rely on recent results from compressed sensing, which aim at finding
a sparse solution to a linear system Ax = b. Therefore, we will first review re-
cent results on sparsity and rank minimization before we return to the problem of
decomposing a matrix as the sum of a low rank plus a sparse matrix.

2.4.1 Basis Pursuit

Let us first consider the simpler problem of finding a solution to the linear system
Ax = b, where x ∈ RN , b ∈ RD and A ∈ RD×N , with D < N . Since this
linear system is underdetermined, in general there could be many solutions x. A
classical approach to finding a unique solution (when a solution exists) is to look
for a vector x of minimum `2 norm, i.e., min ‖x‖2 such that Ax = b.

An alternative approach is to look for a vector x that is sparse. Specifically,
assume that the vector b is generated as Ax0 = b, where x0 is a d-sparse vector,
i.e., ‖x0‖0 = d � N . When the matrix A is such that δ2d(A) < 1, where δd(A)
is the smallest number such that for all x with ‖x‖0 ≤ d,

(1− δd(A))‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δd(A))‖x‖22, (2.76)

then the x0 is the only d-sparse vector such that Ax = b.
In order to find x0, we seek a solution to the problem

min ‖x‖0 s.t. Ax = b. (2.77)

In general, this problem is NP hard. However, when the matrix A satisfies the so-
called restricted isometry property δ2d(A) <

√
2−1, then the optimal solution to

(2.80) can be found by solving the following convex optimization problem

min ‖x‖1 s.t. Ax = b. (2.78)

2.4.2 Rank Minimization and PCA with Missing Data

Consider now the problem of finding a solution to the matrix linear system
A(X) = b, where X ∈ RD×N , b ∈ RK , A : RD×N → RK is a linear map,
and K < D×N . As before, there could be many matrices X that solve the linear
systemA(X) = b. Assume that there is a matrix X0 of rank d ≥ 1 that solves the

42 Chapter 2. Data Modeling with a Single Subspace

linear system. When the matrix A is such that δ2d(A) < 1, where δd(A) is the
smallest number such that for all matrices X ∈ RD×N of rank d

(1− δd(A))‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δd(A))‖X‖F , (2.79)

then X0 is the only matrix of rank at most d satisfying A(X) = b.
In order to find X0, we seek a solution to the problem

min rank(X) s.t. A(X) = b. (2.80)

In general, this problem is NP hard. However, when the matrix A is such that
δ5d(A) < 1/10, the optimal solution to (2.80) can be found by solving the
following convex problem

min ‖X‖∗ s.t. A(X) = b. (2.81)

Observe that, when generalizing from the vector case to the matrix case, the
2-norm of x is replaced by the Frobenius norm ofX . Observe also that the Frobe-
nius norm ‖X‖ is the `2 norm of the singular values, while the nuclear norm ‖X‖∗
is the `1 norm of the singular values.

Observe also that the above rank minimization problem provides a solution
to PCA with missing data. Specifically, let X be a given matrix of rank d with
missing entries, and recall the definition of the matrixW wherewij = 1 if theXij

is known and wij = 0 otherwise. Then, we can findX by solving the problem

min rank(X) s.t. W �X = W �X (2.82)

In other words, we seek a matrixX of minimum rank, whose entries coincide with
the known entries of X . From the results above, we know that if the matrix AW
defined by the relationship AW (X) = W � X is such that δ2d(AW) < 1, then
the missing entries of X are uniquely defined. Moreover, if δ5d(AW) < 1/10,
we can find the missing entries ofX by solving the following convex problem

min ‖X‖∗ s.t. W �X = W �X. (2.83)

An additional advantage of this formulation of PCA with missing data is that we
do not need to specify the number of principal components in advance: the number
of principal components is simply the rank of X and this method searches for the
matrix of minimum rank.

2.4.3 Principal Component Pursuit and Robust PCA

Let us now return to the original problem of decomposing a matrixX as the sum
of a low-rank matrix L0 plus a sparse matrix E0. Recall from (2.75) that we wish
to find L0 and E0 by solving the following optimization problem

min
L,E

‖L‖∗ + λ‖E‖1 s.t. X = L+ E, (2.84)

The following theorem gives conditions on the rank of the matrix and the per-
centage of outliers under which the optimal solution is exactly L0 and E0 with
overwhelming probability.

2.5. Extensions to PCA 43

Theorem 2.5 (??). LetX = L0 +E0. Assume that there exists a µ > 0 such that
the compact SVD of L0 = UΣV > satisfies

max
i
‖ui‖2 ≤

µd

D
, max

i
‖vi‖2 ≤

µd

N
and ‖UV >‖∞ ≤

√
µd

ND
, (2.85)

where U = [u1, u2, · · · , uD]> ∈ RD×d and V = [v1, v2, · · · , vN]> ∈ RN×d.
Assume also that the support of E0 is uniformly distributed among all the sets of
cardinality D ×N . If

rank(L0) ≤ ρd min{D,N}
µ log2

(
max{D,N}

) and ‖E0‖0 ≤ ρsND. (2.86)

Then there is a constant c such that with probability at least 1−cmax{N,D}−10,
the solution (L∗, E∗) to (2.75) with λ = 1√

max{N,D}
is exact, i.e.,

L∗ = L0 and E∗ = E0. (2.87)

Assuming that the conditions of the theorem are satisfied, the next question
is how do we actually optimize the cost function in order to find the global
minimum.

2.5 Extensions to PCA

2.5.1 Factor Analysis

Factor Analysis (FA) resolves the aforementioned ambiguity by assuming that

1. the low-dimensional representation has unit covariance Σy = Id ∈ Rd×d
and

2. the noise covariance matrix Σε ∈ RD×D is diagonal.

These assumptions lead to the following relationship

Σx = UdU
>
d + Σε, (2.88)

from which it follows that the off-diagonal entries of Σx are equal to the off-
diagonal entries of UdU>d . As a consequence, even though both FA and PCA try
to capture as much information from Σx into Σy , the information they attempt to
capture is not the same. On the one hand, FA tries to find a matrix Ud such that the
covariances are preserved, i.e., the off-diagonal entries of Σx. On the other hand,
PCA tries to preserve the variances, i.e., the diagonal entries of Σx.

The analysis above implies that, in general, the solutions to PCA and FA need
not be the same. To see this, simply multiply (2.88) on the right by Ud to obtain

(Σx − Σε)Ud = UdΛ, (2.89)

where Λ = U>d Ud � 0. Notice that Λ is, without loss of generality, a diagonal
matrix. This is because Ud is defined only up to a rotation Rd, thus if Λ is not

44 Chapter 2. Data Modeling with a Single Subspace

diagonal, we can replace it by R>d U
>
d UdRd, which is diagonal if Rd is chosen as

the matrix of eigenvectors of U>d Ud. As a consequence the columns of Ud must be
eigenvectors of Σx−Σε. Such eigenvectors do not generally coincide with the top
d eigenvectors of Σx, which give the solution to PCA. Moreover, the eigenvectors
of Σx−Σε cannot be directly computed without knowing Σε. As a consequence,
the solution to FA is often found via the following iterative procedure:

1. Initialize Σε = 0.

2. Given Σε, set Ud = U1Σ1/2
1 , where the columns of U1 are the top d eigen-

vectors of Σx −Σε and Σ1 is a diagonal matrix whose diagonal entries are
the corresponding eigenvalues.

3. Given Ud, set Σε = diag(Σx − UdU>d).

4. Go to 2. until convergence.

Notice that the solutions to PCA and FA are initially the same, except for the
linear transformation Σ1/2

1 . However, as the iterations proceed, the solutions are
generally different.

2.5.2 Nonlinear and Kernel PCA

Although PCA offers a rather useful tool to model the linear structure of a given
data set, it becomes less effective when the data lies in a nonlinear manifold.
In this section, we introduce some basic extensions to PCA which can, to some
extent, handle the difficulty with nonlinearity.

2.5.3 Nonlinear and Kernel PCA

Nonlinear PCA

The key idea behind nonlinear PCA is that, instead of applying PCA directly to
the given data, we can apply it to a transformed version of the data. The rationale
is that the structure of the data may become linear after embedding the data into a
higher-dimensional space. For example, imagine that the data point (x1, x2) lies
in a conic of the form

c1x
2
1 + c2x1x2 + c3x

2
2 + c4 = 0. (2.90)

If we define the map φ : R2 → R3 as

(z1, z2, z3) = (x2
1,
√

2x1x2, x
2
2), (2.91)

then the conic in R2 transforms into the following affine subspace in R3

c1z1 +
c2√

2
z2 + c3z3 + c4 = 0. (2.92)

Therefore, instead of learning a nonlinear manifold in R2, we can simply learn an
affine manifold in R5.

2.5. Extensions to PCA 45

More generally, we seek a nonlinear transformation (usually an embedding):

φ(·) : RD → RM , (2.93)
x 7→ φ(x), (2.94)

such that the structure of the resulting data {φ(xi)}Ni=1 becomes (significantly
more) linear. In machine learning, φ(x) ∈ RM is called the “feature” of the data
point x ∈ RD, and the space RM is called the “feature space.”

Let φ̄ = 1
N

∑N
i=1 φ(xi) be the sample mean in the feature space and define

the matrix Φ .= [φ(x1) − φ̄, φ(x2) − φ̄, . . . , φ(xN) − φ̄] ∈ RM×N . The princi-
pal components in the feature space are given by the eigenvectors of the sample
covariance matrix12

Σφ(x)
.=

1
N − 1

N∑
i=1

(φ(xi)− φ̄)(φ(xi)− φ̄)> =
1

N − 1
ΦΦ> ∈ RM×M .

(2.95)

Let vi ∈ RM , i = 1, . . . ,M , be the M eigenvectors, i.e.,

Σφ(x)vi = λivi, i = 1, 2, . . . ,M. (2.96)

Then the d “nonlinear principal components” of every data point x are given by

yi
.= v>i (φ(x)− φ̄) ∈ R, i = 1, 2, . . . , d. (2.97)

Unfortunately, the map φ(·) is generally not known beforehand and searching
for the proper map is a difficult task. In such cases, the use of nonlinear PCA
becomes limited. However, in some practical applications, good candidates for
the map φ(·) can be found from the nature of the problem. In such cases, the
map, together with PCA, can be very effective in extracting the overall geometric
structure of the data.

Example 2.6 (Veronese Map for an Arrangement of Subspaces). As we will see later in
this book, if the data points belong to a union of multiple subspaces, then a natural choice
of the transformation φ(·) is the Veronese map:

νn(·) : x 7→ νn(x),

(x1, . . . , xD) 7→ (xn1 , x
n−1
1 x2, . . . , x

n
D),

where the monomials are ordered in the degree-lexicographic order. Under such a mapping,
the multiple low-dimensional subspaces are mapped into a single subspace in the feature
space, which can then be identified via PCA for the features.

NLPCA in a High-dimensional Feature Space.

A potential difficulty associated with nonlinear PCA is that the dimension of the
feature space, M , can be very high. Thus computing the principal components

12In principle, we should use the notation Σ̂φ(x) to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use Σφ(x). The
same goes for the eigenvectors and the principal components.

46 Chapter 2. Data Modeling with a Single Subspace

in the feature space may become computationally prohibitive. For instance, if
we use a Veronese map of degree n, the dimension of the feature space M grows
exponentially with the degree. WhenM exceedsN , the eigenvalue decomposition
of ΦΦ> ∈ RM×M becomes more costly than that of Φ>Φ ∈ RN×N , although
the two matrices have the same eigenvalues.

This motivates us to examine whether the computation of PCA in the feature
space can be reduced to a computation with the lower-dimensional matrix Φ>Φ.
The answer is actually yes. The key is to notice that, despite the dimension of
the feature space, every eigenvector v ∈ RM of ΦΦ> associated with a non-zero
eigenvalue is always in the span of the matrix Φ:13

ΦΦ>v = λv ⇔ v = Φ(λ−1Φ>v) ∈ range(Φ). (2.98)

We define the vector w .= λ−1Φ>v ∈ RN . Obviously ‖w‖2 = λ−1. It is straight-
forward to check that w is an eigenvector of Φ>Φ for the same eigenvalue λ.
Once such a w is computed from Φ>Φ, we can recover the corresponding v in the
feature space as:

v = Φw. (2.99)

Therefore the d nonlinear principal component of x under the map φ(·) can be
computed as:

yi
.= v>i (φ(x)− φ̄) = w>i Φ>(φ(x)− φ̄) ∈ R, i = 1, . . . , d, (2.100)

where wi ∈ RN is the ith leading eigenvector of Φ>Φ ∈ RN×N .

Kernel PCA

A very interesting property of the above NLPCA method is that the computation
of the nonlinear principal components involves only inner products of the features.
More specifically, in order to compute the nonlinear principal components, yi, we
simply need to compute the entries of the matrix Φ>Φ and the entries of the
vectors Φ>φ(x) and Φ>φ̄ = 1

N

∑
Φ>φ(xi), all of which can be obtained from

inner products of the form φ(x)>φ(y), as we will show next.
Define the “kernel function” of two vectors x,y ∈ RD to be the inner product

of their features

k(x,y) .= φ(x)>φ(y) ∈ R. (2.101)

The so-defined function k(·, ·) is a symmetric positive semi-definite function in
x and y,14 which can be used to compute the nonlinear principal components as
follows. Define a kernel matrix K ∈ RN×N as kij = k(xi,xj). The entries of

13The remaining M −N eigenvectors of ΦΦ> are associated with the eigenvalue zero.
14A function k(x, y) is positive semi-definite if

R R
RDf(x)k(x, y)f(y) dxdy ≥ 0 for all square-

integrable functions f(·).

2.5. Extensions to PCA 47

the matrix K = Φ>Φ can be computed as

Kij = (Φ>Φ)ij = (φ(xi)− φ̄)>(φ(xj)− φ̄) (2.102)

= kij −
1
N

∑
j

kij −
1
N

∑
i

kij +
1
N2

∑
i

∑
j

kij , (2.103)

or in matrix notation

K = K − 1
N
K11> − 1

N
11>K +

1>K1
N2

11> (2.104)

= (I − 1
N

11>)K(I − 1
N

11>). (2.105)

The matrix I − 1
N 11> is called the centering matrix, since it makes the

The vectors wi are then eigenvectors ofK associated with its top d eigenvalues.
Now, the entries of the vector Φ>(φ(x)− φ̄) can be computed as

(Φ>(φ(x)− φ̄))i = (φ(xi)− φ̄)>(φ(x)− φ̄) (2.106)

= k(xi,x)− 1
N

∑
j

kij −
1
N

∑
i

k(xi,x) +
1
N2

∑
i

∑
j

kij ,

(2.107)

or in vector notation

Φ>(φ(x)− φ̄) = kx −
1
N
K1− 1

N
11>kx +

1>K1
N2

1, (2.108)

where kx = [k(x1,x), k(x2,x), · · · , k(xN ,x)]> ∈ RN . The nonlinear
principal components are then given by

yi = w>i kx −
w>i K1
N

− w>i 11>kx
N

+
1>K1
N2

w>i 1. (2.109)

In the particular case where the data is zero-mean, i.e., φ̄ = 0, we simply have

K = K, 1>kx = 0, K1 = 0 and yi = w>i kx, i = 1, . . . , d. (2.110)

If follows from the analysis above that the nonlinear principal components can
be computed directly from the kernel function k(x,y) = φ(x)>φ(y). Therefore,
we may be able to avoid having to compute φ(x) whenever an expression for the
kernel k is known. For instance, in the conic example in (2.91), we have

k(x,y) = [x2
1,
√

2x1x2, x
2
2][y2

1 ,
√

2y1y2, y
2
2]> = (x1y1 + x2y2)2 = (x>y)2,

(2.111)

which can be computed directly in R2 without need to resort to computing the
embedding into R3.

In general, we do not need to explicitly define and evaluate the map φ(·). In fact,
given any (positive-definite) kernel function, according to a fundamental result in
functional analysis, one can in principle decompose the kernel and recover the
associated map φ(·) if one wishes to.

48 Chapter 2. Data Modeling with a Single Subspace

Theorem 2.7 (Mercer’s Theorem). Suppose k : RD × RD → R is a symmetric
real valued function such that for some C > 0 and almost every (x,y)15 we have
|k(x,y)| ≤ C. Suppose that the linear operator L : L2(RD)→ L2(RD),

L(f)(x) .=
∫

RD

k(x,y)f(y)dy, (2.112)

is positive semi-definite. Let ψi be the normalized orthogonal eigenfunctions of L
associated with the eigenvalues λi > 0, sorted in non-increasing order, and let
M be the number of nonzero eigenvalues. Then

• The sequence of eigenvalues is absolutely convergent, i.e.,
∑M
i=1 |λi| <∞.

• The kernel k can be expanded as k(x,y) =
∑M
i=1 λiψi(x)ψi(y) for almost

all (x,y).

The interested readers may refer to [Mercer, 1909] for a proof of the theorem.
It follows from the theorem that, given a positive semi-definite kernel k, we can
always associate with it an embedding function φ as

φi(x) =
√
λiψi(x) i = 1, . . .M. (2.113)

Notice that the dimension of the embedding, M , could be rather large, sometimes
even infinity. Nevertheless, an important reason for computing with the kernel
function is that we do not need to compute the embedding function or the features.
Instead, we simply evaluate the dot products k(x,y) in the original space RD.

Example 2.8 (Examples of Kernels). There are several popular choices for the nonlinear
kernel function, such as the polynomial kernel and the Gaussian kernel, respectively,

kP (x,y) = (x>y)n and kG(x,y) = exp
`
− ‖x− y‖

2

2

´
. (2.114)

Evaluation of such functions only involves the inner product or the difference between
two vectors in the original space RD . This is much more efficient than evaluating the
inner product in the associated feature space, whose dimension for the first kernel grows
exponentially with the degree n and for the second kernel is infinite.

We summarize our discussion in this section as Algorithm 2.1.

2.5.4 Locally Linear Embedding

2.6 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from
PCA in the numerical linear algebra literature, also known as the Erkart and
Young decomposition [Eckart and Young, 1936, Hubert et al., 2000]. The re-
sult regarding the least-squares optimality of SVD given in Theorem 2.2 can

15“Almost every” means except for a set of measure zero.

2.6. Bibliographic Notes 49

Algorithm 2.1 (Nonlinear Kernel PCA).

For a given set of zero-mean data points X = [x1,x2, . . . ,xN] ∈ RD×N , and a
given map φ(x) or a kernel function k(x,y) such that φ(0) = 0 or k(0,0) = 0,

1. Compute the inner product matrix

Φ>Φ =
(
φ(xi)>φ(xj)

)
or
(
k(xi,xj)

)
∈ RN×N ; (2.115)

2. Compute the eigenvectors wi ∈ RN of Φ>Φ:

Φ>Φwi = λiwi, (2.116)

and normalize ‖wi‖2 = λ−1
i ;

3. For any data point x, its ith nonlinear principal component is given by

yi = w>i Φ>φ(x) or w>i [k(x1,x), . . . , k(xN ,x)]>, (2.117)

for i = 1, 2, . . . , d.

be traced back to [Householder and Young, 1938, Gabriel, 1978]. While prin-
cipal components were initially defined exclusively in a statistical sense [Pearson,
1901, Hotelling, 1933], one can show that the algebraic solution given by SVD
gives asymptotically unbiased estimates of the true parameters in the case of
Gaussian distributions. A more detailed analysis of the statistical properties of
PCA can be found in [Jolliffe, 2002].

Note that PCA only infers the principal subspace (or components), but not
a probabilistic distribution of the data in the subspace. Probabilistic PCA was
developed to infer an explicit probabilistic distribution from the data [Tipping
and Bishop, 1999b]. The data is assumed to be independent samples drawn
from an unknown distribution, and the problem becomes one of identifying the
subspace and the parameters of the distribution in a maximum-likelihood or a
maximum-a-posteriori sense. When the underlying noise distribution is Gaussian,
the geometric and probabilistic interpretations of PCA coincide [Collins et al.,
2001]. However, when the underlying distribution is non Gaussian, the optimal
solution to PPCA may no longer be linear. For example, in [Collins et al., 2001]
PCA is generalized to arbitrary distributions in the exponential family.

PCA is obviously not applicable to data whose underlying structure is non-
linear. PCA was generalized to principal curves and surfaces by [Hastie, 1984]
and [Hastie and Stuetzle, 1989]. A more general approach however is to find a
nonlinear embedding map, or equivalently a kernel function, such that the embed-
ded data would lie on a linear subspace. Such methods are referred to as nonlinear
kernel PCA [Scholkopf et al., 1998]. Finding such nonlinear maps or kernels is
by no means a simple problem. Learning kernels is still an active research topic
in the statistical learning community.

50 Chapter 2. Data Modeling with a Single Subspace

2.7 Exercises

Exercise 2.1 (Some Properties of PCA). Let x be a random vector with covariance matrix
Σx. Consider a linear transformation of x:

y = W>x, (2.118)

where y ∈ Rd andW is aD×d orthogonal matrix. Let Σy = W>ΣxW be the covariance
matrix for y. Show that

1. The trace of Σy is maximized by W = Ud, where Ud consists of the first d
(normalized) eigenvectors of Σx.

2. The trace of Σy is minimized by W = Ũd, where Ũd consists of the last d
(normalized) eigenvectors of Σx.

Exercise 2.2 (Subspace Angles). Given two d-dimensional subspaces S1 and S2 in RD ,
define the largest subspace angle θ1 between S1 and S2 to be the largest possible sharp
angle (< 90◦) formed by any two vectors u1, u2 ∈ (S1 ∩ S2)⊥ with u1 ∈ S1 and
u2 ∈ S2 respectively. Let U1 ∈ RD×d be an orthogonal matrix whose columns form a
basis for S1 and similarly U2 for S2. Then show that if σ1 is the smallest non-zero singular
value of the matrix W = U>1 U2, then we have

cos(θ1) = σ1. (2.119)

Similarly, one can define the rest of the subspace angles as cos(θi) = σi, i = 2, . . . , d
from the rest of the singular values of W .

Exercise 2.3 (Fixed-Rank Approximation of a Matrix). Given an arbitrary full-rank ma-
trix A ∈ Rm×n, find the matrix B ∈ Rm×n with a fixed rank r < min{m,n} such that
the Frobenius norm ‖A−B‖F is minimized. The Frobenius norm of a matrixM is defined
to be ‖M‖2F = trace(MTM). (Hint: Use the SVD of A to guess the matrix B and then
prove its optimality.)

Exercise 2.4 (Identification of Auto-Regressive Exogeneous (ARX) Systems). A popu-
lar model that is often used to analyze a time series {yt}t∈Z is the linear auto-regressive
model:

yt = a1yt−1 + a2yt−2 + · · ·+ anyt−n + εt, ∀t, yt ∈ R, (2.120)

where εt ∈ R models the modeling error or noise and it is often assumed to be a white-
noise random process. Now suppose that you are given the values of yt for a sufficiently
long period of time.

1. Show that in the noise free case, i.e. εt ≡ 0, regardless of the initial conditions, the
vectors xt = [yt, yt−1, . . . , yt−n]T for all t lie on an n-dimensional hyperplane in
Rn+1. What is the normal vector to this hyperplane?

2. Now consider the case with noise. Describe how you may use PCA to identify the
unknown model parameters (a1, a2, . . . , an)?

Exercise 2.5 (Basis for an Image). Given a gray-level image I , consider all of its
b × b blocks, denoted as {Bi ∈ Rb×b}. We would like to approximate each block as a

2.7. Exercises 51

superposition of d base blocks, say {B̂j ∈ Rb×b}dj=1. That is,

Bi =

dX
j=1

aijB̂j + Ei, (2.121)

where Ei ∈ Rb×b is the possible residual from the approximation. Describe how you can
use PCA to identify an optimal set of d base blocks so that the residual is minimized?

In Section 1.2.1, we have seen an example in which a similar process can be applied to
an ensemble of face images, where the first d = 3 principal components are computed for
further classification. In the computer vision literature, the corresponding base images are
called “eigen faces.”

Exercise 2.6 (Probability of Selecting a Subset of Inliers). Imagine we have 80 samples
from a four-dimensional subspace in R5. However, the samples are contaminated with
another 20 samples that are far from the subspace. We want to estimate the subspace from
randomly drawn subsets of four samples. In order to draw a subset that only contains inliers
with probability 0.95, what is the smallest number of subsets that we need to draw?

Exercise 2.7 (Ranking of Webpages). PCA is actually used to rank webpages on the
Internet by many popular search engines. One way to see this is to view the Internet as
a directed graph G = (V,E), where every webpage, denoted as pi, is a node in V , and
every hyperlink from pi to pj , denoted as eij , are directed edges in E. We can assign each
webpage pi an “authority” score xi that indicates how many other webpages point to it
and a “hub” score yi that indicates how many other webpages it points out to. Then, the
authority score xi depends on how many hubs point to pi and the hub score yi depends
on how many authorities pi points to. Let L be the adjacent matrix of the graph G (i.e.
Lij = 1 if eij = E), x the vector of the authority scores and y of the hub scores.

1. Justify that the following relationships hold:

y′ = Lx, x′ = LTy; x = x′/‖x′‖, y = y′/‖y′‖. (2.122)

2. Show that x is the eigenvector of LTL and y is the eigenvector of LLT associ-
ated with the largest eigenvalue (why not the others). Explain how x and y can be
computed from the singular value decomposition of L.

In the literature, this is known as the Hypertext Induced Topic Selection (HITS) algorithm
[Kleinberg, 1999, Ding et al., 2004]. In fact, the same algorithm can also be used to rank
any competitive sports such as football teams and chess players.

Exercise 2.8 (Karhunen-Loève Transform). The Karhunen-Loève transform (KLT) can
be thought as a generalization of PCA from a (finite-dimensional) random vector x ∈ RD
to an (infinite-dimensional) random process x(t), t ∈ R. When x(t) is a (zero-mean)
second-order stationary random process, its auto correlation function is defined to be
K(t, τ)

.
= E[x(t)x)(τ)] for all t, τ ∈ R.

1. Show that K(t, τ) has a family of orthonormal eigen-functions {φi(t)}∞i=1 that are
defined as Z

K(t, τ)φi(τ) dτ = λiφi(t), i = 1, 2, (2.123)

(Hint: First show that K(t, τ) is a positive definite function and then use Mercer’s
Theorem.)

52 Chapter 2. Data Modeling with a Single Subspace

2. Show that with respect to the eigen-functions, we original random process can be
decomposed as

x(t) =

nX
i=1

xiφi(t), (2.124)

where {xi}∞i=1 are a set of uncorrelated random variables.

Exercise 2.9 (Full Rank of Gaussian RBF Gram Matrices) Suppose that you are given
N distinct points {xi}Ni=1. If σ 6= 0, then the matrix K ∈ RN×N given by

Kij = exp

„
−‖xi − xj‖

2

2σ2

«
(2.125)

has full rank.

This is page 53
Printer: Opaque this

Chapter 3
Algebraic Methods for
Multiple-Subspace Segmentation

“The art of doing mathematics consists in finding that special case
which contains all the germs of generality.”

– David Hilbert

In this chapter, we consider a generalization of PCA in which the given
sample points are drawn from an unknown arrangement of subspaces of un-
known and possibly different dimensions. We first present a series of simple
examples that demonstrate that the subspace-segmentation problem can be
solved non-iteratively via certain algebraic methods. These solutions lead to
a general-purpose algebro-geometric algorithm for subspace segmentation. We
conveniently refer to the algorithm as Generalized Principal Component Analysis
(GPCA). To better isolate the difficulties in the general problem, we will develop
the algorithm in two steps. The first step is to develop a basic GPCA algorithm
by assuming a known number of subspaces; and in the second step, we deal with
an unknown number of subspaces and develop a recursive version of the GPCA
algorithm. The algorithms in this chapter will be derived under ideal noise-free
conditions and assume no probabilistic model. Nevertheless, the algebraic tech-
niques involved are numerically well-conditioned and the algorithms are designed
to tolerate moderate amounts of noise. Dealing with large amounts of noise or
even outliers will be the subject of Chapter ??.

In order to make the material accessible to a larger audience, in this chapter
we focus primarily on the development of a (conceptual) algorithm. We leave a
more formal study of subspace arrangements and rigorous justifications of all the
algebraic facts that support the algorithms of this chapter to Appendix C.

54 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

3.1 Problem Formulation of Subspace Segmentation

In mathematics (especially in algebraic geometry), a collection of subspaces is
formally known as a subspace arrangement:

Definition 3.1 (Subspace Arrangement). A subspace arrangement is defined as a
finite collection of n linear subspaces in RD: A .= {S1, . . . , Sn}. The union of
the subspaces is denoted as ZA

.= S1 ∪ S2 ∪ · · · ∪ Sn.

For simplicity, we will use the term “subspace arrangement” to refer to both A
and ZA.

Imagine that we are given a set of sample points drawn from an arrangement
of unknown number of subspaces which have unknown and possibly different
dimensions. Our goal is to simultaneously estimate these subspaces and seg-
ment the points into their corresponding subspaces. Versions of this problem are
known in the literature as subspace clustering, multiple eigenspaces [Leonardis
et al., 2002], or mixtures of principal component analyzers [Tipping and Bishop,
1999a], etc. To be precise, we will first state the problem that we will study in this
book, which we refer to as “multiple-subspace segmentation,” or simply as “sub-
space segmentation,” to be suggestive of the problem of fitting multiple (principal)
subspaces to the data.

Problem 3.1 (Multiple-Subspace Segmentation).

Given a set of sample points X = {xi ∈ RD}Ni=1 drawn from n ≥ 1 distinct
linear subspaces Sj ⊂ RD of dimensions dj < D, j = 1, 2, . . . , n, identify each
subspace Sj without knowing which sample points belong to which subspace.
More specifically, by identifying the subspaces we mean the following:

1. Identifying the number of subspaces n and their dimensions dj = dim(Sj);

2. Identifying an orthonormal basis for each subspace Sj (or equivalently a
basis for its orthogonal complement S⊥j);

3. Clustering the N points into the subspaces to which they belong.

Notice that in the foregoing problem statement, we have not yet specified the
objective for what is an “optimal” solution. We will leave the interpretation of
that open for now and will delay the definition until the context is more specific.
Although the problem seems to be stated in a purely geometric fashion, it is easy
to re-formulate it in a statistical fashion. For instance, we have assumed here that
the subspaces do not have to be orthogonal to each other. In a statistical setting,
this is essentially equivalent to assuming that these subspaces are not necessarily
uncorrelated. Within each subspace, one can also relate all the geometric and sta-
tistical notions associated with “principal components” in the classical PCA: The
orthonormal basis chosen for each subspace usually corresponds to a decompo-
sition of the random variable into uncorrelated principal components conditioned

3.1. Problem Formulation of Subspace Segmentation 55

on the subspace. In Section 4.2, a detailed analysis and comparison will be given
for both points of view.

3.1.1 Projectivization of Affine Subspaces

Note that a linear subspace always passes through the origin but an affine subspace
does not. So, would the above problem statement lose any generality by restricting
it only to linear subspaces? The answer to this question is no. In fact every proper
affine subspace in RD can be converted to a proper linear subspace in RD+1 by
lifting every point of it through the so-called homogeneous coordinates:

Definition 3.2 (Homogeneous Coordinates). The homogeneous coordinates of a
point x = [x1, x2, . . . , xD]T ∈ RD are defined as [x1, x2, . . . , xD, 1]T .

Given a set of points in an affine subspace, it is easy to prove that their
homogeneous coordinates span a linear subspace. More precisely:

Fact 3.3 (Homogeneous Representation of Affine Subspaces). The homogeneous
coordinates of points on a k-dimensional affine subspace in RD span a (d +
1)-dimensional linear subspace in RD+1. This representation is one-to-one.

Figure 3.1 shows an example of the homogeneous representation of three lines
in R2. The points on these lines span three linear subspaces in R3 which pass
through the origin.

R2

R3
0

L1

L2
L3

Figure 3.1. Lifting of three (affine) lines in R2 to three linear subspaces in R3 via the
homogeneous representation.

Definition 3.4 (Central Subspace Arrangements). We say an arrangement of sub-
spaces is central if every subspace passes through the origin, i.e., every subspace
is a linear subspace.

According to this definition, the homogeneous representation of any (affine)
subspace arrangement in RD gives a central subspace arrangement in RD+1.
Therefore, Problem 3.1 does not loss any generality. From now on, we may as-
sume that our data set is drawn from a central subspace arrangement, in which all
subspaces are linear, not affine, subspaces, unless otherwise stated. In a statistical
setting, this is equivalent to assuming that each subset of samples has zero mean.

56 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

3.1.2 Subspace Projection and Minimum Representation

The are many cases in which the given data points live in a very high dimen-
sional space. For instance, in many computer vision problems the dimension of
the ambient space D is the number of pixels in an image, which is normally in
the range 106. In such cases, the complexity of any subspace segmentation so-
lution becomes computationally prohibitive. It is therefore important for us to
seek situations in which the dimension of the ambient space can be significantly
reduced.

Fortunately, in most practical applications, we are interested in modeling the
data by subspaces of relatively small dimensions (d � D), thus one can avoid
dealing with high-dimensional data sets by first projecting them onto a lower-
dimensional (sub)space. An example is shown in Figure 3.2, where two lines L1

and L2 in R3 are projected onto a plane P . In this case, segmenting the two lines
in the three-dimensional space R3 is equivalent to segmenting the two projected
lines in the two-dimensional plane P .

+

+

+

+ +

+

+

+

+ +
++ + + ++

P

R3

L1 L2

l1

l2

o

Figure 3.2. Samples on two 1-dimensional subspaces L1, L2 in R3 projected onto a
2-dimensional plane P . The number and separation of the lines is preserved by the
projection.

In general, we will distinguish between two different kinds of “projections.”
The first kind corresponds to the case in which the span of all the subspaces is
a proper subspace of the ambient space, i.e., span(∪nj=1Sj) ⊂ RD. In this case,
one may simply apply PCA (Chapter 2) to eliminate the redundant dimensions.
The second kind corresponds to the case in which the largest dimension of the
subspaces, denoted by dmax, is strictly less than D − 1. When dmax is known,1

one may choose a (dmax+1)-dimensional subspace P such that, by projecting RD
onto this subspace:

πP : x ∈ RD 7→ x′ = πP (x) ∈ P, (3.1)

1For example, in 3-D motion segmentation from affine cameras, it is known that the subspaces
have dimension at most four [Costeira and Kanade, 1998, Kanatani, 2001, Vidal and Hartley, 2004].

3.1. Problem Formulation of Subspace Segmentation 57

the dimension of each original subspace Sj is preserved,2 and there is a one-to-
one correspondence between Sj and its projection – no reduction in the number
of subspaces n,3 as stated in the following theorem.

Theorem 3.5 (Segementation-Preserving Projections). If a set of vectors {xi}
all lie in n linear subspaces of dimensions {dj}nj=1 in RD, and if πP represents a
linear projection onto a subspace P of dimensionD′, then the points {πP (xi)} lie
in at most n linear subspaces of P of dimensions {d′j ≤ dj}nj=1. Furthermore, if
D > D′ > dmax, then there is an open and dense set of projections that preserve
the separation and dimensions of the subspaces.

Thanks to Theorem 3.5, if we are given a data set X drawn from an arrange-
ment of low-dimensional subspaces in a high-dimensional space, we can first
project X onto a generic subspace of dimension D′ = dmax + 1 and then model
the data with a subspace arrangement in the projected subspace, as illustrated by
the following sequence of steps:

X ⊂ RD πP−−−−→ X ′ ⊂ P −→ ∪nj=1πP (Sj)
π−1

P−−−−→ ∪nj=1Sj .
(3.2)

However, even though the set of (dmax +1)-dimensional subspaces P ⊂ RD
that preserve the separation and dimension of the subspaces is an open and dense
set, it remains unclear as to what a “good” choice for P is, especially when there
is noise in the data. For simplicity, one may randomly select a few projections
and choose the one that results in the smallest fitting error. Another alternative
is to apply PCA regardless and project the data onto the (dmax +1)-dimensional
principal subspace.

One solution for choosing P is attributed to [Broomhead and Kirby, 2000]. The
technique was originally designed for dimension reduction of differential mani-
folds.4 We here adopt it for subspace arrangements. Instead of directly using the
original data matrix X , we gather the vectors (also called “secants”) defined by
every pair of points xi,xj ∈X

yij
.= xi − xj ∈ RD, (3.3)

and construct a matrix consisting of yij as columns:

Y
.= [y12,y13, . . . ,y(N−1)N] ∈ RD×M , (3.4)

2This requires that P be transversal to each S⊥j , i.e., span{P, S⊥j } = RD for every j =
1, 2, . . . , n. Since n is finite, this transversality condition can be easily satisfied. Furthermore, the set
of positions for P which violate the transversality condition is only a zero-measure closed set [Hirsch,
1976].

3This requires that all πP (Sj) be transversal to each other in P , which is guaranteed if we require
P to be transversal to S⊥j ∩ S⊥j′ for j, j′ = 1, 2, . . . , n. All P ’s which violate this condition form
again only a zero-measure set.

4That is essentially based on Whitney’s classic proof of the fact any differential manifold can be
embedded in a Euclidean space.

58 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

whereM = (N−1)N/2. Then the principal components of Y span the subspace
in which the distance (and hence the separateness) between the projected points
is preserved the most. Therefore, the optimal subspace that maximizes the sepa-
rateness of the projected points is given by the dmax+1 principal components of
Y . More precisely, if Y = UΣV T is the SVD of Y , then the optimal subspace
P is given by the first dmax+1 columns of U .

3.2 Introductory Cases of Subspace Segmentation

Notice that, to apply the K-subspaces and EM algorithms, we need to know three
things in advance: the number of subspaces, their dimensions, and initial estimates
of the bases of the subspaces. In practice, this may not be the situation and many
difficulties may arise. The optimizing process in both algorithms is essentially
a local iterative descent scheme. If the initial estimates of the bases of the sub-
spaces are far off from the global optimum, the process is likely to converge to a
local minimum. More seriously, if the number of subspaces and their dimensions
were wrong, the process might never converge or might converge to meaningless
solutions. Furthermore, when the number and dimensions of the subspaces are
unknown and the samples are noisy (or contaminated by outliers), model selec-
tion becomes a much more elusive problem as we have alluded to earlier in the
introduction chapter.

In this and next few chapters, we will systematically address these difficulties
and aim to arrive at global non-iterative solutions to subspace segmentation that
require less or none of the above initial information. Before we delve into the most
general case, we first examine, in this section, a few important special cases. The
reason is two-fold: Firstly, many practical problems fall into these cases already
and the simplified solutions can be directly applied; and secondly, the analysis of
these special cases offers some insights into a solution to the general case.

3.2.1 Segmenting Points on a Line

Let us begin with an extremely simple clustering problem: clustering a collection
of points {x1, x2, . . . , xN} on the real line R around a collection of cluster cen-
ters {µ1, µ2, . . . , µn}. In spite of its simplicity, this problem shows up in various
segmentation problems. For instance, in intensity-based image segmentation, one
wants to separate the pixels of an image into different regions, with each region
corresponding to a significantly different level of intensity (a one-dimensional
quantity). More generally, the point clustering problem is very much at the heart
of spectral clustering, a popular technique for clustering data in spaces of any
dimension. Furthermore, as we will see throughout this book, the same basic
ideas introduced through this simple example can also be applied to clustering
points from arrangements of more complex structures such as lines, hyperplanes,
subspaces, and even surfaces.

3.2. Introductory Cases of Subspace Segmentation 59

In the sequel, we introduce a not so conventional solution to the point clustering
problem. The new formulation that the solution is based on is neither geomet-
ric (like K-subspaces) nor statistical (like EM). Instead, the solution is purely
algebraic.

Let x ∈ R be any of the data points. In an ideal situation in which each data
point perfectly matches one of the cluster centers, we know that there exists a
constant µj such that x = µj . This means that

(x = µ1) ∨ (x = µ2) ∨ · · · ∨ (x = µn). (3.5)

The “∨” in the preceding equation stands for the logical connective “or.” This is
equivalent to that x satisfies the following polynomial equation of degree n in x:

pn(x) .= (x− µ1)(x− µ2) · · · (x− µn) =
n∑
k=0

ckx
n−k = 0. (3.6)

Since the polynomial equation pn(x) = 0 must be satisfied by every data point,
we have that

V n cn
.=


xn1 xn−1

1 · · · x1 1
xn2 xn−1

2 · · · x2 1
...

...
...

...
xnN xn−1

N · · · xN 1




1
c1
...
cn

 = 0, (3.7)

where V n ∈ RN×(n+1) is a matrix of embedded data points, and cn ∈ Rn+1 is
the vector of coefficients of pn(x).

In order to determine the number of groups n and then the vector of coefficients
cn from (3.7), notice that for n groups there is a unique polynomial of degree n
whose roots are the n cluster centers. Since the coefficients of this polynomial
must satisfy equation (3.7), in order to have a unique solution we must have that
rank(V n) = n. This rank constraint on V n ∈ RN×(n+1) enables us to determine
the number of groups n as5

n
.= min{j : rank(V j) = j}. (3.8)

Example 3.6 (Two Clusters of Points). The intuition behind this formula is as follows.
Consider, for simplicity, the case of n = 2 groups, so that pn(x) = p2(x) = (x−µ1)(x−
µ2), with µ1 6= µ2. Then, it is clear that there is no polynomial equation of degree one,
p1(x) = x − µ, that is satisfied by all the points. Similarly, there are infinitely many
polynomial equations of degree 3 or more that are satisfied by all the points, namely any
multiple of p2(x). Thus the degree n = 2 is the only one for which there is a unique
polynomial that fits all the points.

5Notice that the minimum number of points needed is N ≥ n, which is linear in the number of
groups. We will see in future chapters that this is no longer the case for more general segmentation
problems.

60 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

Once the minimum polynomial pn(x) that fits all the data points is found, we
can solve the equation pn(x) = 0 for its n roots. These roots, by definition, are
the centers of the clusters. We summarize the overall solution as Algorithm 3.1.

Algorithm 3.1 (Algebraic Point Clustering Algorithm).

Let {x1, x2, . . . , xN} ⊂ R be a given collection of N ≥ n points clustering
around an unknown number n of cluster centers {µ1, µ2, . . . , µn}. The number
of groups, the cluster centers and the segmentation of the data can be determined
as follows:

1. Number of Groups. Let V j ∈ RN×(j+1) be a matrix containing the last
j + 1 columns of V n. Determine the number of groups as

n
.= min{j : rank(V j) = j}.

2. Cluster Centers. Solve for cn from V ncn = 0. Set pn(x) =∑n
k=0 ckx

n−k. Find the cluster centers µj as the n roots of pn(x).

3. Segmentation. Assign point xi to cluster j = arg minl=1,...,n(xi − µl)2.

Notice that the above algorithm is described in a purely algebraic fashion and is
more of a conceptual than practical algorithm. It does not minimize any geometric
errors or maximize any probabilistic likelihood functions. In the presence of noise
in the data, one has to implement each step of the algorithm in a numerically more
stable and statistically more robust way. For example, with noisy data, the matrix
V n will most likely be of full rank. In this case, the vector of coefficients cn
should be solved in a least-squares sense as the singular-vector of V n associated
with the smallest singular value. It is also possible that the pn(x) obtained from cn
may have some complex roots, because the constraint that the polynomial must
have real roots is never enforced when solving for the coefficients in the least-
squares sense.6 In practice, for well-separated clusters with moderate noise, the
roots normally give decent estimates of the cluster centers.

Although clustering points on a line may seem a rather simple problem, it can
be easily generalized to the problem of clustering points on a plane (see Exercise
3.1). Furthermore, it is also a key step of a very popular data clustering algorithm:
spectral clustering. See Exercise 3.2.

3.2.2 Segmenting Lines on a Plane

Let us now consider the case of clustering data points to a collection of n lines in
R2 passing through the origin, as illustrated in Figure 3.3. Each one of the lines

6However, in some special cases, one can show that this would never occur. For example, when
n = 2, the least-squares solution for cn is c2 = Var[x], c1 = E[x2]E[x] − E[x3] and c0 =
E[x3]E[x]−E[x2]2 ≤ 0, hence c21−4c0c2 ≥ 0 and the two roots of the polynomial c0x2+c1x+c2
are always real.

3.2. Introductory Cases of Subspace Segmentation 61

can be represented as:

Lj
.= {x = [x, y]T : bj1x+ bj2y = 0}, j = 1, 2, . . . , n. (3.9)

Given a point x = [x, y]T in one of the lines we must have that

(b11x+ b12y = 0) ∨ · · · ∨ (bn1x+ bn2y = 0). (3.10)

Therefore, even though each individual line is described with one polynomial
equation of degree one (a linear equation), an arrangement of n lines can be
described with a polynomial of degree n, namely

pn(x) = (b11x+ b12y) · · · (bn1x+ bn2y) =
n∑
k=0

ckx
n−kyk = 0. (3.11)

An example is shown in Figure 3.3.

Figure 3.3. A polynomial in two variables whose zero set is three lines in R2.

The polynomial pn(x) allows us to algebraically eliminate the segmentation of
the data at the beginning of the model estimation, because the equation pn(x) = 0
is satisfied by every data point regardless of whether it belongs to L1, L2, . . ., or
Ln. Furthermore, even though pn(x) is nonlinear in each data point x = [x, y]T ,
pn(x) is actually linear in the vector of coefficients c = [c0, c1, . . . , cn]T . There-
fore, given enough data points {xi = [xi, yi]T }Ni=1, one can linearly fit this
polynomial to the data. Indeed, if n is known, we can obtain the coefficients of
pn(x) from solving the equation:

V ncn =


xn1 xn−1

1 y1 · · · x1y
n−1
1 yn1

xn2 xn−1
2 y2 · · · x2y

n−1
2 yn2

...
...

...
...

xnN xn−1
N yN · · · xNy

n−1
N ynN



c0
c1
...
cn

 = 0. (3.12)

62 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

Similar to the case of points in a line, the above linear system has a unique solution
if and only if rank(V n) = n, hence the number of lines is given by

n
.= min{j : rank(V j) = j}. (3.13)

Given the vector of coefficients cn, we are now interested in estimating the
equations of each line from the associated polynomial pn(x). We know each line
is determined by its normal vector bj = [b1j , b2j]T , j = 1, 2, . . . , n. For the sake
of simplicity, let us consider the case n = 2. A simple calculation shows that the
derivative of p2(x) is given by

∇p2(x) = (b21x+ b22y)b1 + (b11x+ b12y)b2. (3.14)

Therefore, if the point x belongs to L1, then (b11x + b12y) = 0 and hence
∇p2(x) ∼ b1. Similarly, if x belongs to L2, then ∇p2(x) ∼ b2. This means
that given any point x, without knowing which line contains the point, we can
obtain the equation of the line passing through the point by simply evaluating the
derivative of p2(x) at x. This fact should come at no surprise and is valid for any
number of lines n. Therefore, if we are given one point in each line7 {yj ∈ Lj},
we can determine the normal vectors as bj ∼ ∇pn(yj). We summarize the overall
solution for clustering points to multiple lines as Algorithm 3.2.

Algorithm 3.2 (Algebraic Line Segmentation Algorithm).

Let {x1,x2, . . . ,xN} be a collection of N ≥ n points in R2 clustering around
an unknown number n of lines whose normal vectors are {b1, b2, . . . , bN}. The
number of lines, the normal vectors, and the segmentation of the data can be
determined as follows:

1. Number of Lines. Let V j be defined as in (3.12). Determine the number
of groups as

n
.= min{j : rank(V j) = j}.

2. Normal Vectors. Solve for cn from V ncn = 0 and set pn(x, y) =∑n
k=0 ckx

n−kyk. Determine the normal vectors as

bj =
∇pn(yj)
‖∇pn(yj)‖

∈ R2, j = 1, 2, . . . , n,

where yj is a point in the jth line.

3. Segmentation. Assign point xi to line j = arg min`=1,...,n(bT` xi)
2.

The reader may have realized that the problem of clustering points on a line is
very much related to the problem of segmenting lines in the plane. In point clus-

7We will discuss how to automatically obtain one point per subspace from the data in the next
subsection when we generalize this problem to clustering points on hyperplanes.

3.2. Introductory Cases of Subspace Segmentation 63

(0, 0)

µ1 µ2 µ3

L1 L2 L3

0

R2

R

Figure 3.4. Using homogeneous coordinates to convert the point clustering problem into
the line segmentation problem.

tering, for each data point x there exists a cluster center µj such that x− µj = 0.
By working in homogeneous coordinates, one can convert it into a line clustering
problem: for each data point x = [x, 1]T there is a line bj = [1,−µj]T passing
through the point. Figure 3.4 shows an example of how three cluster centers are
converted into three lines via homogeneous coordinates. Indeed, notice that if we
let y = 1 in the matrix V n in (3.12), we obtain exactly the matrix V n in (3.7).
Therefore, the vector of coefficients cn is the same for both algorithms and the
two polynomials are related as pn(x, y) = ynpn(x/y). Therefore, the point clus-
tering problem can be solved either by polynomial factorization (Algorithm 3.1)
or by polynomial differentiation (Algorithm 3.2).

3.2.3 Segmenting Hyperplanes

In this section, we consider another particular case of Problem 3.1 in which all the
subspaces are hyperplanes of equal dimension d1 = · · · = dn = d = D− 1. This
case shows up in a wide variety of segmentation problems in computer vision,
including vanishing point detection and motion segmentation. We will discuss
these applications in greater detail in later chapters.

We start by noticing that every (D−1)-dimensional subspace Sj ⊂ RD can be
defined in terms of a nonzero normal vector bj ∈ RD as follows:8

Sj
.=
{
x ∈ RD : bTj x

.= bj1x1 + bj2x2 + · · ·+ bjDxD = 0
}
. (3.15)

Therefore, a point x ∈ RD lying in one of the hyperplanes Sj must satisfy the
formula:

(bT1 x = 0) ∨ (bT2 x = 0) ∨ · · · ∨ (bTnx = 0), (3.16)

8Since the subspaces Sj are all different from each other, we assume that the normal vectors
{bj}nj=1 are pairwise linearly independent.

64 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

which is equivalent to the following homogeneous polynomial of degree n in x
with real coefficients:

pn(x)=
n∏
j=1

(bTj x)=
∑

cn1,n2,...,nD
xn1

1 xn2
2 · · ·x

nD

D =νn(x)T cn=0, (3.17)

where cn1,...,nD
∈ R represents the coefficient of monomial xn1

1 xn2
2 · · ·x

nD

D , cn
is the vector of all coefficients, and νn(x) is the stack of all possible monomials.
The number of linearly independent monomials is Mn

.= (D+n−1
n), hence cn

and νn(x) are vectors in RMn .
After applying (3.17) to the given collection of N sample points {xi}Ni=1, we

obtain the following system of linear equations on the vector of coefficients cn

V n cn
.=


νn(x1)T

νn(x2)T
...

νn(xN)T

 cn = 0 ∈ RN . (3.18)

We now study under what conditions we can solve for n and cn from equa-
tion (3.18). To this end, notice that if the number of hyperplanes n was known,
we could immediately recover cn as the eigenvector of V T

nV n associated with its
smallest eigenvalue. However, since the above linear system (3.18) depends ex-
plicitly on the number of hyperplanes n, we cannot estimate cn directly without
knowing n in advance. Recall from Example C.14, the vanishing ideal I of a hy-
perplane arrangement is always principal, i.e., generated by a single polynomial
of degree n. The number of hyperplanes n then coincides with the degree of the
first non-trivial homogeneous component In of the vanishing ideal. This leads to
the following theorem.

Theorem 3.7 (Number of Hyperplanes). Assume that a collection ofN ≥Mn−1
sample points {xi}Ni=1 on n different (D − 1)-dimensional subspaces of RD is
given. Let V j ∈ RN×Mj be the matrix defined in (3.18), but computed with
polynomials of degree j. If the sample points are in general position and at least
D − 1 points correspond to each hyperplane, then:

rank(V j)

 = Mj j < n,
= Mj − 1 j = n,
< Mj − 1 j > n.

(3.19)

Therefore, the number n of hyperplanes is given by:

n = min{j : rank(V j) = Mj − 1}. (3.20)

In the presence of noise, one cannot directly estimate n from (3.20), because
the matrix V j is always full rank. In this case, one can use the criterion (2.48)
given in Chapter 2 to determine the rank.

Theorem 3.7 and the linear system in equation (3.18) allow us to determine
the number of hyperplanes n and the vector of coefficients cn, respectively, from
sample points {xi}Ni=1. The rest of the problem now becomes how to recover

3.3. Subspace Segmentation Knowing the Number of Subspaces 65

the normal vectors {bj}nj=1 from cn. Imagine, for the time being, that we were
given a set of n points {yj}nj=1, each one lying in only one of the n hyperplanes,
that is yj ∈ Sj for j = 1, 2, . . . , n. Now let us consider the derivative of pn(x)
evaluated at each yj . We have:

∇pn(x) =
∂pn(x)
∂x

=
∂

∂x

n∏
j=1

(bTj x) =
n∑
j=1

(bj)
∏
` 6=j

(bT` x). (3.21)

Because
∏
` 6=m(bT` yj) = 0 for j 6= m, one can obtain each one of the normal

vectors as

bj =
∇pn(yj)
‖∇pn(yj)‖

, j = 1, 2, . . . , n. (3.22)

Therefore, if we know one point in each one of the hyperplanes, the hyperplane
segmentation problem can be solved analytically by simply evaluating the partial
derivatives of pn(x) at each one of the points with known labels.

Consider now the case in which we do not know the membership of any of
the data points. We now show that one can obtain one point per hyperplane by
intersecting a random line with each one of the hyperplanes. To this end, consider
a random line L .= {tv + x0, t ∈ R} with direction v and base point x0. We
can obtain one point in each hyperplane by intersecting L with the union of all
the hyperplanes.9 Since at the intersection points we must have pn(tv+x0) = 0,
the n points {yj}nj=1 can be obtained as

yj = tjv + x0, j = 1, 2, . . . , n, (3.23)

where {tj}nj=1 are the roots of the univariate polynomial of degree n

qn(t) = pn(tv + x0) =
n∏
j=1

(
tbTj v + bTj x0

)
= 0. (3.24)

We summarize our discussion so far as Algorithm 3.3 for segmenting
hyperplanes.

3.3 Subspace Segmentation Knowing the Number of
Subspaces

In this section, we derive a general solution to the subspace-segmentation problem
(Problem 3.1) in the case in which the number of subspaces n is known. However,
unlike the special cases we saw in the previous section, the dimensions of the
subspaces can be different. In Section 3.3.1, we illustrate the basic ideas of dealing
with subspaces of different dimensions via a simple example. Through Sections

9Except when the chosen line is parallel to one of the hyperplanes, which corresponds to a zero-
measure set of lines.

66 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

Algorithm 3.3 (Algebraic Hyperplane Segmentation Algorithm).

Let {x1,x2, . . . ,xN} ⊂ RD be a given collection of points clustered around an
unknown number n of planes {b1, b2, . . . , bn}. The number of planes, the normal
vectors, and the segmentation of the data can be determined as follows:

1. Number of Hyperplanes. Let V j be defined as in (3.18). Determine the
number of groups as

n
.= min{j : rank(V j) = Mj − 1}.

2. Normal Vectors. Solve for cn from V ncn = 0 and set pn(x) = cTnνn(x).
Choose x0 and v at random and compute the n roots t1, t2, . . . , tn ∈ R
of the univariate polynomial qn(t) = pn(tv + x0). Determine the normal
vectors as

bj =
∇pn(yj)
‖∇pn(yj)‖

, j = 1, 2, . . . , n,

where yj = x0 + tjv is a point in the jth hyperplane.

3. Segmentation. Assign point xi to hyperplane j = arg minl=1,...,n(bTl xi)
2.

b2

S1

S2

y1

y2x

b11 = ∇p21(y1)

b12 = ∇p22(y1)

o

R3

Figure 3.5. Data samples drawn from a union of one plane and one line (through the
origin o) in R3. The derivatives of the two vanishing polynomials p21(x) = x1x2 and
p22(x) = x1x3 evaluated at a point y1 in the line give two normal vectors to the line.
Similarly, the derivatives at a point y2 in the plane give the normal vector to the plane.

3.3.2-3.3.4, we give detailed derivation and proof for the general case. The final
algorithm is summarized in Section 3.3.5.

3.3.1 An Introductory Example

To motivate and highlight the key ideas, in this section we study a simple example
of clustering data points lying in subspaces of different dimensions in R3: a line
S1 = {x : x1 = x2 = 0} and a plane S2 = {x : x3 = 0}, as shown in Figure 3.5.

3.3. Subspace Segmentation Knowing the Number of Subspaces 67

We can describe the union of these two subspaces as

S1 ∪ S2 = {x : (x1 = x2 = 0) ∨ (x3 = 0)} = {x : (x1x3 = 0) ∧ (x2x3 = 0)}.

Therefore, even though each individual subspace is described with polynomials
of degree one (linear equations), the union of two subspaces is described with
two polynomials of degree two, namely p21(x) = x1x3 and p22(x) = x2x3. In
general, we can represent any two subspaces of R3 as the set of points satisfying
a set of homogeneous polynomials of the form

c1x
2
1 + c2x1x2 + c3x1x3 + c4x

2
2 + c5x2x3 + c6x

2
3 = 0. (3.25)

Although these polynomials are nonlinear in each data point [x1, x2, x3]T , they
are actually linear in the vector of coefficients c = [c1, c2, . . . , c6]T . Therefore,
given enough data points, one can linearly fit these polynomials to the data.

Given the collection of polynomials that vanish on the data points, we are now
interested in estimating a basis for each subspace. In our example, let P2(x) =
[p21(x), p22(x)] and consider the derivatives of P2(x) at two representative
points of the two subspaces y1 = [0, 0, 1]T ∈ S1 and y2 = [1, 1, 0]T ∈ S2:

∇P2(x) =

x3 0
0 x3

x1 x2

 =⇒ ∇P2(y1) =

1 0
0 1
0 0

 and ∇P2(y2) =

0 0
0 0
1 1

 . (3.26)

Then the columns of ∇P2(y1) span the orthogonal complement to the first sub-
space S⊥1 and the columns of ∇P2(y2) span the orthogonal complement to the
second subspace S⊥2 (see Figure 3.5). Thus the dimension of the line is given
by d1 = 3 − rank(∇P2(y1)) = 1 and the dimension of the plane is given by
d2 = 3− rank(∇P2(y2)) = 2. Therefore, if we are given one point in each sub-
space, we can obtain the subspace bases and their dimensions from the derivatives
of the polynomials at the given points.

The final question is how to choose one representative point per subspace. With
perfect data, we may choose a first point as any of the points in the data set. With
noisy data, we may first define a distance from any point in R3 to the union of the
subspaces,10 and then choose a point in the data set that minimizes this distance.
Say we pick y2 ∈ S2 as such point. We can then compute the normal vector
b2 = [0, 0, 1]T to S2 from ∇P (y2) as above. How do we now pick a second
point in S1 but not in S2? As it turns out, this can be done by polynomial division.
We can divide the original polynomials by bT2 x to obtain new polynomials of
degree n− 1 = 1:

p11(x) =
p21(x)
bT2 x

= x1 and p12(x) =
p22(x)
bT2 x

= x2.

10For example, the squared algebraic distance to S1 ∪ S2 is p21(x)2 + p22(x)2 = (x2
1 + x2

2)x2
3.

68 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

Since these new polynomials vanish on S1 but not on S2, we can use them to
define a new distance to S1 only,11 and then find a point y1 in S1 but not in S2 as
the point in the data set that minimizes this distance.

The next sections shows how this simple example can be systematically gener-
alized to multiple subspaces of unknown and possibly different dimensions by
polynomial fitting (Section 3.3.2), differentiation (Section 3.3.3), and division
(Section 3.3.4).

3.3.2 Fitting Polynomials to Subspaces

Now consider a subspace arrangement A = {S1, S2, . . . , Sn} with dim(Sj) =
dj , j = 1, 2, . . . , n. Let X = {x1,x2, . . . ,xN} be a sufficiently large number
of sample points in general position drawn from ZA = S1 ∪ S2 ∪ · · · ∪ Sn. As
we may know from Appendix C, the vanishing ideal I(ZA), i.e., the set of all
polynomials that vanish on ZA, is much more complicated than the special cases
we studied earlier in this chapter.

Nevertheless, since we assume to know the number of subspaces n, we only
have to consider the set of polynomials of degree n that vanish on ZA, i.e., the
homogeneous component In of I(ZA). As we know from Appendix C, these
polynomials uniquely determineZA. Furthermore, as the result of Corollary C.22,
we know that if the subspace arrangement is transversal, In is generated by the
products of n linear forms that vanish on the n subspaces, respectively. More
precisely, suppose the subspace Sj is of dimension dj and let kj = D − dj . Let

Bj
.= [b1, b2, . . . , bkj

] ∈ RD×(kj)

be a set of base vectors for the orthogonal complement S⊥j of Sj . The vanishing
ideal I(Sj) of Sj is generated by the set of linear forms

{l(x) .= bTx, b ∈ Bj}.

Then any polynomial pn(x) ∈ In can be written as a summation of products of
the linear forms

pn(x) =
∑

l1(x)l2(x) · · · ln(x),

where lj ∈ I(Sj).
Using the Veronese map, each polynomial in In can also be written as:

pn(x) = cTnνn(x) =
∑

cn1,n2,...,nD
xn1

1 xn2
2 · · ·x

nD

D = 0, (3.27)

where cn1,n2,...,nD
∈ R represents the coefficient of the monomial xn =

xn1
1 xn2

2 · · ·x
nD

D . Although the polynomial equation is nonlinear in each data point
x, it is linear in the vector of coefficients cn. Indeed, since each polynomial
pn(x) = cTnνn(x) must be satisfied by every data point, we have cTnνn(xi) = 0

11For example, the squared algebraic distance to S1 is p11(x)2 + p12(x)2 = x2
1 + x2

2.

3.3. Subspace Segmentation Knowing the Number of Subspaces 69

for all i = 1, 2, . . . , N . Therefore, the vector of coefficients cn must satisfy the
system of linear equations

V n(D) cn
.=


νn(x1)T

νn(x2)T
...

νn(xN)T

 cn = 0 ∈ RN , (3.28)

where V n(D) ∈ RN×Mn(D) is called the embedded data matrix.
Clearly, the coefficient vector of every polynomial in In is in the null space of

the data matrix V n(D). For every polynomial obtained from the null space of
V n(D) to be in In, we need to have

dim(Null(V n(D))) = dim(In) .= hI(n),

where hI(n) is the Hilbert function of the ideal I(ZA) (see Appendix C). Or
equivalently, the rank of the data matrix V n(D) needs to satisfy

rank(V n(D)) = Mn(D)− hI(n) (3.29)

in order that In can be exactly recovered from the null space of V n(D). As a
result of the Algebraic Sampling Theory in Appendix B, the above rank condition
is typically satisfied with N ≥ (Mn(D)− 1) data points in general position.12 A
basis of In,

In = span{pn`(x), ` = 1, 2, . . . , hI(n)}, (3.30)

can be computed from the set of hI(n) singular vectors of V n(D) associated
with its hI(n) zero singular values. In the presence of moderate noise, we can
still estimate the coefficients of the polynomials in a least-squares sense from the
singular vectors associated with the hI(n) smallest singular values.

As discussed in Sections 2.5.3 and 2.5.3, the basic modeling assumption in
NLPCA and KPCA is that there exists an embedding of the data into a higher-
dimensional feature space F such that the features live in a linear subspace of F .
However, there is no general methodology for finding the correct embedding for
an arbitrary problem. Equation (3.28) shows that the commonly used polynomial
embedding νn is the right one to use when the data lives in an arrangement of sub-
spaces, because the embedded data points {νn(xi)}Ni=1 indeed live in a subspace
of RMn(D). Notice that each vector cn is simply a normal vector to the embedded
subspace, as illustrated in Figure 3.6.

3.3.3 Subspaces from Polynomial Differentiation

Given a basis for the set of polynomials representing an arrangement of sub-
spaces, we are now interested in determining a basis and the dimension of each

12In particular, it requires at least dj points from each subspace Sj .

70 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

Figure 3.6. The polynomial embedding maps a union of subspaces of RD into a single sub-
space of RMn(D) whose normal vectors {cn} are the coefficients of the polynomials {pn}
defining the subspaces. The normal vectors to the embedded subspace {cn} are related to
the normal vectors to the original subspaces {bj} via the symmetric tensor product.

subspace. In this section, we show that one can estimate the bases and the dimen-
sions by differentiating all the polynomials {pn`} obtained from the null space of
the embedded data matrix V n(D).

Let pn(x) be any polynomial in In. Since pn ∈ I(ZA) ⊂ I(Sj), where I(Sj)
is generated by linear forms l(x) = bTx with b ∈ S⊥j , pn is of the form

pn = l1g1 + l2g2 + · · ·+ lkj
gkj

(3.31)

for l1, l2, . . . , lkj
∈ I(Sj) and some polynomials g1, g2, . . . , gkj

.13 The derivative
of pn is

∇pn =
kj∑
i=1

(gi∇li + li∇gi) =
kj∑
i=1

(gibi + li∇gi). (3.32)

Let yj be a point in the subspace Sj but not in any other subspaces in the arrange-
ment ZA. Then li(yj) = 0, i = 1, 2, . . . , kj . Thus, the derivative of pn evaluated
at yj is a superposition of the vectors bi:

∇pn(yj) =
kj∑
i=1

gi(yj)bi ∈ S⊥j . (3.33)

This fact should come at no surprise. The zero set of each polynomial pn is just
a surface in RD, therefore its derivative at a regular point yj ∈ Sj ,∇pn(yj), gives
a vector orthogonal to the surface. Since an arrangement of subspaces is locally
flat, i.e., in a neighborhood of yj the surface is merely the subspace Sj , then the
derivative at yj lives in the orthogonal complement S⊥j of Sj . By evaluating the
derivatives of all the polynomials in In at the same point yj we obtain a set of
normal vectors that span the orthogonal complement of Sj . We summarize the
above facts as Theorem 3.8. Figure 3.5 illustrates the theorem for the case of a
plane and a line described in Section 3.3.1.

13In fact, from discussions in the preceding subsection, we know the polynomials gi are products
of linear forms that vanish on the remaining n− 1 subspaces.

3.3. Subspace Segmentation Knowing the Number of Subspaces 71

Theorem 3.8 (Subspace Bases and Dimensions by Polynomial Differentiation).
If the data set X is such that dim(Null(V n(D))) = dim(In) = hI(n) and one
generic point yj is given for each subspace Sj , then we have

S⊥j = span
{ ∂

∂x
cTnνn(x)

∣∣∣
x=yj

, ∀cn ∈ Null(V n(D))
}
. (3.34)

Therefore, the dimensions of the subspaces are given by

dj = D − rank
(
∇Pn(yj)

)
for j = 1, 2, . . . , n, (3.35)

where Pn(x) .= [pn1(x), . . . , pnhI(n)(x)] ∈ R1×hI(n) is a row of linearly in-
dependent polynomials in In, and ∇Pn(x) .=

[
∇pn1(x), . . . ,∇pnhI(n)(x)

]
∈

RD×hI(n).

Proof. (Sketch only). The fact that the derivatives span the entire normal space is
the consequence of the general dimension theory for algebraic varieties [Bochnak
et al., 1998, Harris, 1992, Eisenbud, 1996]. For a (transversal) subspace arrange-
ment, one can also prove the theorem by using the fact that polynomials in In
are generated by the products of n linear forms that vanish on the n subspaces,
respectively.

Given cn, the computation of the derivative of pn(x) = cTnνn(x) can be done
algebraically:

∇pn(x) = cTn∇νn(x) = cTnEnνn−1(x),

where En ∈ RMn(D)×Mn−1(D) is a constant matrix containing only the expo-
nents of the Veronese map νn(x). Thus, the computation does not involve taking
derivatives of the (possibly noisy) data.

3.3.4 Point Selection via Polynomial Division

Theorem 3.8 suggests that one can obtain a basis for each S⊥j directly from the
derivatives of the polynomials representing the union of the subspaces. However,
in order to proceed we need to have one point per subspace, i.e., we need to know
the vectors {y1,y2, . . . ,yn}. In this section, we show how to select these n points
in the unsupervised learning scenario in which we do not know the label for any
of the data points.

In Section 3.2.3, we showed that in the case of hyperplanes, one can obtain one
point per hyperplanes by intersecting a random line L with the union of all hy-
perplanes.14 This solution, however, does not generalize to subspaces of arbitrary
dimensions. For instance, in the case of data lying in a line and a plane shown
in Figure 3.5, a randomly chosen line L may not intersect the line. Furthermore,
because polynomials in the null space of V n(D) are no longer factorizable, their

14This can always be done, except when the chosen line is parallel to one of the subspaces, which
corresponds to a zero-measure set of lines.

72 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

zero set is no longer a union of hyperplanes, hence the points of intersection with
L may not lie in any of the subspaces.

In this section we propose an alternative algorithm for choosing one point per
subspace. The idea is that we can always choose a point yn lying in one of the
subspaces, say Sn, by checking that Pn(yn) = 0. Since we are given a set of data
pointsX = {x1,x2, . . . ,xN} lying in the subspaces, in principle we can choose
yn to be any of the data points. However, in the presence of noise and outliers,
a random choice of yn may be far from the true subspaces. One may be tempted
to choose a point in the data set X that minimizes ‖Pn(x)‖, as we did in our
introductory example in Section 3.3.1. However, such a choice has the following
problems:

1. The value ‖Pn(x)‖ is merely an algebraic error, i.e., it does not really
represent the geometric distance from x to its closest subspace. In princi-
ple, finding the geometric distance from x to its closest subspace is a hard
problem, because we do not know the normal bases {B1, B2, . . . , Bn}.

2. Points x lying close to the intersection of two or more subspaces are
more likely to be chosen, because two or more factors in pn(x) =
(bT1 x)(bT2 x) · · · (bTnx) are approximately zero, which yields a smaller
value for |pn(x)|. In fact, we can see from (3.33) that for an arbitrary x
in the intersection, the vector∇pn(x) needs to be a common normal vector
to the two or more subspaces. If the subspaces have no common normal
vector, then ‖∇pn(x)‖ = 0. Thus, one should avoid choosing points close
to the intersection, because they typically give very noisy estimates of the
normal vectors.

We could avoid these two problems if we could compute the distance from
each point to the subspace passing through it. However, we cannot compute such
a distance yet because we do not know the subspace bases. The following lemma
shows that we can compute a first order approximation to such a distance from
Pn and its derivatives.

Lemma 3.9. Let x̃ be the projection of x ∈ RD onto its closest subspace. The
Euclidean distance from x to x̃ is given by

‖x− x̃‖ = n

√
Pn(x)

(
∇Pn(x)T∇Pn(x)

)†
Pn(x)T +O

(
‖x− x̃‖2

)
,

where Pn(x) = [pn1(x), . . . , pnhI(n)(x)] ∈ R1×hI(n) is a row vector with all
the polynomials,∇Pn(x) =

[
∇pn1(x), . . . ,∇pnhI(n)(x)

]
∈ RD×hI(n), and A†

is the Moore-Penrose inverse of A.

Proof. The projection x̃ of a point x onto the zero set of the polynomi-
als {pn`}hI(n)

`=1 can be obtained as the solution to the following constrained
optimization problem

min ‖x̃− x‖2, s.t. pn`(x̃) = 0, ` = 1, 2, . . . , hI(n). (3.36)

3.3. Subspace Segmentation Knowing the Number of Subspaces 73

By using Lagrange multipliers λ ∈ RhI(n), we can convert this problem into the
unconstrained optimization problem

min
x̃,λ
‖x̃− x‖2 + Pn(x̃)λ. (3.37)

From the first order conditions with respect to x̃ we have

2(x̃− x) +∇Pn(x̃)λ = 0. (3.38)

After multiplying on the left by (∇Pn(x̃))T and (x̃−x)T , respectively, we obtain

λ = 2
(
∇Pn(x̃)T∇Pn(x̃)

)†∇Pn(x̃)Tx, ‖x̃− x‖2 =
1
2
xT∇Pn(x̃)λ, (3.39)

where we have used the fact that (∇Pn(x̃))T x̃ = 0. After substituting the first
equation into the second, we obtain that the squared distance from x to its closest
subspace can be expressed as

‖x̃− x‖2 = xT∇Pn(x̃)
(
∇Pn(x̃)T∇Pn(x̃)

)†∇Pn(x̃)Tx. (3.40)

After expanding in Taylor series about x̃ = x, and noticing that∇Pn(x)Tx =
nPn(x)T we obtain

‖x̃− x‖2 ≈ n2Pn(x)
(
∇Pn(x)T∇Pn(x)

)†
Pn(x)T , (3.41)

which completes the proof.

Thanks to Lemma 3.9, we can immediately choose a candidate yn lying in
(close to) one of the subspaces and not in the intersection as

yn = arg min
x∈X:∇Pn(x)6=0

Pn(x)
(
∇Pn(x)T∇Pn(x)

)†
Pn(x)T . (3.42)

and compute a basis Bn ∈ RD×(D−dn) for S⊥n by applying PCA to∇Pn(yn).
In order to find a point yn−1 lying in (close to) one of the remaining (n − 1)

subspaces but not in (far from) Sn, we could in principle choose yn−1 as in (3.42)
after removing the points in Sn from the data set X . With noisy data, however,
this depends on a threshold and is not very robust. Alternatively, we can find a
new set of polynomials {p(n−1)`(x)} defining the algebraic set ∪n−1

j=1 Sj . In the
case of hyperplanes, there is only one such polynomial, namely

pn−1(x) .= (b1x)(b2x) · · · (bTn−1x) =
pn(x)
bTnx

= cTn−1νn−1(x).

Therefore, we can obtain pn−1(x) by polynomial division. Notice that dividing
pn(x) by bTnx is a linear problem of the form

Rn(bn)cn−1 = cn, (3.43)

where Rn(bn) ∈ RMn(D)×Mn−1(D). This is because solving for the coefficients
of pn−1(x) is equivalent to solving the equations (bTnx)(cTn−1νn(x)) = cTnνn(x)

74 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

for all x ∈ RD. These equations are obtained by equating the coefficients, and
they are linear in cn−1, because bn and cn are already known.

Example 3.10 If n = 2 and b2 = [b1, b2, b3]T , then the matrix R2(b2) is given by

R2(b2) =

24 b1 b2 b3 0 0 0
0 b1 0 b2 b3 0
0 0 b1 0 b2 b3

35T ∈ R6×3.

In the case of subspaces of arbitrary dimensions we cannot directly divide the
entries of the polynomial vector Pn(x) by bTnx for any column bn of Bn, be-
cause the polynomials {pn`(x)} may not be factorizable. Furthermore, they do
not necessarily have the common factor bTnx. The following theorem resolves
this difficulty by showing how to compute the polynomials associated with the
remaining subspaces ∪n−1

j=1 Sj .

Theorem 3.11 (Choosing one Point per Subspace by Polynomial Division). If the
data set X is such that dim(null(V n(D))) = dim(In), then the set of homoge-
neous polynomials of degree (n − 1) associated with the algebraic set ∪n−1

j=1 Sj

is given by {cTn−1vn−1(x)} where the vectors of coefficients cn−1 ∈ RMn−1(D)

must satisfy

V n(D)Rn(bn)cn−1 = 0, ∀ bn ∈ S⊥n . (3.44)

Proof. We first show the necessity. That is, any polynomial of degree n − 1,
cTn−1νn−1(x), that vanishes on ∪n−1

j=1 Sj satisfies the above equation. Since a
point x in the original algebraic set ∪nj=1Sj belongs to either ∪n−1

j=1 Sj or Sn,
we have cTn−1νn−1(x) = 0 or bTnx = 0 for all bn ∈ S⊥n . Hence pn(x) .=
(cTn−1νn−1(x))(bTnx) = 0, and pn(x) must be a linear combination of polyno-
mials in Pn(x). If we denote pn(x) as cTnνn(x), then the vector of coefficients
cn must be in the null space of V n(D). From cTnνn(x) = (cTn−1νn−1(x))(bTnx),
the relationship between cn and cn−1 can be written asRn(bn)cn−1 = cn. Since
V n(D)cn = 0, cn−1 needs to satisfy the following linear system of equations
V n(D)Rn(bn)cn−1 = 0.

We now show the sufficiency. That is, if cn−1 is a solution to (3.44), then
cTn−1νn−1(x) is a homogeneous polynomial of degree (n − 1) that vanishes on
∪n−1
j=1 Sj . Since cn−1 is a solution to (3.44), then for all bn ∈ S⊥n we have that
cn = Rn(bn)cn−1 is in the null space of V n(D). Now, from the construction of
Rn(bn), we also have that cTnνn(x) = (cTn−1νn−1(x))(bTnx). Hence, for every
x ∈ ∪n−1

j=1 Sj but not in Sn, we have cTn−1νn−1(x) = 0, because there is a bn
such that bTnx 6= 0. Therefore, cTn−1νn−1(x) is a homogeneous polynomial of
degree (n− 1) that vanishes on ∪n−1

j=1 Sj .

Thanks to Theorem 3.11, we can obtain a basis {p(n−1)`(x), ` = 1, 2, . . . , hI(n−
1)} for the polynomials vanishing on ∪n−1

j=1 Sj from the intersection of the null
spaces of V n(D)Rn(bn) ∈ RN×Mn−1(D) for all bn ∈ S⊥j . By evaluating the

3.3. Subspace Segmentation Knowing the Number of Subspaces 75

derivatives of the polynomials p(n−1)` we can obtain normal vectors to Sn−1 and
so on. By repeating these process, we can find a basis for each one of the re-
maining subspaces. The overall subspaces estimation and segmentation process
involves polynomial fitting, differentiation, and division.

3.3.5 The Basic Generalized PCA Algorithm

We summarize the results of this section with the following Generalized Princi-
pal Component Analysis (GPCA) algorithm for segmenting a known number of
subspaces of unknown and possibly different dimensions from sample data points
X = {x1,x2, . . . ,xN}.

Algorithm 3.4 (GPCA: Generalized Principal Component Analysis).

Given a set of samplesX = {x1,x2, . . . ,xN} in RD, fit n linear subspaces with
dimensions d1, d2, . . . , dn:

1: Set V n(D) .= [νn(x1), νn(x2), . . . , νn(xN)]T ∈ RN×Mn(D).
2: for all j = n : 1 do
3: Solve V j(D)c = 0 to obtain a basis {cj`}hI(j)

`=1 of null(V j(D)), where
the number of polynomials hI(j) is obtained as in Appendix B.

4: Set Pj(x) = [pj1(x), pj2(x), . . . , pjhI(j)(x)] ∈ R1×hI(j), where
pj`(x) = cTj`νj(x) for ` = 1, 2, . . . , hI(j).

5: Compute

yj = arg min
x∈X:∇Pj(x) 6=0

Pj(x)
(
∇Pj(x)T∇Pj(x)

)†
Pj(x)T ,

Bj
.= [bj1, bj2, . . . , bj(D−dj)] = PCA

(
∇Pj(yj)

)
,

V j−1(D) = V j(D)
[
RTj (bj1), RTj (bj2), . . . , RTj (bj(D−dj))

]T
.

6: end for
7: for all i = 1 : N do
8: Assign point xi to subspace Sj if j = arg min`=1,2,...,n ‖BT` xi‖2.
9: end for

Avoiding Polynomial Division.

In practice, we may avoid computing Pj for j < n by using a heuristic dis-
tance function to choose the points {y1,y2, . . . ,yn} as follows. Since a point
in ∪n`=jS` must satisfy ‖BTj x‖‖BTj+1x‖ · · · ‖BTnx‖ = 0, we can choose a point
yj−1 on ∪j−1

`=1S` as:

yj−1 = arg min
x∈X:∇Pn(x)6=0

√
Pn(x)(∇Pn(x)T∇Pn(x))†Pn(x)T + δ

‖BTj x‖‖BTj+1x‖ · · · ‖BTnx‖+ δ
, (3.45)

where δ > 0 is a small number chosen to avoid cases in which both the numerator
and the denominator are zero (e.g., with perfect data).

76 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

3.4 Subspace Segmentation not Knowing the Number
of Subspaces

The solution to the subspace-segmentation problem proposed in Section 3.3.5
assumes prior knowledge of the number of subspaces n. In practice, however, the
number of subspaces n may not be known beforehand, hence we cannot estimate
the polynomials representing the subspaces directly, because the linear system
in (3.28) depends explicitly on n.

Earlier in Section 3.2, we have presented some special cases (e.g., arrangements
of hyperplanes) for which one can recover the number of subspaces from data. In
this section, we show that by exploiting the algebraic structure of the vanishing
ideals of subspace arrangements it is possible to simultaneously recover the num-
ber of subspaces, together with their dimensions and their bases. As usual, we first
examine some subtlety with determining the number of subspaces via two simple
examples in Section 3.4.1 and illustrate the key ideas. Section 3.4.2 considers the
case of perfect subspace arrangements in which all subspaces are of equal dimen-
sion d = d1 = · · · = dn. We derive a set of rank constraints on the data from
which one can estimate the n and d. Section 3.4.3 considers the most general case
of subspaces of different dimensions and shows that n and can be computed in a
recursive fashion by first fitting subspaces of larger dimensions and then further
segmenting these subspaces into subspaces of smaller dimensions.

3.4.1 Introductory Examples

Imagine we are given a set of pointsX = {x1,x2, . . . ,xN} lying in two lines in
R3, say

S1 = {x : x2 = x3 = 0} and S2 = {x : x1 = x3 = 0}. (3.46)

If we form the matrix of embedded data points V n(D) for n = 1 and n = 2,
respectively:

V 1(3) =


...

...
x1 x2 x3

...
...

 and V 2(3) =


...

...
x2

1 x1x2 x1x3 x2
2 x2x3 x2

3
...

...

 ,
we obtain rank(V 1(3)) = 2 < 3 and rank(V 2(3)) = 2 < 6.15 Therefore, we
cannot determine the number of subspaces as the degree n such that the ma-
trix V n(D) drops rank (as we did in Section 3.2.3 for the case of hyperplanes),
because we would obtain n = 1 which is not the correct number of subspaces.

How do we determine the correct number of subspaces in this case? As dis-
cussed in Section 3.1.2, a linear projection onto a low-dimensional subspace

15The reader is encouraged to verify these facts numerically and do the same for the examples in
the rest of this section.

3.4. Subspace Segmentation not Knowing the Number of Subspaces 77

preserves the number and dimensions of the subspaces. In our example, if we
project the data onto the plane P = {x : x1 + x2 + x3 = 0} and then embed the
projected data we obtain

V 1(2) =


...

...
x1 x2

...
...

 and V 2(2) =


...

...
x2

1 x1x2 x2
2

...
...

 .
In this case rank(V 1(2)) = 2 6< 2, but rank(V 2(2)) = 2 < 3. Therefore, the first
time the matrix V n(d + 1) drops rank is when n = 2 and d = 1. This suggests
that, as we will formally show in Section 3.4.2, when the subspaces are of equal
dimension one can determine d and n as the minimum values for which there are
a projection onto a d + 1-dimensional subspace such that the matrix V n(d + 1)
drops rank.

Unfortunately, the situation is not so simple for subspaces of different dimen-
sions. Imagine now that in addition to the two lines S1 and S2 we are also given
data points on a plane S3 = {x : x1 + x2 = 0} (so that the overall configuration
is similar to that shown in Figure 1.2). In this case we have rank(V 1(3)) = 3 6< 3,
rank(V 2(3)) = 5 < 6, and rank(V 3(3)) = 6 < 10. Therefore, if we try to de-
termine the number of subspaces as the degree of the embedding for which the
embedded data matrix drops rank we would obtain n = 2, which is incorrect
again. The reason for this is clear: we can either fit the data with one polynomial
of degree n = 2, which corresponds to the plane S3 and the plane P spanned by
the two lines, or we can fit the data with four polynomials of degree n = 3, which
vanish precisely on the two lines S1, S2, and the plane S3.

In cases like this, one needs to resort to a more sophisticated algebraic process
to identify the correct number of subspaces. As in the previous example, we can
first search for the minimum degree n and dimension d such that V n(d+1) drops
rank. In our example, we obtain n = 2 and d = 2. By applying the GPCA algo-
rithm to this data set we will partition it into two planes P and S3. Once the two
planes have been estimated, we can reapply the same process to each plane. The
plane P will be separated into two lines S1 and S2, as described in the previous
example, while the plane S3 will remain unchanged. This recursive process stops
when every subspace obtained can no longer be separated into lower-dimensional
subspaces. We will a more detailed description of this Section 3.4.3.

3.4.2 Segmenting Subspaces of Equal Dimension

In this section, we derive explicit formulae for the number of subspaces n and
their dimensions {dj} in the case of subspaces of equal dimension d = d1 = d2 =
· · · = dn. Notice that this is a generalized version to the two-lines example that we
discussed in the previous section. In the literature, arrangements of subspaces of
equal dimensions are called pure arrangements. This type of arrangements are im-
portant for a wide range of applications in computer vision [Costeira and Kanade,
1998,Kanatani, 2002,Vidal and Ma, 2004], pattern recognition [Belhumeur et al.,

78 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

1997, Vasilescu and Terzopoulos, 2002], as well as identification of hybrid linear
systems [Overschee and Moor, 1993, Ma and Vidal, 2005].

Theorem 3.12 (Subspaces of Equal Dimension). Let {xi}Ni=1 be a given collec-
tion of N ≥ Mn(d + 1) − 1 sample points lying in n different d-dimensional
subspaces of RD. Let V j(`+1) ∈ RN×Mj(`+1) be the embedded data matrix de-
fined in (3.28), but computed with the Veronese map νj of degree j applied to the
data projected onto a generic (`+ 1)-dimensional subspace of RD. If the sample
points are in general position and at least d points are drawn from each subspace,
then the dimension of the subspaces is given by:

d = min{` : ∃ j ≥ 1 such that rank(V j(`+ 1)) < Mj(`+ 1)}, (3.47)

and the number of subspaces can be obtained as:

n = min{j : rank(V j(d+ 1)) = Mj(d+ 1)− 1}. (3.48)

Proof. For simplicity, we divide the proof into the following three cases:

Case 1: d known

Imagine for a moment that d was known, and that we wanted to compute n only.
Since d is known, following our analysis in Section 3.1.2, we can first project
the data onto a (d + 1)-dimensional space P ⊂ RD so that they become n
d-dimensional hyperplanes in P (see Theorem 3.5). Now compute the matrix
V j(d + 1) as in (3.28) by applying the Veronese map of degree j = 1, 2, . . .
to the projected data. From our analysis in Section 3.2.3, there is a unique poly-
nomial of degree n representing the union of the projected subspaces and the
coefficients of this polynomial must lie in the null space of V n(d + 1). Thus,
given N ≥ Mn(d + 1) − 1 points in general position, with at least d points in
each subspace, we have that rank(V n(d + 1)) = Mn(d + 1) − 1. Furthermore,
there cannot be a polynomial of degree less than n that is satisfied by all the data,16

hence rank(V j(d+ 1)) = Mj(d+ 1) for j < n. Consequently, if d is known, we
can compute n by first projecting the data onto a (d + 1)-dimensional space and
then obtain

n = min{j : rank(V j(d+ 1)) = Mj(d+ 1)− 1}. (3.49)

Case 2: n known

Consider now the opposite case in which n is known, but d is unknown. Let
V n(` + 1) be defined as in (3.28), but computed from the data projected onto a
generic (` + 1)-dimensional subspace of RD. When ` < d, we have a collection
of (`+ 1)-dimensional subspaces in an (`+ 1)-dimensional space, which implies
that V n(` + 1) must be full rank. If ` = d, then from equation (3.49) we have
that rank(V n(` + 1)) = Mn(` + 1) − 1. When ` > d, then equation (3.28) has

16This is guaranteed by the algebraic sampling theorem in Appendix B.

3.4. Subspace Segmentation not Knowing the Number of Subspaces 79

more than one solution, thus rank(V n(`+ 1)) < Mn(`+ 1)− 1. Therefore, if n
is known, we can compute d as

d = min{` : rank(V n(`+ 1)) = Mn(`+ 1)− 1}. (3.50)

Case 3: n and d unknown

We are left with the case in which both n and d are unknown. As before, if ` < d
then V j(`+1) is full rank for all j. When ` = d, V j(`+1) is full rank for j < n,
drops rank by one if j = n and drops rank by more than one if j > n. Thus one
can set d to be the smallest integer ` for which there exist an j such that V j(`+1)
drops rank, that is

d = min{` : ∃j ≥ 1 such that rank(V j(`+ 1)) < Mj(`+ 1)}.

Given d one can compute n as in equation (3.49).

Therefore, in principle, both n and d can be retrieved if sufficient data points
are drawn from the subspaces. The subspace-segmentation problem can be subse-
quently solved by first projecting the data onto a (d+1)-dimensional subspace and
then applying the GPCA algorithm (Algorithm 3.4) to the projected data points.

In the presence of noise, one may not be able to estimate d and n from from
equations (3.47) and (3.48), respectively, because the matrix V j(` + 1) may be
full rank for all j and `. As before, we can use the criterion (2.48) of Chapter 2
to determine the rank of V j(` + 1). However, in practice this requires to search
for up to possibly (D − 1) values for d and dN/(D − 1)e values for n. In our
experience, the rank conditions work well when either d or n are known. There
are still many open issues in the problem of finding a good search strategy and
model selection criterion for n and k when both of them are unknown. Some of
these issues will be discussed in more detail in Chapter ??

3.4.3 Segmenting Subspaces of Different Dimensions

In this section, we consider the problem of segmenting an unknown number of
subspaces of unknown and possibly different dimensions from sample points.

First of all, we notice that the simultaneous recovery of the number and dimen-
sions of the subspaces may be an ill-conditioned problem if we are not clear about
what we are looking for. For example, in the extreme cases, one may interpret the
sample setX asN 1-dimensional subspaces, with each subspace spanned by each
one of the sample points x ∈ X; or one may view the whole X as belonging to
one D-dimensional subspace, i.e., RD itself.

Although the above two trivial solutions can be easily rejected by imposing
some conditions on the solutions,17 other more difficult ambiguities may also arise

17To reject the N -lines solution, one can put a cap on the maximum number of groups nmax; and
to reject RD as the solution, one can simply require that the maximum dimension of every subspace
is strictly less than D.

80 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

in cases such as that of Figure 1.2 in which two lines and a plane can also be
interpreted as two planes. More generally, when the subspaces are of different
dimensions one may not be able to determine the number of subspaces directly
from the degree of the polynomials fitting the data, because the degree of the
polynomial of minimum degree that fits a collection of subspaces is always less
than or equal to the number of subspaces.

To resolve the difficulty in determining the number and dimension of sub-
spaces, notice that the algebraic set ZA = ∪nj=1Sj can be decomposed into
irreducible subsets Sj’s – an irreducible algebraic set is also called a variety. The
decomposition of Z into {S1, S2, . . . , Sn} is always unique. Therefore, as long
as we are able to correctly determine from the given sample points the underlying
algebraic set ZA or the associated (radical) ideal I(ZA), in principle the num-
ber of subspaces n and their dimensions {d1, d2, . . . , dn} can always be uniquely
determined in a purely algebraic fashion. In Figure 1.2, for instance, the first in-
terpretation (2 lines and 1 plane) would be the right one and the second one (2
planes) would be incorrect, because the two lines, which span one of the planes,
is not an irreducible algebraic set.

Having established that the problem of subspace segmentation is equivalent to
decomposing the algebraic ideal associated with the subspaces, we are left with
deriving a computable scheme to achieve the goal.

From every homogeneous component Ii of

I(ZA) = Im ⊕ Im+1 ⊕ · · · ⊕ In ⊕ · · · ,

we may compute a subspace arrangement Zi such that ZA ⊆ Zi is a subspace
embedding (see Section C.2). For each i ≥ m, we can evaluate the derivatives of
polynomials in Ii on subspace Sj and denote the collection of derivatives as

Di,j
.= ∪x∈Sj

{∇f |x, ∀f ∈ Ii}, j = 1, 2, . . . , n. (3.51)

Obviously, we have the following relationship:

Di,j ⊆ Di+1,j ⊆ S⊥j , ∀i ≥ m. (3.52)

Then for each Ii, we can define a new subspace arrangement as

Zi
.= D⊥i,1 ∪D⊥i,2 ∪ · · · ∪D⊥i,n. (3.53)

Notice that it is possible that Di,j = Di,j′ for different j and j′ and Zi con-
tains less than n subspaces. We summarize the above derivation as the following
theorem.

Theorem 3.13 (A Filtration of Subspace Arrangements). Let I(ZA) = Im ⊕
Im+1 ⊕ · · · ⊕ In ⊕ · · · be the ideal of a subspace arrangement ZA. Let Zi be the
subspace arrangement defined by the derivatives of Ii, i ≥ m as above. Then we
obtain a filtration of subspace arrangements:

Zm ⊇ Zm+1 ⊇ · · · ⊇ Zn = ZA,

and each subspace of ZA is embedded in one of the subspaces of Zi.

3.5. Model Selection for Multiple Subspaces 81

The above theorem naturally leads to a recursive scheme that allows us to de-
termine the correct number and dimensions of the subspaces in ZA. Specifically,
we start with n = 1 and increase n until there is at least one polynomial of degree
n fitting all the data, i.e., until the matrix V n(D) drops rank for the first time.
For such an n, we can use Algorithm 3.4 to separate the data into n subspaces.
Then we can further separate each one of these n groups of points using the same
procedure. The stopping criterion for the recursion is when all the groups cannot
be further separated or the number of groups n reaches some nmax.18

3.5 Model Selection for Multiple Subspaces

However, if the data points in the sample set X are corrupted by random noise,
the above recursive scheme may fail to return a meaningful solution. In fact, up till
now, we have been purposely avoiding a fundamental difficulty in our problem:
it is inherently ambiguous in fitting multiple subspaces for any given data set,
especially if the number of subspaces and their dimensions are not given a priori.
When the sample points in X are noisy or are in fact drawn from a nonlinear
manifold, any multi-subspace model unlikely will fit the data perfectly except for
the pathological cases: 1. All points are viewed as in oneD-dimensional subspace
– the ambient space; 2. Every point is viewed as in an individual one-dimensional
subspace. In general, the more the number of planes we use, the higher accuracy
may we achieve in fitting any given data set. Thus, a fundamental question we
like to address in this section is:

Among a class of subspace arrangements, what is the “optimal”
model that fits a given data set?

From a practical viewpoint, we also need to know under what conditions the
optimal model exists and is unique, and more importantly, how to compute it
efficiently.

In Appendix C, we have seen that in general, any model selection criterion
aims to strike a balance between the complexity of the resulting model and the
fidelity of the model to the given data. However, its exact form often depends on
the class of models of interest as well as how much information is given about the
model in advance. If we were to apply any of the model-selection criteria (or their
concepts) to subspace arrangements, at least two issues need to be addressed:

1. We need to know how to measure the model complexity of arrangements
of subspaces (possibly of different dimensions).

2. As the choice of a subspace arrangement involves both continuous parame-
ters (the subspace bases) and discrete parameters (the number of subspaces

18For example, the inequalityMn(D) ≤ N imposes a constraint on the maximum possible number
of groups nmax.

82 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

and their dimensions), we need to know how to properly balance the model
complexity and the modeling error for subspace arrangements.

In the rest of this section, we provide a specific model selection criterion for sub-
space arrangements. The most fundamental idea behind the proposed criterion is
that the optimal model should lead to the most compact or sparse representation
for the data set.

3.5.1 Effective Dimension of Samples of Multiple Subspaces

Definition 3.14 (Effective Dimension). Given an arrangement of n subspaces
ZA

.= ∪nj=1Sj in RD of dimension dj < D, and Nj sample points Xj drawn
from each subspace Sj , the effective dimension of the entire set ofN =

∑n
j=1Nj

sample points,X = ∪nj=1Xj , is defined to be:

ED(X, ZA) .=
1
N

(n∑
j=1

dj(D − dj) +
n∑
j=1

Njdj

)
. (3.54)

We contend that ED(X, ZA) is the “average” number of (unquantized) real
numbers that one needs to assign to X per sample point in order to specify the
configurations of the n subspaces and the relative locations of the sample points in
the subspaces. In the first term of equation (3.54), dj(D− dj) is the total number
of real numbers (known as the Grassmannian coordinates19) needed to specify a
dj-dimensional subspace Sj in RD; in the second term of (3.54),Njdj is the total
number of real numbers needed to specify the dj coordinates of the Nj sample
points in the subspace Sj . In general, if there are more than one subspace in ZA,
ED(X, ZA) can be a rational number, instead of an integer for the conventional
dimension.

Notice that we here choose real numbers as the basic “units” for measuring
complexity of the model in a similar fashion in the theory of sparse representation.
Indeed, if the set of basis vectors of the subspaces are given, the second term
of the effective dimension is essentially the sum of `0 norm of the data points
each represented as a linear combination of the bases. In general, the existence
of sparse linear representation always relies on the fact that the underlying model
is an arrangement of a large number of subspaces. Of course, the compactness
of the model can potentially be measured by more accurate units other than real
numbers. Binary numbers, or “bits,” have traditionally been used in information
theory for measuring the complexity of a data set. We will thoroughly examine
that direction in the next chapter and will subsequently reveal the relationships
among different measures such as `0 norm, `1 norm, and (binary) coding length.

19Notice that to represent a d-dimensional subspace in a D-dimensional space, we only need to
specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows
of a d × D matrix. Any nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the normal form [Id×d, G]

where G is a d× (D − d) matrix consisting of the so-called Grassmannian coordinates.

3.5. Model Selection for Multiple Subspaces 83

In the above definition, the effective dimension of X depends on the subspace
arrangement ZA. This is because in general, there could be many subspace struc-
tures that can fitX . For example, we could interpret the whole data set as lying in
one D-dimensional subspace and we would obtain an effective dimension D. On
the other hand, we could interpret every point inX as lying in a one-dimensional
subspace spanned by itself. Then there will beN such one-dimensional subspaces
in total and the effective dimension, according to the above formula, will also be
D. In general, such interpretations are obviously somewhat redundant. Therefore,
we define the effective dimension of a given sample setX to be the minimum one
among all possible models that can fit the data set:20

ED(X) .= min
ZA:X⊂ZA

ED(X, ZA). (3.55)

Example 3.15 (Effective Dimension of One Plane and Two Lines). Figure 1.2 shows
data points drawn from one plane and two lines in R3. Obviously, the points in the two
lines can also be viewed as lying in the plane that is spanned by the two lines. However,
that interpretation would result in an increase of the effective dimension since one would
need two coordinates to specify a point in a plane, as opposed to one in a line. For instance,
suppose there are fifteen points in each line; and thirty points in the plane. When we use
two planes to represent the data, the effective dimension is: 1

60
(2× 2× 3− 2× 22 + 60×

2) = 2.07; when we use one plane and two lines, the effective dimension is reduced to:
1
60

(2× 2× 3− 22 − 2× 1 + 30× 1 + 30× 2) = 1.6. In general, if the number of points
N is arbitrarily large (say approaching to infinity), depending on the distributions of points
on the lines or the plane, the effective dimension can be anything between 1 and 2, the true
dimensions of the subspaces.

As suggested by the above example, the arrangement of subspaces that lead
to the minimum effective dimension normally corresponds to a “natural” and
hence compact representation of the data in the sense that it achieves the best
compression (or dimension reduction) among all possible multiple-subspace
models.

3.5.2 Minimum Effective Dimension of Noisy Samples

In practice, real data are corrupted with noise, hence we do not expect that the
optimal model fits the data perfectly. The conventional wisdom is to strike a good
balance between the complexity of the chosen model and the data fidelity (to the
model). See Appendix A.4 for a more detailed discussion about numerous model
selection criteria. To measure the data fidelity, let us denote the projection of each
data point xi ∈ X to the closest subspace as x̂i and let X̂ = {x̂i}. Then, the

20The space of subspace arrangements is topologically compact and closed, hence the minimum
effective dimension is always achievable and hence well-defined.

84 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

total error residual can be measured by:

‖X − X̂‖2 =
N∑
i=1

‖xi − x̂i‖2. (3.56)

As all model-selection criteria exercise the same rationale as above, we here
adopt the geometric-AIC (GAIC) criterion (2.51)21 and it leads to the following
objective for selecting the optimal multiple-subspace model:

Z∗A = arg min
ZA:X̂⊂ZA

1
N
‖X − X̂‖2 + 2σ2ED(X̂, ZA), (3.57)

where σ2 is the noise variance of the data. However, this optimization problem
can be very difficult to solve: The variance σ2 might not be known a priori
and we need to search for the global minimum in the configuration space of all
subspace arrangements, which is not a smooth manifold and has very compli-
cated topological and geometric structures. The resulting computation is typically
prohibitive.

To alleviate some of the difficulty, in practice, we may instead minimize the ef-
fective dimension subject to a maximum allowable error tolerance. That is, among
all the multiple-subspace models that fit the data within a given error bound, we
choose the one with the smallest effective dimension. To this end, we define the
minimum effective dimension subject to an error tolerance τ as:

MED(X, τ) .= min
ZA

ED(X̂, ZA) s.t. ‖X − X̂‖∞ ≤ τ, (3.58)

where X̂ is the projection ofX onto the subspaces inZA and the error norm ‖·‖∞
indicates the maximum norm: ‖X−X̂‖∞ = max1≤i≤N ‖xi−x̂i‖. Based on the
above definition, the effective dimension of a data set is then a notion that depends
on the error tolerance. In the extreme, if the error tolerance is arbitrarily large, the
“optimal” subspace-model for any data set can simply be the (zero-dimensional)
origin; if the error tolerance is zero instead, for data with random noise, each
sample point needs to be treated as a one-dimensional subspace in RD of its own
and that brings the effective dimension up close to D.

In many applications, the notion of maximum allowable error tolerance is par-
ticularly relevant. For instance, in image representation and compression, the task
is often to find a linear or hybrid linear model to fit the imagery data subject to
a given peak signal to noise ratio (PSNR).22 The resulting effective dimension
directly corresponds to the number of coefficients needed to store the resulting
representation. The smaller the effective dimension is, the more compact or com-
pressed is the final representation. In Chapter 6, we will see exactly how the
minimum effective dimension principle is applied to image representation. The

21We here adopt the GAIC criterion only to illustrate the basic ideas. In practice, depending on the
problem and application, it is possible that other model selection criteria may be more appropriate.

22In this context, the noise is the different between the original image and the approximate image
(the signal).

3.5. Model Selection for Multiple Subspaces 85

same principle can be applied to any situation in which one tries to fit a piecewise
linear model to a data set whose structure is nonlinear or unknown.

3.5.3 The Recursive GPCA Algorithm

Unlike the geometric AIC (3.57), the MED objective (3.58) is relatively easy to
achieve. For instance, the recursive GPCA scheme that we have discussed earlier
at the end of Section 3.4.3 can be easily modified to minimize the effective di-
mension subject to an error tolerance: we allow the recursion to proceeds only if
the effective dimension would decrease while the resulting subspaces still fit the
data with the given error bound.

To summarize the above discussions, in principle we can use the following
algorithm to recursively identify subspaces in an arrangement ZA from a set of
noisy samplesX = {x1,x2, . . . ,xN}.

Algorithm 3.5 (Recursive GPCA).

Given a set of samples X = {x1,x2, . . . ,xN} in the ambient space RD, find a
set of subspaces that fitX subject to an error τ > 0:

1: for all k = 1 : nmax do
2: Set V k(D) .= [νk(x1), νk(x2), . . . , νk(xN)]T ∈ RMk(D)×N .
3: if rank(V k(D)) < Mk(D) then
4: Use the GPCA Algorithm 3.4 to partitionX into k subsetsX1, . . . ,Xk.

5: Apply PCA and fit eachXj with a subspace Sj of dimension dj , subject
to the error τ . Let Z = S1 ∪ · · · ∪ Sk.

6: if ED(X, Z) < D then
7: for j = 1 : k do
8: Apply Recursive GPCA forXj (with Sj as the ambient space).
9: end for

10: else
11: Break.
12: end if
13: else
14: k ← k + 1.
15: end if
16: end for

Figure 3.7 demonstrates the result of the Recursive GPCA algorithm segment-
ing synthetic data drawn from two lines (100 points each) and one plane (400
points) in R3 corrupted with 5% uniform noise (Figure 3.7 top-left). Given a rea-
sonable error tolerance, the algorithm stops after two levels of recursion (Figure
3.7 top-right). Note that the pink line (top-right) or group 4 (bottom-left) is a
“ghost” line at the intersection of the original plane and the plane spanned by

86 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

the two lines.23 Figure 3.7 bottom-right is the plot of MED of the same data set
subject to different levels of error tolerance. As we see, the effective dimension
decreases monotonically with the increase of error tolerance.

ED=3

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

5

N=600

N1=395 N2=205

N4=12N3=93N2=100N1=395

ED=1.6717

ED=2.0067

0 100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

Point Indices

G
ro

up
 N

um
be

r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

Error Tolerance !

M
ED

Figure 3.7. Simulation results. Top-left: sample points drawn from two lines and a plane
in R3 with 5% uniform noise; Top-right: the process of recursive segmentation by the
Recursive GPCA algorithm 3.5 with the error tolerance τ = 0.05; Bottom-left: group
assignment for the points; Bottom-right: plot of MED versus error tolerance.

Be aware that when the data is noisy, it sometimes can be very difficult to
determine the correct dimension of the null space of the matrix V n(D) from
its singular-value spectrum. If the dimension is wrongfully determined, it may
result in either under-estimating or over-estimating the number of fitting poly-
nomials. In general, if the number of polynomials were under-estimated, the
resulting subspaces would over-fit the data;24 and if the number of polynomials
were over-estimated, the resulting subspaces would under-fit the data.

23This is exactly what we would have expected since the recursive GPCA first segments the data
into two planes. Points on the intersection of the two planes get assigned to either plane depending on
the random noise. If needed, the points on the ghost line can be merged with the plane by some simple
post-processing.

24That is, the dimensions of some of the subspaces estimated could be larger than the true ones.

3.6. Bibliographic Notes 87

Obviously, both over-fitting and under-fitting result in incorrect estimates of
the subspaces. However, do they necessarily result in equally bad segmentation
of the data? The answer is no. Between over-fitting and under-fitting, we actu-
ally would favor over-fitting. The reason is that, though over-fitting results in
subspaces that are larger than the original subspaces, but it is a zero-measure
event that any over-estimated subspace contains simultaneously more than one
original subspace. Thus, the grouping of the data points may still be correct. For
instance, consider the extreme case that we choose only one polynomial that fits
the data, then the derivatives of the polynomial, evaluated at one point per sub-
space, lead to n hyperplanes. Nevertheless, these over-fitting hyperplanes will in
general result in a correct grouping of the data points. One can verify this with the
introductory example we discussed in Section 3.3.1. Either of the two polynomi-
als p21(x) = x1x3 and p22(x) = x2x3 leads to two hyperplanes that segment the
line and the plane correctly.

3.6 Bibliographic Notes

GPCA Algorithms and Extensions

The difficulty with initialization for the iterative clustering algorithms that we
have presented in the previous chapter has motivated the recent development of
algebro-geometric approaches to subspace segmentation that do not require ini-
tialization. [Kanatani, 2001, Boult and Brown, 1991, Costeira and Kanade, 1998]
demonstrated that when the subspaces are orthogonal, of equal dimensions, and
with trivial intersection, one can use the SVD of the data to define a similarity
matrix from which the segmentation of the data can be obtained using spectral
clustering techniques. Unfortunately, this method is sensitive to noise in the data,
as pointed out in [Kanatani, 2001, Wu et al., 2001], where various improvements
are proposed. When the intersection of the subspaces is nontrivial, the segmen-
tation of the data is usually obtained in an ad-hoc fashion again using clustering
algorithms such as K-means. A basis for each subspace is then obtained by ap-
plying PCA to each group. For the special case of two planes in R3, a geometric
solution was developed by [Shizawa and Mase, 1991] in the context of segmenta-
tion of 2-D transparent motions. In the case of subspaces of co-dimension one, i.e.,
hyperplanes, an algebraic solution was developed by [Vidal et al., 2003], where
the hyperplane clustering problem is shown to be equivalent to homogeneous
polynomial factorization.

The GPCA algorithm for the most general case25 was later developed in [Vidal
et al., 2004]; and the decomposition of the polynomial(s) was based on differ-
entiation, a numerically better-conditioned operation. The GPCA algorithm was
successfully applied to solve the motion segmentation problem in computer vi-

25That is, an arbitrary number of subspaces of arbitrary dimensions.

88 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

sion [Vidal and Ma, 2004]. The generalization to arrangements of both linear and
quadratic surfaces was first studied by [Rao et al., 2005].

Algebraic Properties of Subspace Arrangements

The importance of using subspace arrangements to model real-world high-
dimensional data and the early success of the basic GPCA algorithms had
motivated mathematicians to provide a more thorough characterization of sub-
space arrangements in terms of their vanishing ideals. A complete characterization
of the Hilbert functions of the ideals for subspace arrangements was given by
[Derksen, 2005], which serves as the theoretical foundation for this chapter. In
Appendices B and C, we have sketched the basic algebraic concepts, results, and
additional references about subspace arrangements. One may also refer to [Ma
et al., 2008] for a comprehensive review on recent developments of this topic.

Effective Dimension and Sparsity

The notion of minimum Effective Dimension was first introduced in the context
of recursive GPCA in [Huang et al., 2004]. We now understand that Effective Di-
mension is essentially a parsity measure in terms of `0-norm. Incidentally, that is
the same year David Donoho published his landmark paper on sparse representa-
tion, revealing the remarkable equivalence between `0 and `1 minimization. We
will have a more detailed discussion about this connection in Section 5.5, after we
have examined yet another measure, coding length, for the compactness of a data
set for a model.

Robustness and Outlier Rejection

There have been many work on the estimation of polynomials that best fit a given
set of noisy samples. In Exercise 3.7, we will study one such approach that works
well in the context of GPCA. The approach essentially follows that of [Taubin,
1991].

If there are also outliers in the given sample set, the problem becomes a more
difficult robust model estimation problem. There is vast body of literature on ro-
bust statistics, see Appendix A.5 for a brief review. Sample influence is always
believed to be an important index for detecting outliers. Certain first order ap-
proximations of the influence value were developed at roughly the same period
as the sample influence function was proposed [Campbell, 1978,Critchley, 1985],
when the computational resource was scarcer than it is today. In the literature,
formulae that approximate an influence function are referred to as theoretical in-
fluence functions. Usually, the percentage of outliers can be determined by the
influence of the candidate outliers on the model estimated [Hampel et al., 1986].

In the basic GPCA algorithm 3.4, we see that the key is to be able to ro-
bustly estimate the covariance of the samples in the lifted space, i.e. the matrix
V n(D)TV n(D). Among the class of robust covariance estimators (see Appendix
A.5), the multivariate trimming (MVT) method [Gnanadesikan and Kettenring,
1972] has always been one of the most popular for practitioners, probably because

3.7. Exercises 89

of its computational efficiency for high-dimensional data as well as its tolerance
of large percentage of outliers. It application to GPCA is posed as Exercise 3.9.

Random sampling techniques such as the least median estimate (LME)
[Hampel, 1974, Rousseeuw, 1984] and random sampling consensus (RANSAC)
[Fischler and Bolles, 1981] have been widely used in many engineering areas, es-
pecially in pattern recognition and computer vision [Stewart, 1999]. They are very
effective when the model is relatively simple. For instance, RANSAC is known
to be very effective in making the classic PCA robust, i.e. estimating a single
subspace in the presence of outliers. However, if there are multiple subspaces,
RANSAC is known to work well in the case when the dimension of all the sub-
spaces are the same [?]. If the subspace dimensions have different dimensions, a
Monte Carlo scheme can be used to estimate one subspace at a time [Torr and
Davidson, 2003, Schindler and Suter, 2005]. However, the performance degrades
very quickly with the increase of the number of subspaces and the percentage
of outliers. This has been observed in the careful experimental comparison done
by [?]. GPCA combined with MVT was shown to perform generally better on
most of the simulated data sets.

In the next chapter, we are going to see an entirely new approach to clus-
tering data from multiple subspaces. Rather than fitting a global model to the
arrangement or one model for each subspace, the new method forms subspace-
like clusters by merging one sample point at a time. As we will see, one distinctive
feature of such an agglomerative approach is its striking ability to handle high
percentage of outliers, far more robust than the methods we have discussed or
exercised so far.

3.7 Exercises

Exercise 3.1 (Clustering Points in a Plane). Describe how Algorithm 3.1 can also be
applied to a set of points in the plane {xi ∈ R2}Ni=1 that are distributed around a collection
of cluster centers {µj ∈ R2}nj=1 by interpreting the data points as complex numbers:
{z .

= x+ y
√
−1 ∈ C}. In particular, discuss what happens to the coefficients and roots of

the fitting polynomial pn(z).

Exercise 3.2 (Connection of Algebraic Clustering with Spectral Clustering). Spectral
clustering is a very popular data clustering method. In spectral clustering, one is given a set
of N data points (usually in a multi-dimensional space) and an N ×N pairwise similarity
matrix S = (sij). The entries sij of S measure the likelihood of two points belonging to
the same cluster: sij → 1 when points i and j likely belong to the same group and sij → 0
when points i and j likely belong to different groups.

1. First examine the special case in which the N data points have two clusters and the
similarity matrix S is ideal: That is, sij = 1 if and only if points i and j belong
to the same cluster and sij = 0 otherwise. What do the eigenvectors of S look
like, especially the one(s) that correspond to nonzero eigenvalue(s)? Argue how the
entries of the eigenvectors encode information about the membership of the points.

2. Generalize your analysis and conclusions to the case of n clusters.

90 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

3. Show how Algorithm 3.1 can be used to cluster the points based on the eigenvector
of the similarity matrix. Based on Exercise 3.1, show how to cluster the points by
using two eigenvectors simultaneously.

Since many popular image segmentation algorithms are based on spectral clustering (on
certain similarity measure between pixels), you may use the above algorithm to improve
the segmentation results.

Exercise 3.3 (Level Sets and Normal Vectors). Let f(x) : RD → R be a smooth func-
tion. For any constant c ∈ R, the set Sc

.
= {x ∈ RD|f(x) = c} is called a level set of

the function f . Sc is in general a D − 1 dimensional submanifold. Show that if ‖∇f(x)‖
is nonzero at a point x0 ∈ Sc, then the gradient∇f(x0) ∈ RD at x0 is orthogonal to any
tangent vectors of the level set Sc.

Exercise 3.4 (Hyperplane Embedding from a Single Polynomial). Consider a subspace
arrangement ZA = S1 ∪S2 ∪ · · · ∪Sn ⊂ RD . f(x) is a polynomial that vanishes on ZA.
Show that if we differentiate f(x) at points on ZA, we always obtain an arrangement of
hyperplanes that contain ZA.

Exercise 3.5 (Multiple GPCA). For each f = 1, 2, . . . , F , let {xfi ∈ RD}Ni=1 be a
collection of N points lying in n hyperplanes with normal vectors {bfj}nj=1. Assume
that x1i,x2i, . . . ,xFi correspond to each other, i.e., for each i = 1, 2, . . . , N there is
a j = 1, 2, . . . , n such that for all f = 1, 2, . . . , F , we have b>fjx1i = 0. Propose an
extension of the GPCA algorithm that computes the normal vectors in such a way that
b1j , b2j , . . . bFj correspond to each other.

Hint: If pfn(x) = c>f νn(x) = (b>f1x)(b>f2x) · · · (b>fnx) and the ith set of points
x1i,x2i, . . . ,xFi corresponds to the jth group of hyperplanes, then bfj ∼ ∇pfn(xfi).

Exercise 3.6 Implement the basic GPCA Algorithm 3.4 and test the algorithm for different
subspace arrangements with different levels of noise.

Exercise 3.7 (Estimating Vanishing Polynomials). In the next two exercises, we study
two ways of estimating the vanishing polynomials of a subspace arrangement from noisy
samples. Since the data are noisy, a sample point x is only close to the zero set of the fitting
polynomials P (x) = [p1(x), p2(x), . . . , pm(x)]T . Let x̂ be the closest point to x on the
zero set of P (x).

1. Show that the approximate square distance from x to x̂ is given by

‖x− x̂‖2 ≈ P (x)T
`
DP (x)DP (x)T

´†
P (x). (3.59)

This distance is known as the Sampson distance. From this to conclude that, given a
set of sample points X = {x1, . . . ,xN}, in order to minimize the mean square
fitting error, 1

N

PN
i=1 ‖xi − x̂i‖22, we can approximately minimize the average

Sampson distance

1

N

NX
i=1

P (xi)
T `DP (xi)DP (xi)

T ´†P (xi) (3.60)

2. However, since for any non-singular matrix M ∈ Rm×m, P̃ (x) = MP (x) define
the same zero set. Show that, in order to reduce this redundancy, we can normalize

3.7. Exercises 91

the following matrix to an identity:

1

N

NX
i=1

DP (xi)DP (xi)
T = Im×m. (3.61)

Thus, the problem of minimizing the average Sampson distance now becomes a
constrained optimization problem:

P ∗ = arg minP
1
N

PN
i=1 P (xi)

T
`
DP (xi)DP (xi)

T
´†
P (xi),

subject to 1
N

PN
i=1DP (xi)DP (xi)

T = Im×m.
(3.62)

3. Since the average of DP (xi)DP (xi)
T is an identity, we can approximate each by

an identity too. Then, the above problem becomes:

P ∗ = arg minP
1
N

PN
i=1 ‖P (xi)‖2,

subject to 1
N

PN
i=1DP (xi)DP (xi)

T = Im×m.
(3.63)

Now show that the vector of coefficients of each polynomial in P ∗ is a generalized
eigenvector for a properly defined pair of matrices W and B. That is, they are
solutions c∗i to the following equation:

Wc∗i = λiBc
∗
i , i = 1, 2, . . . ,m. (3.64)

Exercise 3.8 (Fisher Discriminant Analysis for Subspaces). We now illustrate how con-
cepts from discriminant analysis can be adopted to estimate better fitting polynomials. We
use an arrangement of hyperplanes to demonstrate the basic ideas. In this case, the fitting
polynomial as the form:

p(x) =

nY
j=1

`
bTj x

´
= cT νn(x) = 0 (3.65)

with n the number of (different) hyperplanes and bj the normal vector to the jth plane.
In this case, it is very easy to find the coefficient vector c as the kernel of the data matrix
V n(D) is only one-dimensional.

1. In the presence of noise, it is likely that p(x) 6= 0, but we would like to find the
coefficient vector c that minimizes the following average least-square fitting error
1
N

PN
i=1 |p(xi)|2. Show that the solution c∗ is the eigenvector associated with the

smallest eigenvalue of the matrix:

W
.
=
“ 1

N
V n(D)TV n(D)

”
. (3.66)

In the spirit of discriminant analysis, the matrix W will be called the within-
subspace scatter matrix.

2. Let us examine the derivative of the polynomial at each of the data samples. Let
x1 ∈ S1. Show that the norm of the derivative∇p(x1) is‚‚∇p(x1)

‚‚2
=
˛̨̨“ nY

j=2

bTj x1

”˛̨̨2
. (3.67)

Thus, the average of the quantity ‖∇p(x1)‖2 over all x1 in S1 gives a good mea-
sure of “distance” from S1 to

Sn
j=2 Sj , the union of the other subspaces. For the

92 Chapter 3. Algebraic Methods for Multiple-Subspace Segmentation

segmentation purpose, we would like to find the coefficient vector c that maximizes
the following quantity:

max
1

N

NX
i=1

‚‚∇p(xi)‚‚2
= cT

“ 1

N

NX
i=1

∇νn(xi)∇νn(xi)
T
”
c
.
= cTBc. (3.68)

In the spirit of discriminant analysis, we will call B the between-subspace scatter
matrix.

3. Therefore, we would like to seek a fitting polynomial that simultaneously minimizes
the polynomial evaluated at each of the samples while maximizing the norm of the
derivative at each point. This can be achieve by minimizing the ratio of these two
metrics:

c∗ = arg min
c

cTWc

cTBc
. (3.69)

Show that the solution to this problem is given by the generalized eigenvector c that
is associated with the smallest generalized eigenvalue λ of (W,B):

Wc = λBc. (3.70)

In the case whenB is non-singular, c is simply the eigenvector ofB−1W associated
with the smallest eigenvalue.

Exercise 3.9 (Robust Estimation of Fitting Polynomials). We know that samples from
an arrangement of n subspaces, their Veronese lifting all lie on a single subspace
span(V n(D)). The coefficients of the fitting polynomials are simply the null space of
V n(D). If there is noise, the lifted samples approximately span a subspace and the coef-
ficients of the fitting polynomials are eigenvectors associated with the small eigenvalues
of V n(D)TV n(D). However, if there are outliers, the lifted samples together no longer
span a subspace. Notice that this is the same situation that robust statistical techniques
such as multivariate trimming (MVT) are designed to deal with. See Appendix A.5 for
more details. In this exercise, show how to combine MVT with GPCA so that the result-
ing algorithm will be robust to outliers. Implement your scheme and find out the highest
percentage of outliers that the algorithm can handle (for various subspace arrangements).

This is page 93
Printer: Opaque this

Chapter 4
Iterative Methods for
Multiple-Subspace Segmentation

“Statistics in the hands of an engineer are like a lamppost to a drunk
– they’re used more for support than illumination.”

– A.E. Housman

We will first review some basic concepts and existing iterative algorithms for
clustering multivariate data, i.e. the K-means algorithm and the Expectation Max-
imization (EM) algorithm. We then give a clear formulation of the problem in
which the clusters are subspaces and introduce the basic notation for representing
both linear and affine subspaces. We then customize the two algorithms so as to
segment a known number of subspaces with known dimensions. We point out the
advantages and disadvantages of these algorithms, particularly their sensitivity to
initialization.

4.1 Statistical Methods for Data Clustering

In clustering analysis, the basic assumption is that the given data points X =
{xi}Ni=1 ⊂ RD are grouped into a number of clusters n ≤ N such that the
“distance” (or “dissimilarity”) among points in the same group is significantly
smaller than those between clusters. Thus the outcome of clustering analysis is a
map:

c(·) : i ∈ {1, 2, . . . , N} 7→ j = c(i) ∈ {1, 2, . . . , n} (4.1)

that assigns each point xi to one of the n clusters. Obviously, the outcome of
the clustering very much depends on what the chosen measure of distance is.

94 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

If the notion of distance is not clearly specified, the clustering problem can be
ill-defined. The following example shows some of the reasons.

Example 4.1 (No Invariant Clustering by the Euclidean Distance). If we always choose
the Euclidean distance, then the clustering result cannot be invariant under an arbitrary
linear transformation of the data points – usually representing a change of coordinates.
That is, if we replace xi with x′i = Axi for some non-singular matrix A ∈ RD×D , then
the clustering of {xi} and {x′i} will in general be different. This is easy to see with a
simple example. Suppose we need to cluster the N = 4 points in R2 as follows

x1 = [1, 10]T , x2 = [−1, 10]T , x3 = [1,−10]T , x4 = [−1,−10]T

into n = 2 clusters. The two clusters are obviously {x1,x2} and {x3,x4}. Now consider
two linear transformations A1 and A2 ∈ R2×2:

A1 =

»
100 0
0 1

–
, A2 =

»
10 0
0 10

– »
0 −1
1 0

–
=

»
0 −10
10 0

–
.

Applying the two maps to the original set of points, we obtain two new sets of points
{x′i = A1xi} and {x′′i = A2xi}, respectively:

x′1 = [100, 10]T , x′2 = [−100, 10]T , x′3 = [100,−10]T , x′4 = [−100,−10]T ;

x′′1 = [−100, 10]T , x′′2 = [−100,−10]T , x′′3 = [100, 10]T , x′′4 = [100,−10]T .

As a set {x′i} is the same as {x′′i }. However, the two clusters are {x′1,x′3} and {x′2,x′4}
for the first set; and {x′′1 ,x′′2} and {x′′3 ,x′′4} for the latter. In fact, regardless of the choice
of objective or method, it is always the case that the clustering result for one of the two
new sets will be different from that for the original set.

From the above example, we see that in order for the clustering result to be
invariant under a linear transformation, instead of always using the Euclidean
distance, one should properly adjust the distance measure after each linear trans-
formation of the data. To be more precise, let the length of a vector x ∈ RD be
measured by

‖x‖2Σ
.= xTΣ−1x (4.2)

for some positive-definite symmetric matrix Σ ∈ RD×D. Notice that Σ = ID×D
corresponds to the Euclidean length. Then after a linear transformation, x′ = Ax
for some D ×D matrix A, the “induced” length of x′ is defined to be

‖x′‖2Σ′ = (x′)T (Σ′)−1x′ = (x′)T (AΣAT)−1x′ = xTΣ−1x. (4.3)

Thus, the induced length remains the same after the transformation.
Notice that the relationship between Σ and Σ′ = AΣAT is just like that

between the covariance matrices of two random vectors related by a linear trans-
formationA. Thus, the change of distance measure is equivalent to the assumption
that the original data {xi} are drawn from some probabilistic distribution. In the
context of data clustering, it is natural to further assume that the distribution itself

4.1. Statistical Methods for Data Clustering 95

is a mixture of n (Gaussian) distributions with different means and covariances:1

pj(x) ∼ N (µj ,Σj), j = 1, 2, . . . , n. (4.4)

Thus, the clustering problem becomes a statistical model estimation problem and
can be solved via statistical methods. We introduce below two such methods that
are based on two different estimation (and optimization) paradigms: 1. Minimax
estimate; 2. Maximum-likelihood estimate. In this section, we illustrate the basic
ideas using mixtures of Gaussians; but a discussion on more general cases can be
found in Appendix C.

4.1.1 K-Means

With respect to the above statistical model, a natural measure of the distance
between a sample point and the mean of a cluster is the Mahanalobis distance:

d(xi,µj)
.= ‖xi − µj‖2Σj

, (4.5)

which is proportional to the (negative) log-likelihood of the sample. The map c∗(·)
that represents an optimal clustering of the data {xi} minimizes the following
“within-cluster scatter”:

min
c(·)

w(c) .=
1
N

n∑
j=1

∑
c(i)=j

‖xi − µj‖2Σj
. (4.6)

That is, w(c) is a measure of the average distance of all the sample points to their
respective cluster means. Notice that the minimum value of w(c) decreases with
the increase of the number n of clusters. In the extreme case n = N , i.e., each
point is a cluster itself, we havew(c) = 0. Therefore, before conducting clustering
analysis, it is very important to know the correct value of n. We will discuss
methods to determine n in later chapters; in this chapter, we always assume the
correct cluster number n is known.

In the above objective w(c) (4.6), c(·), {µj}, and {Σj} are all unknown. The
problem is how to find the optimal c∗(·), µ∗j and Σ∗j so that w(c) is minimized.
Unfortunately, there is no closed-form solution to the optimal estimates. The main
difficulty is that the objective (4.6) is hybrid – it is a combination of minimization
on the continuous variables {µj ,Σj} and the discrete variable c(i). Conventional
nonlinear optimization techniques, such as gradient descent, do not directly apply
to this case. Hence special optimization schemes have to be developed.

Notice that for w(c) to be minimum, it is necessary that each point xi is as-
signed to the cluster whose mean is the closest to xi. That is, given {µj ,Σj}, we
have

c(i) = arg min
j
‖xi − µj‖2Σj

. (4.7)

1From the viewpoint of subspaces, here we try to fit the data with multiple zero-dimensional affine
spaces (or points) – one point (the mean) for each cluster. Later in this Chapter, we will see how to
generalize the cluster means from points to arbitrary (affine) subspaces.

96 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

Also, from the samples that belong to each cluster, we can obtain unbiased
estimates of the mean and covariance of the cluster:

µ̂j
.=

1
Nj

∑
c(i)=j

xi ∈ RD, Σ̂j
.=

1
Nj − 1

∑
c(i)=j

(xi−µ̂j)(xi−µ̂j)T ∈ RD×D,

(4.8)
where Nj is the number of points that are assigned to cluster j by the map c(·).

The above discussions have suggested the following two-step iterative process
for minimizing w(c).

Suppose that some initial estimates {µ̂(0)
j , Σ̂(0)

j } of the means are available.
Then we can easily minimize the objective (4.6) for c(i). That is, for each cluster
with the mean µ̂(0)

j and covariance Σ̂(0)
j , we obtain the subset of pointsX(0)

j that
are closer to µj than to any other means. The data set X is therefore segmented
into n clusters

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X

(0)
n , (4.9)

and we further require X(0)
j ∩X

(0)
j′ = ∅ for j 6= j′.2 In this way we obtain an

estimate of the map c(0)(·).
Knowing the membership of each point xi from the above segmentation, the

objective (4.6) can be rewritten as:
n∑
j=1

(
min
µj ,Σj

∑
c(0)(i)=j

‖xi − µj‖2Σj

)
. (4.10)

Notice that the solution to the minimization inside the bracket is an new set of
estimates of the mean and covariance:

µ̂
(1)
j =

1
Nj

∑
c(0)(i)=j

xi, Σ̂(1)
j =

1
Nj − 1

∑
c(0)(i)=j

(
xi − µ̂(1)

j

)(
xi − µ̂(1)

j

)T
.

These new means and covariances give a new value of the objective no larger than
that given by the initial estimates

{
µ̂

(0)
j , Σ̂(0)

j

}
.

We can further reduce the objective by re-classifying each data point xi to
its closest mean according to the new estimates

{
µ̂

(1)
j , Σ̂(1)

j

}
. In this way, we

obtain a new segmentation X = X
(1)
1 ∪X

(1)
2 ∪ · · · ∪X

(1)
n . If we keep iterating

between the above two steps, the objective will keep decreasing until its value
stabilizes to a (local) equilibrium and the segmentation no longer changes. This
minimization process is referred to as the K-means algorithm in the statistical-
learning literature. We summarize the algorithm as Algorithm 4.1.

Notice that Algorithm 4.1 can be significantly simplified if the Gaussian dis-
tributions are all isotropic, i.e., Σj = σ2

j I for some σ2
j ∈ R+, or all covariance

2If a point x ∈ X has the same minimal distance to more than one cluster, then we assign it
arbitrarily to one of them.

4.1. Statistical Methods for Data Clustering 97

Algorithm 4.1 (K-Means).

Given a set of sample points X = {xi}Ni=1, the number of clusters n, ini-
tialize the means and covariances of the clusters with a set of initial values
µ̂

(0)
j ∈ RD, Σ̂(0)

j ∈ RD×D, j = 1, 2, . . . , n.
Let m = 0.

1. Segmentation: For each point xi ∈X , assign it toX(m)
j if

j = c(i) = argmin
`=1,2,...,n

‖xi − µ̂(m)
` ‖2

Σ
(m)
`

. (4.11)

If the above cost function is minimized by more than one mean, assign the
point arbitrarily to one of them.

2. Estimation: Obtain new estimates for the n cluster means and covariances:

µ̂
(m+1)
j =

1
Nj

∑
c(m)(i)=j

xi,

Σ̂(m+1)
j =

1
Nj − 1

∑
c(m)(i)=j

(
xi − µ̂(m+1)

j

)(
xi − µ̂(m+1)

j

)T
.(4.12)

Letm← m+1, and repeat Steps 1 and 2 until the segmentation does not change.

matrices are equal to the identity matrix Σj ≡ I . In the latter case, one essen-
tially adopts the Euclidean distance between the sample points and the cluster
means. This special case is often referred to also as the “K-means” algorithm in
the literature.

4.1.2 Expectation Maximization (EM)

The K-means algorithm essentially relies on the minimax estimation paradigm
in statistics (see Appendix C) and it does not need to assume how exactly the
n component distributions are mixed. The Expectation Maximization (EM) al-
gorithm [Dempster et al., 1977] to be introduced below, however, relies on the
maximum-likelihood estimation paradigm (see Appendix C) and it does need an
explicit model for the mixed distribution. Instead of minimizing the modeling er-
ror in a least-distance sense, the EM algorithm estimates the model parameters
and the segmentation of the data in a maximum-likelihood (ML) sense. As we
shall soon see, the EM algorithm, though derived from a different set of assump-
tions, principles, and objectives, has an overall structure that resembles very much
that of the K-means algorithm.3

3This resemblance however should not be mistaken as excuses to confuse these two algorithms.
The solutions given by these two algorithms will be close but different in general.

98 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

A Probabilistic Model for a Mixed Distribution

The EM algorithm is based on the assumption that the given data points {xi}Ni=1

are independent samples from a (mixed) probabilistic distribution. In the context
of clustering analysis, it is reasonable to assume that xi are samples drawn from
multiple “component” distributions and each component distribution is centered
around a mean. To model from which component distribution a sample x is actu-
ally drawn, we can associate a latent discrete random variable z ∈ R to each data
point x, such that each discrete random variable zi = j if the point xi is drawn
from the jth component, i = 1, 2, . . . , N . Then the random vector

(x, z) ∈ RD × Z+ (4.13)

completely describes the random event that the point x is drawn from a
component distribution indicated by the value of z.

Typically, one assumes that the random variable z is subject to a multinomial
(marginal) distribution, i.e.,

p(z = j) = πj ≥ 0, s.t. π1 + π2 + · · ·+ πn = 1. (4.14)

Each component distribution is then modeled as a conditional distribution
p(x|z) of x given z. A popular choice for the component distribution is a mul-
tivariate Gaussian distribution: p(x|z = j) ∼ N (µj ,Σj), in which µj is the
mean and Σj is the covariance of the jth cluster.

The Maximum-Likelihood Estimation

In the model, the parameters θ .= {µj ,Σj , πj}nj=1 are unknown and they need
to be inferred from the samples of x. The marginal distribution of x given the
parameters is called the likelihood function, and is given by

p(x|θ) =
n∑
z=1

p(x|z, θ)p(z|θ) =
n∑
j=1

πjp(x|z = j, θ). (4.15)

Notice that p(x|θ) is a “mixture” of n distributions p(x|z = j, θ), j = 1, 2, . . . , n
that is exactly of the form (1.8) introduced in Chapter 1.

Given N i.i.d. samples X = {xi}Ni=1 from the distribution, the optimal
estimates of the parameters θ̂ML are given by maximizing the log-likelihood
function

l(X; θ) .=
N∑
i=1

log p(xi|θ). (4.16)

In the statistical learning literature, this objective is often referred to as the
incomplete log-likelihood function – “incomplete” compared to the complete log-
likelihood function to be introduced later. However, maximizing the incomplete
log-likelihood with respect to the parameters θ is typically very difficult, because
this is a very high-dimensional nonlinear optimization problem. This is the moti-
vation for the expectation maximization (EM) process which utilizes the latent

4.1. Statistical Methods for Data Clustering 99

random variable z introduced earlier to attempt to simplify the maximization
process.

Derivation of the Expectation and Maximization

First notice p(x|θ) = p(x, z|θ)/p(z|x, θ) and
∑
j p(z = j|x, θ) = 1. We can

rewrite the (incomplete) log-likelihood function as

l(X; θ) =
N∑
i=1

n∑
j=1

p(zi = j|xi, θ) log
p(xi, zi = j|θ)
p(zi = j|xi, θ)

(4.17)

=
N∑
i=1

n∑
j=1

p(zi = j|xi, θ) log p(xi, zi = j|θ) (4.18)

−
N∑
i=1

n∑
j=1

p(zi = j|xi, θ) log p(zi = j|xi, θ). (4.19)

The first term (4.18) is called the expected complete log-likelihood function
in the statistical learning literature;4 and the second term (4.19) is the condi-
tional entropy5 of zi given xi and θ. Hence, the maximum-likelihood estimation
is equivalent to maximizing the expected log-likelihood and at the same time
minimizing the conditional entropy of zi.

Given each xi, we can define a new function wij(θ)
.= p(zi = j|xi, θ). By

replacing w(θ) = {wij(θ)} into the incomplete log-likelihood, we can view
l(X; θ) as a new function

l(X; θ) .= g(w(θ), θ). (4.20)

Instead of directly maximizing the l(X; θ) with respect to θ, we may maximize
g(w(θ), θ) in a “hill-climbing” style by iterating between the following two steps:

Step 1. partially maximizing g(w(θ), θ) with respect tow(θ) with θ (the second
argument) fixed;

Step 2. partially maximizing g(w(θ), θ) with respect to the second θ with w(θ)
fixed (to the value obtained from Step 1.)

Notice that at each step the value of g(w(θ), θ) does not decrease, so neither does
that of l(X; θ). When the iteration converges to a stationary point θ∗, it must be
a (local) extremum for the function l(X; θ). To see this, examine the equation

dl(X; θ)
dθ

=
∂g(w, θ)
∂w

∂w(θ)
∂θ

+
∂g(w, θ)
∂θ

. (4.21)

4That is, it is the expected value of the complete log-likelihood log p(x, z|θ) of the “complete”
random vector (x, z) with respect to the distribution of (z|x, θ).

5The entropy of a (discrete) random variable z is defined to be H(z)
.
=
P
j p(z = j) log p(z =

j).

100 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

Since θ∗ must be a stationary point for each step, we have ∂g(w,θ)
∂w

∣∣∣
θ∗

= 0 and
∂g(w,θ)
∂θ

∣∣∣
θ∗

= 0. Therefore, dl(X;θ)
dθ

∣∣∣
θ∗

= 0.
As we have alluded to earlier, the main reason for choosing this alternative max-

imization is that, for the log-likelihood function of a mixture of distributions, each
of these two steps of maximizing g are much easier to compute than directly maxi-
mizing the original log-likelihood function. In fact, for Gaussian distributions, one
can often find closed-form solutions to each step.
E-Step: Expected Membership of Samples. To find the optimal ŵ = {ŵij} that
maximize g(w, θ), we need to maximize the function

max
w

g(w, θ) =
N∑
i=1

n∑
j=1

wij log p(xi, zi = j|θ)−
N∑
i=1

n∑
j=1

wij logwij (4.22)

with respect to w subject to the constraints
∑
j wij = 1 for every i. For this

purpose, we have the following statement.

Proposition 4.2 (Expected Membership). The optimal ŵ that partially maximizes
g(w, θ) is given by:

ŵij =
πjp(xi|zi = j, θ)∑n
`=1 π`p(xi|zi = `, θ)

. (4.23)

Proof. Using the Lagrange multipliers method, we differentiate the objective
function
N∑
i=1

n∑
j=1

(
wij log p(xi, zi = j|θ)−wij logwij

)
+

N∑
i=1

λi

(n∑
j=1

wij−1
)
. (4.24)

with respect to wij and set the derivatives to zero. We obtain the necessary
conditions for extrema:

log p(xi, zi = j|θ)− logwij − 1 + λi = 0 (4.25)

for every i and j. Solving for wij from this equation, we obtain:

wij = eλi−1p(xi, zi = j|θ). (4.26)

Since
∑
j wij = 1, we have eλi−1 =

(∑
` p(xi, zi = `|θ)

)−1
. In addition,

p(xi, zi = j|θ) = p(xi|zi = j, θ)p(zi = j|θ) = πjp(xi|zi = j, θ).

We hence have the claim of the proposition.

M-Step: Maximize the Expected Complete Log-Likelihood. Now we consider
the second step in which we fix w and maximize g(w, θ) with respect to θ. This
means we fix wij = p(zi = j|xi, θ) in the expression of l(X; θ). The second
term (4.19) of l(X; θ) is therefore fixed as far as this step is concerned. Hence it
is equivalent to maximizing the first term (4.18), the so-called expected complete

4.1. Statistical Methods for Data Clustering 101

log-likelihood:

L(X; θ) .=
N∑
i=1

n∑
j=1

wij log
(
πjp(xi|zi = j, θ)

)
. (4.27)

For many common choices of the distributions p(x|z = j, θ), we can find closed-
form solutions to maximize L(X; θ).

For simplicity, in the clustering analysis, we may assume that each cluster is
an isotropic normal distribution, i.e., p(x|z = j, θ) = N (µj , σ2

j I). Maximizing
L(X; θ) is then equivalent to maximizing the function

N∑
i=1

n∑
j=1

wij

(
log πj −D log σj −

‖xi − µj‖2

σ2
j

)
, (4.28)

where we have omitted terms that depend on only the fixed wij and constants.
The goal of maximization is to find the parameters θ̂ = {(µ̂j , σ̂j , π̂j)}nj=1

that maximize the above expression. Since
∑n
j=1 πj = 1, this is a constrained

optimization problem, which can be solved in closed-form using the Lagrange-
multiplier method. We here give below the formulae but leave the derivation to
the reader as an exercise (see Exercise 4.2):

µ̂j =
∑N
i=1 wijxi∑N
i=1 wij

, σ̂2
j =

∑N
i=1 wij‖xi − µ̂j‖2

D
∑N
i=1 wij

, π̂j =
∑N
i=1 wij
N

. (4.29)

We summarize the above results as Algorithm 4.2.
Instead of using a deterministic map to assign each point xi to a cluster (as

in the K-means algorithm 4.1, where j = c(i)), the EM algorithm assigns the
point xi “softly” to each cluster according to a set of probabilities {wij} (that
are subject to

∑n
j=1 wij = 1). Subsequently, the number of points Nj in the jth

cluster is expected to be
∑N
i=1 wij ; the ratio Nj

N is expected as
PN

i=1 wij

N ; and the
means µj in (4.12) are replaced by an expected version in (4.31). In general, if
the variances σj are significantly smaller than the distances between the means
µj , the K-means and EM algorithms give similar clustering results.

From the above derivation, each step of the EM algorithm increases the log-
likelihood function l(X; θ). However, beware that a stationary value θ∗ that the
algorithm converges to is not necessarily the global maximum (if the global
maximum exists at all). Furthermore, for distributions as simple as a mixture of
Gaussian distributions, the global maximum may not even exist! We illustrate this
via the following example.

Example 4.3 (ML Estimate of Two Mixed Gaussians [Vapnik, 1995]). Consider a
distribution p(x), x ∈ R that is a mixture of two Gaussian (normal) distributions:

p(x, µ, σ) =
1

2σ
√

2π
exp


− (x− µ)2

2σ2

ff
+

1

2
√

2π
exp


−x

2

2

ff
, (4.32)

where θ = (µ, σ) are unknown.

102 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

Algorithm 4.2 (Expectation Maximization).

Given a set of sample points X = {xi}Ni=1 ⊂ RD drawn from n (isotropic)
Gaussian clusters N (µj , σ2

j I), j = 1, 2, . . . , n, initialize the parameters θ =

{µj , σj , πj} with a set of vectors µ̂(0)
j ∈ RD and scalars σ̂(0)

j , π̂
(0)
j ∈ R.

Let m = 0.

1. Expectation: Using the current estimate for the parameters θ̂(m) ={
µ̂

(m)
j , σ̂

(m)
j , π̂

(m)
j

}
, compute the estimate of wij as

w
(m)
ij = p(zi = j|xi, θ̂(m)) =

π̂
(m)
j p(xi|zi = j, θ̂(m))∑n

`=1 π̂
(m)
` p(xi|zi = `, θ̂(m))

, (4.30)

where p(x|z = j, θ) is given in (4.39).

2. Maximization: Using the estimated w
(m)
ij , update the estimates for the

parameters µ̂j , σ̂j as:

µ̂
(m+1)
j =

∑N
i=1 w

(m)
ij xi∑N

i=1 w
(m)
ij

,
(
σ̂

(m+1)
j

)2 =

∑N
i=1 w

(m)
ij

∥∥xi − µ̂(m+1)
j

∥∥2

D
∑N
i=1 w

(m)
ij

,

(4.31)

and update π̂j as π̂(m+1)
j =

PN
i=1 w

(m)
ij

N .

Let m ← m + 1, and repeat Steps 1 and 2 until the update in the parameters is
small enough.

Then for any data X = {x1, x2, . . . , xN} and for any given constant A > 0, there
exists a small σ0 such that for µ = x1 the log-likelihood will exceed A (regardless of the
true µ, σ):

l(X; θ)
˛̨
µ=x1,σ=σ0

=

NX
i=1

ln p(xi | µ = x1, σ = σ0)

> ln

„
1

2σ0

√
2π

«
+

NX
i=2

ln

„
1

2
√

2π
exp


−x

2
i

2

ff«

= − lnσ0 −
NX
i=1

x2
i

2
−N ln 2

√
2π > A.

Therefore, the maximum of the log-likelihood does not exist, and the ML objective does
not provide a solution to estimating the unknown parameters. In fact, in this case, the true
parameter corresponds to the largest (finite) local maximum of the log-likelihood.

From the simple example, we can conclude that the ML method only applies to
very restrictive set of densities.6 If we insist using it for mixtures of Gaussians, we
have to rule out the situations that the variance can be arbitrarily small, i.e., σ0 →

6For instance, a class of density functions that are bounded by a common finite value from above.

4.2. Subspace-Segmentation Algorithms 103

0. Fortunately, in practice, the EM algorithm typically tends to avoid such singular
directions and is able to converge to a local maximum that represents the true
parameters if a reasonable initialization is given. However, this leads to another
potential problem: What if the distributions to be estimated are indeed close to
being singular? This is unfortunately the case with subspace-like distributions.7

Thus, singular distributions like subspaces require special treatment.
Also notice that the above K-means and EM algorithms are derived mainly

for isotropic Gaussian distributions. In practice, a cluster is rarely isotropic. For
instance, as we have seen in PCA, a cluster can be a set of points sampled from a
principal subspace. For the above reasons, in the next two sections of this chapter
(Section 3.1 and 4.2), we will extend the basic ideas of K-means and EM to the
case in which clusters are subspaces.

4.2 Subspace-Segmentation Algorithms

In this section, we generalize the K-means and EM algorithms to estimate ar-
rangements of principal subspaces and cluster points into subspaces. They can
both be viewed as certain extension of PCA to multiple principal subspaces.
Both algorithms assume that the number of subspaces n and their dimensions
dj , j = 1, 2, . . . , n are known. They estimate a basis for each subspace and the
segmentation of the data by optimizing certain objective functions, namely the
least-squares error in the geometric setting or the log-likelihood in the statistical
setting. Since the optimal solution is normally not available in closed-form, the
optimization problem is solved by iterating between the segmentation of the data
points and the estimation of the subspace bases, starting from an initial guess for
the subspace bases.

The following sections give a detailed description of both algorithms tailored
to Problem 3.1. The goal is to reveal the similarity and difference between these
two algorithms as well as their advantages and disadvantages.

4.2.1 K-Subspaces

If the number of subspaces n and their dimensions dj , j = 1, 2, . . . , n are known,
then the problem of fitting multiple subspaces to the data is to find orthogonal
matrices Uj , j = 1, 2, . . . , n of dimension D × dj such that

∀i ∃j such that xi = Ujyi, (4.33)

where i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , n}. Once the assignment map c(i) =
j is found for each point xi, yi is simply given by yi = UTc(i)xi. When xi is

7A subspace-like distribution is one that has large variance inside the subspace but very small
(close to singular) variance in directions orthogonal to the subspace.

104 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

at the intersection of two subspaces, the solution for c(i) and therefore yi is not
unique. In this case, we arbitrarily choose one of the possible solutions.

In case the given points are corrupted by noise, we expect that the model param-
eters be found in a least-squares sense by minimizing the modeling error between
xi and its closest projection onto the subspaces:

min
{Uj}

N∑
i=1

min
j

∥∥xi − UjUTj xi∥∥2
, (4.34)

where Uj is aD×dj orthogonal matrix that represents a basis for the jth subspace
Sj , j = 1, 2, . . . , n. Unfortunately, unlike PCA, there is no constructive solution
to the above minimization problem. The main difficulty is that the foregoing ob-
jective of (4.34) is hybrid – it is a combination of minimization on the continuous
variables {Uj} and the discrete variable j. Conventional nonlinear optimization
techniques, such as gradient descent, do not directly apply to this case. Hence
special optimization schemes have to be developed. For that purpose, we need
to examine more closely the relationships between the two minimizations in the
above objective function.

Suppose that some initial estimates Û (0)
1 , Û

(0)
2 , . . . , Û

(0)
n of the subspaces are

available. Then we can easily minimize the objective (4.34) for j. That is, for each
subspace Sj defined by Û (0)

j , we obtain the subset of points X(0)
j that are closer

to Sj than to any other subspace. The data set X is therefore segmented into n
groups

X = X
(0)
1 ∪X

(0)
2 ∪ · · · ∪X

(0)
n , (4.35)

and we further requireX(0)
i ∩X

(0)
j = ∅ for i 6= j.8

Knowing the membership of each point xi from the above segmentation, the
objective (4.34) can be rewritten as:

n∑
j=1

(
min
Uj

∑
xi∈X(0)

j

∥∥xi − UjUTj xi∥∥2
)
. (4.36)

Notice that the minimization inside the bracket is exactly the same as the mini-
mization in (2.22). Consequently, we have solved this problem in Theorem 2.2 for
PCA. We can therefore apply PCA to each group of points

{
X

(0)
j

}
to obtain new

estimates for the bases
{
Û

(1)
j

}
. Such estimates give a modeling error no larger

than the error given by the initial estimates
{
Û

(0)
j

}
.

We can further reduce the modeling error by re-assigning each data point xi
to its closest subspace according to the new estimates

{
Û

(1)
j

}
. In this way, we

obtain a new segmentation X = X
(1)
1 ∪X

(1)
2 ∪ · · · ∪X

(1)
n . If we keep iterating

8If a point x ∈ X has the same minimal distance to more than one subspace, then we assign it to
an arbitrary subspace.

4.2. Subspace-Segmentation Algorithms 105

between the above two steps, the modeling error will keep decreasing until its
value stabilizes to a (local) equilibrium and the segmentation no longer changes.
This minimization process is in essence an extension of the K-means algorithm to
subspaces. We summarize the algorithm as Algorithm 4.3.

Algorithm 4.3 (K-Subspaces: K-Means for Subspace Segmentation).

Given a set of noisy sample points X = {xi}Ni=1 drawn from n subspaces with
the dimensions dj , j = 1, 2, . . . , n, initialize the bases of the subspaces with a set
of orthogonal matrices Û (0)

j ∈ RD×dj .
Let m = 0.

1. Segmentation: For each point xi ∈X , assign it toX(m)
j if

j = arg min
`=1,...,n

∥∥xi − Û (m)
`

(
Û

(m)
`

)T
xi
∥∥2
.

If the above cost function is minimized by more than one subspace, assign
the point arbitrarily to one of them.

2. Estimation: Apply PCA to each subset X(m)
j using Theorem 2.2 and

obtain new estimates for the subspace bases

Û
(m+1)
j = PCA

(
X

(m)
j

)
, j = 1, 2, . . . , n.

Letm← m+1, and repeat Steps 1 and 2 until the segmentation does not change.

4.2.2 Expectation Maximization for Subspaces

To apply the EM method in Section 4.1.2 to subspaces, we need to assume a
statistical model for the data. Following the general setting in Section 4.1.2, it
is reasonable to assume that the data points X = {xi}Ni=1 are samples drawn
from multiple component distributions and each component distribution is cen-
tered around a subspace. To model from which component distribution a sample
x is actually drawn, we again associate a latent discrete random variable z ∈ R
to every data point x, where each discrete random variable zi = j if the point xi
is drawn from the jth component, i = 1, 2, . . . , N .

To model the fact that each component distribution has a principal subspace,
say spanned by the columns of an orthogonal matrix Uj ∈ RD×dj , we may
assume that the jth component distribution is a special Gaussian distribution
determined by the following equation:

x = Ujy +Bjs, (4.37)

where the orthogonal matrix Bj ∈ RD×(D−dj) is the orthogonal complement to
the orthogonal matrix Uj ∈ RD×dj , and y ∼ N (0, σ2

yI) and s ∼ N (0, σ2
j I). If

106 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

we further assume that y and s are independent random variables, then we have

Σ−1
j = σ−2

y UjU
T
j + σ−2

j BjB
T
j . (4.38)

The term Bjs models the projection error of x onto the subspace spanned by
Uj . For x to be close to the subspace, one may assume σ2

j � σ2
y . Therefore,

when σ2
y →∞, we have Σ−1

j → σ−2
j BjB

T
j . In the limiting case, one essentially

assumes a uniform distribution for y inside the subspace. The uniform assumption
suggests that we do not care much about the distribution of the data inside the
subspace – it is the subspace itself in which we are interested. Technically, this
assumption also helps eliminate additional parameters so that the ML method
may better avoid the difficulty shown in Example 4.3. In practice, this assumption
is approximately valid as long as the variance of the data inside the subspace is
significantly larger than that outside the subspace.

Therefore, in the sequel, we will adopt the limiting case as our probabilistic
model for the derivation of the EM algorithm and derive closed-form formulae for
the two steps of the EM algorithm. More precisely, we assume the distributions
are

p(x|z = j) .=
1

(2πσ2
j)(D−dj)/2

exp
(
−
xTBjB

T
j x

2σ2
j

)
. (4.39)

In the model, the parameters θ .= {Bj , σj , πj}nj=1 are unknowns and they need
to be inferred from the samples of x. The likelihood function (which is given by
the marginal distribution of x given the parameters) is

p(x|θ) =
n∑
z=1

p(x|z, θ)p(z|θ)

=
n∑
j=1

πj
(2πσ2

j)(D−dj)/2
exp

(
−
xTBjB

T
j x

2σ2
j

)
. (4.40)

Then given the N samplesX = {xi}, estimates of the parameters θ̂ML are given
by maximizing the log-likelihood function

l(X; θ) .=
N∑
i=1

log p(xi|θ) (4.41)

=
N∑
i=1

log
[n∑
j=1

πj
(2πσ2

j)(D−dj)/2
exp

(
−
xTi BjB

T
j xi

2σ2
j

)]
.(4.42)

Again, this is in general a difficult high-dimensional optimization problem. Thus,
we can apply the Expectation Maximization method introduced in Section 4.1.2.
All the analysis in Section 4.1.2 directly applies to this new log-likelihood func-
tion except that in the M-Step, under the new probabilistic model, the new

4.2. Subspace-Segmentation Algorithms 107

expected complete log-likelihood L(X; θ) becomes

N∑
i=1

n∑
j=1

wij

(
log πj − (D − dj) log σj −

‖BTj xi‖2

2σ2
j

)
, (4.43)

where, as before, we have omitted terms that depend on only the fixed wij and
constants. The goal now is to find the parameters θ̂ = {(B̂j , σ̂j , π̂j)}nj=1 that
maximize the above expected complete log-likelihood. Since BTj Bj = I and∑n
j=1 πj = 1, this is again a constrained optimization problem, whose solutions

are given by the following proposition.

Proposition 4.4 (Maximum of the Expected Complete Log-Likelihood). The
parameters θ̂ = {B̂j , σ̂j , π̂j}nj=1 that maximize the expected complete log-
likelihood function (4.43) are: B̂j are exactly the eigenvectors associated with
the smallest D − dj eigenvalues of the weighted sample covariance matrix
Σ̂j

.=
∑N
i=1 wijxix

T
i , and πj and σ2

j are

π̂j =
∑N
i=1 wij
N

, σ̂2
j =

∑N
i=1 wij‖B̂Tj xi‖2

(D − dj)
∑N
i=1 wij

. (4.44)

Proof. The part of objective function associated with the bases {Bj} can be
rewritten as

N∑
i=1

n∑
j=1

−wij
‖BTj xi‖2

2σ2
j

=
n∑
j=1

−trace
(
BTj Σ̂jBj

2σ2
j

)
, (4.45)

where Σ̂j =
∑N
i=1 wijxix

T
i . Differentiating the Lagrangian associated with Bj

and setting the derivatives to zero, we obtain the necessary conditions for extrema:
n∑
j=1

−trace
(
BTj Σ̂jBj

2σ2
j

)
+ trace

(
Λj(BTj Bj − I)

)
⇒ Σ̂jBj = 2σ2

jBjΛj ,

where Λj is a matrix of Lagrangian multipliers. Since BTj Bj = I , the objec-
tive function for Bj becomes −

∑n
j=1 trace(Λj). Thus B̂j can be obtained as the

matrix whose columns are the eigenvectors of Σ̂j associated with the (D − dj)
smallest eigenvalues.

From the Lagrangian associated with the mixing proportions {πj}, we have

min
N∑
i=1

n∑
j=1

wij log(πj) + λ
(

1−
n∑
j=1

πj

)
⇒ π̂j =

∑N
i=1 wij
N

. (4.46)

Finally, after taking the derivative of the expected log-likelihood with respect to
σj and setting it to zero, we obtain

σ̂2
j =

∑N
i=1 wij‖B̂Tj xi‖2

(D − dj)
∑N
i=1 wij

. (4.47)

108 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

We summarize the above results as Algorithm 4.4.

Algorithm 4.4 (EM for Subspace Segmentation).

Given a set of sample pointsX = {xi}Ni=1 ⊂ RD, the number of subspaces n and
the dimensions dj , initialize the parameters θ = {Bj , σj , πj} with a set of initial
orthogonal matrices B̂(0)

j ∈ RD×(D−dj) and scalars σ̂(0)
j , π̂

(0)
j , j = 1, 2, . . . , n.

Let m = 0.

1. Expectation: Using the current estimate for the parameters θ̂(m) ={
B̂

(m)
j , σ̂

(m)
j , π̂

(m)
j

}
, compute the estimate of wij as

w
(m)
ij = p(zi = j|xi, θ̂(m)) =

π̂
(m)
j p(xi|zi = j, θ̂(m))∑n

`=1 π̂
(m)
` p(xi|zi = `, θ̂(m))

, (4.48)

where p(x|z = j, θ) is given in (4.39).

2. Maximization: Using the estimated w(m)
ij , compute B̂(m+1)

j as the eigen-
vectors associated with the smallest D − dj eigenvalues of the matrix
Σ̂(m)
j

.=
∑N
i=1 w

(m)
ij xix

T
i , and update π̂j and σ̂j as:

π̂
(m+1)
j =

∑N
i=1 w

(m)
ij

N
,
(
σ̂

(m+1)
j

)2 =

∑N
i=1 w

(m)
ij

∥∥(B̂(m+1)
j

)T
xi
∥∥2

(D − dj)
∑N
i=1 w

(m)
ij

.

(4.49)

Let m ← m + 1, and repeat Steps 1 and 2 until the update in the parameters is
small enough.

4.2.3 Relationships between K-Subspaces and EM

As we have seen in the above, both K-subspaces and EM are algorithms that can
be used to analyze arrangements of principal subspaces and fit multiple subspaces
to a given set of data points. Both algorithms optimize their objectives via an
iterative scheme. The overall structure of the two algorithms is also very much
similar: the “Segmentation” step in K-subspaces is replaced by the “Expectation”
step in EM; and “Estimation” by “Maximization”.

In addition to the structural similarity, there are also subtle technical relation-
ships between the two steps of K-subspaces and EM. To see this, let us further
assume that in the EM algorithm, the noise has the same variance for all the sub-
spaces (i.e., σ = σ1 = · · · = σn). According to equation (4.45), the EM algorithm
updates the estimates for the subspaces in the “Maximization” step by minimizing

4.2. Subspace-Segmentation Algorithms 109

the objective function:

min
{Bj}

N∑
i=1

n∑
j=1

wij
∥∥BTj xi∥∥2 = min

{Uj}

N∑
i=1

n∑
j=1

wij
∥∥xi − UjUTj xi∥∥2

, (4.50)

where the equality is due to the identityBjBTj = I−UjUTj . For EM, the weights
wij are computed from the “Expectation” step as the expected membership of
xi in the subspaces j according to the equation (4.23), and wij in general take
continuous values between 0 and 1. For K-subspaces, however, wij is a discrete
variable and it is computed in the “Segmentation” step as (see Algorithm 4.3):

wij =

{
1 if j = arg min`=1,...,n ‖BT` xi‖2,
0 otherwise.

(4.51)

Then the objective function (4.50) can be rewritten as:

min
{Uj}

N∑
i=1

n∑
j=1

wij
∥∥xi − UjUTj xi∥∥2 = min

{Uj}

N∑
i=1

min
j

∥∥xi − UjUTj xi∥∥2
, (4.52)

which is exactly the same objective function (4.34) for K-subspaces. This is also
the reason why both K-subspaces and EM rely on the eigenvalue decomposition
(or singular value decomposition) of the sample covariance matrix to estimate the
basis for each subspace.

Based on the above analysis, the only conceptual difference between the K-
subspaces and EM algorithm is: At each iteration, the K-subspaces algorithm
gives a “definite” assignment of every data point into one of the subspaces; but the
EM algorithm views the membership as a random variable and uses its expected
value to give a “probabilistic” assignment of the data point. Because of this differ-
ence, for the same set of data points, the “subspaces” found by using K-subspaces
and EM will in general be different, although normally the difference is expected
to be small. A precise quantitative characterization of the difference between the
solutions by K-subspaces and EM remains an open question. Also because of this
difference, the K-subspaces algorithm is less dependent on the correct knowledge
of the dimension of each subspace: As long as the initial subspaces may segment
the data well enough, both the basis and the dimension of each subspace can be
updated at the Estimation step. However, the EM algorithm, at least for the ver-
sion we presented above, depends explicitly on correct knowledge in both the
number of subspaces and their dimensions. In addition, both algorithms require a
good initialization so that they are more likely to converge to the optimal solution
(e.g., the global maximum of the log likelihood) when the iteration stabilizes. In
the next chapter, we will show how these difficulties can be resolved by a new
algebraic method for identifying arrangements of principal subspaces.

110 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

4.3 Relationships between GPCA, K-Subspaces, and
EM

In Section 4.2.3, we have discussed the relationships between K-subspaces and
EM. In this section, we reveal their relationships with GPCA through the special
case of hyperplane arrangements. Let bj be the normal vectors to an arrangement
of hyperplanes Sj , j = 1, 2, . . . , n, respectively.

We know from Chapter 4 that, under reasonable assumptions, both the
K-subspaces and the EM methods minimize an objective of the form

min
{bj}

N∑
i=1

n∑
j=1

wij
∥∥bTj xi∥∥2

. (4.53)

In the case of K-subspaces, wij is a “hard” assignment of xi to the subspaces:
wij = 1 only if xi ∈ Sj and 0 otherwise. The above objective function becomes
exactly the geometric modeling error. In the case of EM, wij ∈ [0, 1] is the prob-
ability of the latent random variable zi = j given xi. Then wij plays the role as a
“soft” assignment of xi to group j.

Following the same line of reasoning, we can replace wij with an even “softer”
assignment of membership:

wij
.=

1
n

∏
l 6=j

∥∥bTl xi∥∥2 ∈ R. (4.54)

Notice that, in general, the value of wij is large when xi belongs to (or is close to)
Sj , and the value is small when xi belongs to (or is close to) any other subspace.
With this choice of wij , the objective function becomes

min
{bj}

N∑
i=1

n∑
j=1

(1
n

∏
l 6=j

∥∥bTl xi∥∥2
)∥∥bTj xi∥∥2 =

N∑
i=1

n∏
j=1

∥∥bTj xi∥∥2
. (4.55)

This is exactly the objective function that all the algebraic methods are based
upon. To see this, notice that

N∑
i=1

n∏
j=1

∥∥bTj xi∥∥2 =
N∑
i=1

pn(xi)2 =
N∑
i=1

(
cTnνn(xi)

)2
. (4.56)

Not so surprisingly, we end up with a “least-squares like” formulation in terms
of the embedded data νn(x) and the coefficient vector cn. Notice that the above
objective function can be rewritten as

N∑
i=1

(
cTnνn(xi)

)2 =
∥∥V n(D)cn

∥∥2
. (4.57)

The least-squares solution of cn is exactly given by the eigenvector associated
with the smallest eigenvalue of the matrix V n(D).

4.4. Bibliographic Notes 111

The K-subspaces or EM methods minimizes its objective iteratively using bj
computed in the previous iteration. However, one key observation in the GPCA
algorithm is that the derivative of the vanishing polynomial pn(x) = cTnνn(x)
at the sample points provide information about the normal vectors bj . Therefore,
the GPCA algorithm does not require initialization and iteration but still achieves
a goal similar to that of K-subspaces or EM.

4.4 Bibliographic Notes

When the data points lie on an arrangement of subspaces, the modeling problem
was initially treated as “chicken-and-egg” and tackled with iterative methods,
such as the K-means and EM algorithms. The basic ideas of K-means cluster-
ing goes back to [Lloyd, 1957, Forgy, 1965, Jancey, 1966, MacQueen, 1967]. Its
probabilistic counterpart, the Expectation Maximization (EM) algorithm is due
to [Dempster et al., 1977]. See Appendix A for a more general review. For a more
thorough and complete exposition of EM, one may refer to [Neal and Hinton,
1998] or the book of [McLanchlan and Krishnan, 1997].

In [Tipping and Bishop, 1999a], the classical PCA has been extended to the
mixtures of probabilistic PCA, and the maximum-likelihood solution was recom-
mended to be found by the EM algorithm too. The classical K-means algorithm
was also extended to the case of subspaces, called K-subspace [Ho et al., 2003].
Some other algorithms such as the subspace growing and the subspace selec-
tion algorithm [Leonardis et al., 2002] were also proposed in different contexts.
Unfortunately, as we have alluded to above, iterative methods are sensitive to ini-
tialization, hence they may not converge to the global optimum. This has severely
limited the performance and generality of such methods in solving practical prob-
lems in computer vision or image processing [Shi and Malik, 1998, Torr et al.,
2001]. Thus, in the next chapter, we will change the tools a little bit and seek for
alternative solutions to the subspace segmentation problem.

4.5 Exercises

Exercise 4.1 (K-Means for Image Segmentation). K-means is a very useful and simple
algorithm for many practical problems that require clustering multivariate data. In this
exercise, implement the K-means algorithm 4.1 and apply it to the segmentation of color
(RGB) images. Play with the number of segments and the choice of the window size (i.e.,
instead of using only the RGB values at the pixel, use also the RGB values of a window of
surrounding pixels).

Exercise 4.2 (Maximizing the Expected Log-Likelihood of Gaussians). Show that
the formulae given in equation (4.29) are the solutions for maximizing the expected
log-likelihood L(X; θ) (4.27) for isotropic Gaussian distributions p(x|z = j, θ) =
N (µjσ

2
j I).

112 Chapter 4. Iterative Methods for Multiple-Subspace Segmentation

Exercise 4.3 (Two Subspaces in General Position). Consider two linear subspaces of
dimension d1 and d2 respectively in RD . We say they are in general position if an arbitrary
(small) perturbation of the position of the subspaces does not change the dimension of their
intersection. Show that two subspaces are in general position if and only if

dim(S1 ∩ S2) = min{d1 + d2 −D, ; 0}. (4.58)

Exercise 4.4 (Segmenting Three Planes in R3). Customize and implement (in MATLAB)
the K-subspaces algorithm 4.3 and the EM-algorithm 4.4 for the purpose of segmenting
three planes in R3. Randomly generate three subspaces and draw a number of (say uni-
formly distributed) sample points on the planes. Use the algorithms to segment the samples.
Play with the level of noise (added to the samples) and the number of random initializations
of the algorithm.

This is page 113
Printer: Opaque this

Chapter 5
Agglomerative Methods for
Multiple-Subspace Segmentation

“The sciences do not try to explain, they hardly even try to inter-
pret, they mainly make models. By a model is meant a mathematical
construct which, with the addition of certain verbal interpretations,
describes observed phenomena. The justification of such a mathe-
matical construct is solely and precisely that it is expected to work.”

– John von Neumann

So far, we have introduced several methods for estimation and segmentation of
multiple subspaces, utilizing either statistical or algebraic techniques. A common
assumption behind these approaches is that a good estimate of the underlying
mixture models is necessary for the segmentation of the data. The goodness of
the segmentation relies on how good the estimate is. In the literature, there is yet
another spectrum of data clustering algorithms that follow different set of cri-
teria and do not explicitly cast the segmentation problem as model estimation,
those as known as the agglomerative methods [?]. In this chapter, we introduce a
new agglomerative algorithm for clustering mixed data drawn from multiple sub-
spaces. We use this algorithm to establish some fundamental connections between
the statistical and algebraic approaches studied separately in earlier chapters, or
more specifically, between (almost degenerate) Gaussian distributions and (linear)
subspaces.

In addition, the rationale behind this new algorithm will offer new perspectives
on some fundamental issues that have not been addressed by either of the previous
approaches:

114 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

1. In what sense the segmented data is better than the original data set, or in
other words, how should we measure the “gain” or “loss” of segmentation?

2. For a given data set, how do we automatically determine the optimal
number of subspaces, as well as their dimensions?

To answer either question, we need a measure for the segmented data (and the
resulting model) so as to tell one segmentation is better or worse than another.
Towards the end of the previous chapter, we have introduced the notion of “effec-
tive dimension” as a measure of goodness for the segmented data and the resulting
model. Essentially, it uses the total number of real coefficients needed to represent
both the data and the model. One may argue that such a measure is rather coarse:
For instance, it does not depend on the magnitude of the coefficients.

Thus, in this chapter, we study a more accurate measure which is supposed to
be more physically meaningful: the number of binary bits needed to represent the
segmented data. Therefore, a better segmentation means a shorter length of binary
code for storing the data set on a digital computer. In fact, this is closely related to
using the maximum likelihood (ML) criterion for estimating a model for the data.
To see this, consider a set of data X = (x1,x2, . . . ,xN) drawn from a mixture
of distributions: p(x|θ, π) .=

∑n
j=1 πjpj(x|θj). The maximum likelihood (ML)

estimate is:

(θ̂, π̂)ML = arg max
θ,π

N∑
i=1

log p(xi|θ, π). (5.1)

The ML criterion is equivalent to minimizing the negated log-likelihood:∑
i− log p(xi|θ, π), which is the expected coding length required to store the

data using the optimal Shannon coding scheme for the distribution p(x|θ̂, π̂)
[Cover and Thomas, 1991]. By law of large numbers, we know the quantity
1
N

∑
i− log p(xi|θ, π) converges to the entropy of the distribution

H(x|θ, π) .=
∫
−p(x|θ, π) log p(x|θ, π) dx. (5.2)

However, the optimal coding length, or entropy, requires precise knowledge of
the distribution p(·) while in reality only a finite number of samples are directly
accessible. As we have seen in previous chapters, inferring the (mixture) distribu-
tion from the samples can be a rather difficult problem itself because we typically
have to deal with a nonlinear and singular maximum likelihood function. Thus,
the goal of this chapter is to seek for a good “surrogate” for the optimal Shannon
coding length for the mixed data.

This leads to the question “what constitutes as a good surrogate?” Clearly, a
good surrogate should be easily computable directly from the given sample data.
The coding length given by the surrogate should be a close approximation to the
minimum coding length required for the given sample data and converges asymp-
totically to the optimal coding length when the number of samples goes to infinity.
Many non-parametric approximations of the distribution from the samples can be

5.1. Basic Ideas and Algorithm 115

used to construct such a surrogate. Here we actually can do much better since we
are dealing with subspaces or Gaussians, not an arbitrary distribution. For data
drawn from this special class of models, we can obtain a close-form formula that
gives an accurate estimate for the coding length.

Once we are able to accurately evaluate the coding length of any data set, we
can decide whether a particular segmentation (or clustering) of the data set leads
to a shorter coding length. The optimal segmentation of the data is the one that
minimizes the overall coding length. Thus, data segmentation becomes the re-
sult of data compression. In this chapter, we will show how the overall coding
length can be minimized in a simple agglomerative fashion, which leads to an ex-
tremely efficient and robust algorithm for segmenting mixtures of linear subspaces
or Gaussians.

5.1 Basic Ideas and Algorithm

In this section, we give a self-contained summary of the main ideas and algorithm
and leave more detailed mathematical analysis and justification to Section 5.2 and
5.3. Readers who are interested only in the algorithm and experiments may bypass
those two sections and skip to Section 5.4 without any loss of continuity.

5.1.1 Lossy Coding of Multivariate Data

A lossy coding scheme maps a set of vectors V = (v1, v2, . . . , vN) ∈ RD×N to
a sequence of binary bits, such that the original vectors can be recovered up to an
allowable distortion E[‖vi − v̂i‖2] ≤ ε2. The length of the encoded sequence is
denoted as the function L(V) : RD×N → R+.

In general, the coding scheme and the associated L(·) function can be chosen
to be optimal for any family of distributions of interest. In the case where the data
are i.i.d. samples from a zero-mean1 multivariate Gaussian distribution N (0,Σ),
the function R = 1

2 log2 det(I + D
ε2 Σ) provides a good approximation to the

optimal rate-distortion function [Cover and Thomas, 1991].2 As Σ̂ = 1
N V V

T is

1For simplicity, in the main text, we will derive and present our main results with the zero-mean
assumption. However, all the formulas, results, and algorithms can be readily extended to the nonzero
mean case, as shown in Appendix 5.B.

2Strictly speaking, the rate-distortion function for the Gaussian source N (0,Σ) is R =
1
2

log2 det
`
D
ε2

Σ
´

when ε2

D
is smaller than the smallest eigenvalue of Σ. Thus the approximation is

good only when the distortion ε is relatively small. However, when ε2

D
is larger than some eigenvalues

of Σ, the rate distortion function becomes more complicated [Cover and Thomas, 1991]. Neverthe-
less, the approximate formula R = 1

2
log2 det(I + D

ε2
Σ) can be viewed as the rate-distortion of the

“regularized” source that works for all range of ε. Furthermore, as we will show in Appendix 5.A, the
same formula gives a tight upper bound of the coding rate for any finite number of samples.

116 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

an estimate of the covariance Σ, the average number of bits needed per vector is:

R(V) .=
1
2

log2 det
(
I +

D

ε2N
V V T

)
. (5.3)

For readers who are less familiar with the rate-distortion theory, we will give an
intuitive explanation of this formula in Section 5.2.

Representing the m vectors of V therefore requires N · R(V) bits. Since the
optimal codebook is adaptive to the data V , we must also represent it with an
additional D ·R(V) bits3, yielding an overall coding length of

L(V) .= (N +D) ·R(V) =
N +D

2
log2 det

(
I +

D

ε2N
V V T

)
. (5.4)

We will study the properties of this function in Section 5.2. For purposes of
segmentation, it suffices to note that in addition to being (approximately) asymp-
totically optimal for Gaussian data, L(V) also provides a tight bound on the
number of bits needed to code a finite number of vectors when the underlying
distribution is a degenerate or non-degenerate Gaussian (see Appendix 5.A for a
proof).

5.1.2 Segmentation via Data Compression

Given a set of samples, X = (x1,x2, . . . ,xm) ∈ RD×N , one can always view
them as drawn from a single Gaussian source and codeX subject to distortion ε2

using L(W) bits. However, if the samples are drawn from a mixture of Gaussian
distributions or subspaces, it may be more efficient to encode X as the union of
multiple (disjoint) groups: X = X1 ∪X2 ∪ · · · ∪Xn. If each group is coded
separately, the total number of bits needed is

Ls(X1,X2, . . . ,Xn) .=
n∑
i=1

L(Xi) + |Xi|
(
− log2(|Xi|/N)

)
, (5.5)

where |Xi| indicates the cardinality (i.e. number of vectors) of the group Xi. In
the above expression, the term

∑n
i=1 |Xi|

(
− log2(|Xi|/N)

)
is the number of

bits needed to code (losslessly) the membership of the N samples in the n groups
(e.g. using the Huffman coding [Cover and Thomas, 1991]).4

Then, given a fixed coding scheme with its associated coding length function
L(·), an optimal segmentation is one which minimizes the segmented coding
length, Ls(·), over all possible partitions of X . Moreover, we will see that due
to the properties of the rate-distortion function (5.3) for Gaussian data, soften-
ing the objective function (5.5) by allowing probabilistic (or fuzzy) segmentation

3This can be viewed as the cost of coding the D principal axes of the data covariance 1
N
V V T . A

more detailed explanation of L(V) is given in Section 5.2.
4Here we assume that the ordering of the samples is random and entropy coding is the best we can

do to code the membership. However, if the samples are ordered such that nearby samples more likely
belong to the same group (e.g., in segmenting pixels of an image), the second term can and should be
replaced by a tighter estimate.

5.1. Basic Ideas and Algorithm 117

does not further reduce the (expected) overall coding length (see Theorem 5.3 of
Section 5.3).

Notice that the above objective (5.5) is a function of the distortion ε. In prin-
ciple, one may add a “penalty” term, such as ND · log ε to the overall coding
length5 Ls so as to determine the optimal distortion ε∗. The resulting objective
minε Ls +ND · log ε will then correspond to an optimal coding length that only
depends on the data. Nevertheless, very often we leave ε as a free parameter to be
set by the user. In practice, this allows the user to potentially obtain hierarchical
segmentation of the data at different scales of quantization. We will thoroughly
examine how the value of ε affects the final segmentation through experiments in
Section 5.4.

5.1.3 Minimizing the Coding Length

Finding the global minimum of the overall coding length Ls over all partitions
of the dataset is a daunting combinatorial optimization problem, intractable for
large data sets. Nevertheless, the coding length can be effectively minimized in a
steepest descent fashion, as outlined in Algorithm 5.1. The minimization proceeds
in a “bottom-up” fashion: initially, every sample is treated as its own group. At
each iteration, two groups S1 and S2 are chosen so that merging them results
in the greatest decrease in the coding length. The algorithm terminates when the
coding length cannot be further reduced by merging any pair of groups.6 A simple
implementation which maintains a table containingLs(Si∪Sj) for all i, j requires
O(N3 + N2D3) time, where N is the number of samples and D the dimension
of the space.

Algorithm 5.1 (Pairwise Steepest Descent of Coding Length).

1: Input: the dataX = (x1,x2, . . . ,xm) ∈ RD×N and a distortion ε2 > 0.
2: initialize S = {Si = {xi} | xi ∈X}.
3: while |S| > 1 do
4: choose two distinct sets Si, Sj ∈ S such that Ls(Si∪Sj)−Ls(Si, Sj)

is minimal.
5: if Ls(Si ∪ Sj)− Ls(Si, Sj) ≥ 0 then break;
6: else S ←

(
S \ {Si, Sj}

)
∪ {Si ∪ Sj}.

7: end
8: Output: S

Extensive simulations and experiments demonstrate that this algorithm is con-
sistently and remarkably effective in segmenting data that are a mixture of

5This particular penalty term is justified by noticing thatND ·log ε is (within an additive constant)
the number of bits required to code the residual x− x̂ upto (very small) distortion δ � ε.

6In the supplementary material, we have included a video showing the convergence of this
algorithm on data drawn from mixtures of subspaces in R3.

118 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

Gaussians or subspaces (see Section 5.4). It tolerates significant amounts of out-
liers, and automatically determines the corresponding number of groups at any
given distortion. As a greedy descent scheme, the algorithm does not guarantee
to always find the globally optimal segmentation for any given (X, ε).7 From our
experience, we found that the main factor affecting the global convergence of the
algorithm seems to be the density of the samples relative to the distortion ε2. In
Section 5.4 we will give strong empirical evidences for the convergence of the
algorithm over a wide range of ε.

Notice that the greedy merging process in Algorithm 5.1 is similar in spirit to
classical agglomerative clustering methods, especially Ward’s method [?]. How-
ever, whereas Ward’s method assumes isotropic Gaussians, our coding-based
approach is capable of segmenting Gaussians with arbitrary covariance, includ-
ing nearly degenerate distributions. Classical agglomerative approaches have been
shown to be inappropriate for such situations [?]. In this sense, the change in
coding length provides a principled means of measuring similarity between arbi-
trary Gaussians. Our approach also demonstrates significant robustness to uniform
outliers, another situation in which linkage algorithms [?] fail.

5.2 Lossy Coding of Multivariate Data

In this section, we give a more detailed justification of the coding rate/length
functions introduced in the previous section. In the next section, we provide a
more thorough analysis of the compression-based approach to data segmentation.
Readers who are less concerned with technical details may skip these two sections
at first read, without much loss of continuity.

If the given data xi ∈ RD are i.i.d. samples of a random vector x with the
probabilistic distribution p(x), the optimal coding scheme and the optimal coding
rate of such a random vector x have been well characterized in information theory
(see [Cover and Thomas, 1991] and references therein). However, here we are
dealing with a finite set of vectors X = (x1,x2, . . . ,xN). Such a data set can
be viewed as a non-parametric distribution itself – each vector xi in X occurs
with an equal probability 1/N . The optimal coding scheme for the distribution
p(x) is no longer optimal for X and the formula for the coding length no longer
accurate. Nevertheless, some of the basic ideas of deriving the optimal coding
rate can still be extended to the non-parametric setting. In this section, borrowing
ideas from information theory, we derive a tight bound of the coding length or
rate for the given data X . In Appendix 5.A, we give an alternative derivation of
the bound. Although both approaches essentially arrive at the same estimate, they

7However, it may be possible to improve the convergence by using more complicated split-and-
merge strategies [?]. In addition, due to Theorem 1 of Section 5.3, the globally (asymptotically)
optimal segmentation can also be computed via concave optimization [?], at the cost of potentially
exponential computation time.

5.2. Lossy Coding of Multivariate Data 119

together reveal that the derived coding length/rate function holds under different
conditions:

1. The derivation in this section shows that for small ε the formula for R(X)
gives a good approximation to the (asymptotically) optimal rate-distortion
function of a Gaussian source.

2. The derivation in Appendix 5.A shows that the same coding length/rate
formula works for any finite set of vectorsX that span a subspace.

5.2.1 The Rate Distortion Function

For simplicity, we here assume that the given data are zero mean, i.e. µ .=
1
N

∑
i xi = 0. The reader may refer to Appendix 5.B for the case in which the

mean is not zero. Let ε2 be the squared error allowable for encoding every vector
xi. That is, if x̂i is an approximation of xi, we allow E[‖xi − x̂i‖2] ≤ ε2. In
other words, on average, the allowable squared error for each entry of xi is ε2/D.

The solution to coding the vectors in X , subject to the mean squared error ε2,
can be explained by sphere packing, which is normally adopted in information
theory [Cover and Thomas, 1991]. Here we are allowed to perturb each vector
xi ∈ X within a sphere of radius ε in RD. In other words, we are allowed to
distort each entry of xi with an (independent) random variable of variance ε2/D.
Without loss of generality, we may model the error as an independent additive
Gaussian noise:

x̂i = xi + zi, with zi ∼ N
(

0,
ε2

D
I
)
. (5.6)

Then the covariance matrix of the vectors {x̂i} is:

Σ̂ .= E
[1
N

N∑
i=1

x̂ix̂
T
i

]
=
ε2

D
I +

1
N
XXT ∈ RD×D. (5.7)

The volume of the region spanned by these vectors is proportional to (the square
root of the determinant of the covariance matrix):

vol(X̂) ∝
√

det
(ε2

D
I +

1
N
XXT

)
.

Similarly, the volume spanned by each random vector zi is proportional to

vol(z) ∝
√

det
(ε2

D
I
)
.

In order to encode each vector, we can partition the region spanned by all the
vectors into non-overlapping spheres of radius ε. When the volume of the region
vol(X̂) is significantly larger than the volume of the sphere, the total number of
spheres that we can pack into the region is approximately equal to

#of spheres = vol(X̂)/vol(z). (5.8)

120 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

e2

2e

wi

e1

vol

Figure 5.1. Coding of a set of vectors in a region in RD with an accuracy up to ε2. To know
the vector xi, we only need to know the label of the corresponding sphere. e1, e2 ∈ RD
represent the singular vectors of the matrix X̂ and σ1, σ2 ∈ R the singular values.

Thus, to know each vector xi with an accuracy up to ε2, we only need to specify
which sphere xi is in (see Figure 5.1). If we use binary numbers to label all the
spheres in the region of interest, the number of bits needed is

R(X) .= log2(#of spheres) = log2

(
vol(X̂)/vol(z)

)
=

1
2

log2 det
(
I +

D

Nε2
XXT

)
, (5.9)

where the last equality uses the fact det(A)/det(B) = det(B−1A).
If the samples xi are drawn from a Gaussian source N (0,Σ), then 1

NXX
T

converges to the covariance Σ of the Gaussian source. Thus, we have R(X) →
1
2 log2 det

(
I + D

ε2 Σ
)

as N → ∞. When ε2

D ≤ λmin(Σ), the optimal rate-
distortion for a parallel i.i.d. N (0,Σ) source is 1

2 log2 det
(
D
ε2 Σ

)
, to which (5.9)

provides a good approximation. In general, the optimal rate-distortion is a compli-
cated formula given by reverse-waterfilling on the eigenvalues of Σ (see Theorem
13.3.3 of [Cover and Thomas, 1991]). The approximation (5.9) provides an upper
bound which holds for all ε, and is tight when ε is small relative to the eigenvalues
of the covariance.

The formula for R(X) can also be viewed as the rate-distortion of the source
X regularized by a noise of variance ε2

D as in equation (5.6). The covariance Σ̂ of
the perturbed vectors x̂i always satisfies ε2

D ≤ λmin(Σ̂), allowing for a simple,
analytic expression for the rate distortion for all range of ε. This regularized rate-
distortion has the further advantage of agreeing with the bound for the coding
length of finitely many vectors that span a subspace, derived in Appendix 5.A.8.

Notice that the formula for R(X) is accurate only in the asymptotic sense,
i.e., when we are dealing with a large number of samples and the error ε is small
(relative to the magnitude of the data X). We want to emphasize that the above
derivation of the coding rate does not give an actual coding scheme. The con-

8In addition, this formula resembles the channel capacity of an MIMO Gaussian channel. The
interested reader may refer to [?].

5.2. Lossy Coding of Multivariate Data 121

struction of efficient coding schemes which achieve the optimal rate-distortion
bound is itself a difficult problem (see, for example, [?] and references therein).
However, for the purpose of measuring the quality of segmentation and compres-
sion, all that matters is that in principle a scheme attaining the optimal rate R(X)
exists.

5.2.2 The Coding Length Function

Given the coding rate R(X), the total number of bits needed to encode the N
vectors inX is

N ·R(X) =
N

2
log2 det

(
I +

D

Nε2
XXT

)
. (5.10)

From the communication point of view, N · R(X) bits are already sufficient as
both the transmitter and the receiver share the same code book – that is they both
know the region spanned by X in RD. However, from the data representation or
compression point of view, we need more bits to represent the code book itself.
This is equivalent to specifying all the principal axes of the region spanned by
the data, i.e. the singular values/vectors of X , see Figure 5.1. As the number of
principal axes is D, we need D ·R(X) additional bits to encode them. Therefore,
the total number of bits needed to encode the N vectors in X ⊂ RD subject to
the squared error ε2 is9

L(X) .= (N +D)R(X) =
N +D

2
log2 det

(
I +

D

Nε2
XXT

)
. (5.11)

Appendix 5.A provides an alternative derivation of the same coding length
function L(X), as an upper bound for a finite number of samples. If the data
X have a non-zero mean, we need more bits to encode the mean too. See in Ap-
pendix 5.B how the coding length function should be properly modified in that
case.

5.2.3 Properties of the Coding Length Function

Commutative Property.

SinceXXT ∈ RD×N andXTX ∈ RN×N have the same non-zero eigenvalues,
the coding length function can also be expressed as:

L(X) =
N +D

2
log2 det

(
I +

D

Nε2
XXT

)
=

N +D

2
log2 det

(
I +

D

Nε2
XTX

)
.

9Compared to the MDL criterion (2.49), if the term N · R(X) corresponds to the coding length
for the data, the term D ·R(X) then corresponds to the coding length for the model parameter θ.

122 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

Thus, if D � N , the second expression will be less costly for computing the
coding length. The matrix XTX , which depends only on the inner products be-
tween pairs of data vectors, is known in the statistical learning literature as the
kernel matrix. This property suggests that the ideas and the algorithm presented
in Section 5.1 can be readily extended to segment data sets that have nonlinear
structures, by choosing a proper kernel function.

Invariant Property.

Notice that in the zero-mean case, the coding length function L(X) is invariant
under an orthogonal transformation of the data X . That is, for any orthogonal
matrix U ∈ O(D) or V ∈ O(N), we have

L(UX) = L(X) = L(XV). (5.12)

In other words, the length function depends only on the singular values of X
(or eigenvalues of XXT). This equality suggests that one may choose any or-
thonormal basis (e.g., Fourier, wavelets) to represent and encode the data and the
number of bits needed should always be the same. This agrees with the fact that
the chosen coding length (or rate) is optimal for a Gaussian source. However, if
the data are non-Gaussian or nonlinear, a proper transformation can still be useful
for compressing the data.10 Here we are essentially seeking a partition, rather than
a transformation, of the non-Gaussian (or nonlinear) data set, such that each sub-
set is sufficiently Gaussian (or subspace-like) and hence cannot be compressed
any further, either by (orthogonal) transformation or segmentation.

5.3 Coding Length of Segmented Data

Now suppose we have partitioned the set of N vectors X = (x1,x2, . . . ,xN)
into n non-overlapping groups X = X1 ∪X2 ∪ · · · ∪Xn. Then the total num-
ber of bits needed to encode the segmented data is Ls(X1,X2, . . . ,Xn) =∑n
i=1 L(Xi) + |Xi|

(
− log2(|Xi|/N)

)
. Here the superscript “s” is used to

indicate the coding length after segmentation.

5.3.1 Segmentation and Compression

To better understand under what conditions a set of data should or should not
be segmented so that the overall coding length/rate becomes smaller, we here
provide two representative examples. In the examples, we want to study whether
a data set should be partitioned into two subsets of an equal number of vectors:
X1,X2 ∈ RD×N . To simplify the analysis, we assume N � D so that we can
ignore the asymptotically insignificant terms in the coding length/rate function.

10For a more thorough discussion on why some transformations (such as wavelets) are useful for
data compression, the reader may refer to [?].

5.3. Coding Length of Segmented Data 123

Example 5.1 [Uncorrelated Subsets] Notice that in general, we have

L(X1) + L(X2) =
N

2
log2 det

`
I +

D

Nε2
X1X

T
1

´
+
N

2
log2 det

`
I +

D

Nε2
X2X

T
2

´
≤ 2N

2
log2 det

`
I +

D

2Nε2
(X1X

T
1 +X2X

T
2)
´

= L(X1 ∪X2),

where the inequality is from the concavity of the function log2 det(·) (see Theorem 7.6.7
of [?]). Thus, if the difference L(X1 ∪X2)−

`
L(X1) + L(X2)

´
is large, the overhead

needed to encode the membership of the segmented data (here one bit per vector) becomes
insignificant. If we further assume thatX2 is a rotated version ofX1, i.e.X2 = UX1 for
some U ∈ O(D), one can show that the difference L(X1 ∪X2) −

`
L(X1) + L(X2)

´
is (approximately) maximized when X2 becomes orthogonal to X1. We call two groups
X1,X2 uncorrelated ifXT

1X2 = 0. Thus, segmenting the data into uncorrelated groups
typically reduces the overall coding length. From the viewpoint of sphere packing, Figure
5.2 explains the reason.

2e

w2

w1

w2

w1

Figure 5.2. The number of spheres (code words) of two different schemes for coding two
orthogonal vectors. Left: encoding the two vectors separately; Right: encoding the two
vectors together.

Example 5.2 [Strongly Correlated Subsets] We say two groups X1,X2 are strongly cor-
related if they span the same subspace in RD . Or somewhat equivalently, we may assume
that X1 and X2 have approximately the same covariance X2X

T
2 ≈ X1X

T
1 . Thus we

have

L(X1) + L(X2) =
N

2
log2 det

`
I +

D

Nε2
X1X

T
1

´
+
N

2
log2 det

`
I +

D

Nε2
X2X

T
2

´
≈ 2N

2
log2 det

`
I +

D

2Nε2
(X1X

T
1 +X2X

T
2)
´

= L(X1 ∪X2).

Since Ls(X1,X2) = L(X1)+L(X2)+H(|X1|, |X2|), the overhead needed to encode
the membership becomes significant and the segmented data require more bits than the
unsegmented.

5.3.2 Optimality of Deterministic Segmentation

So far, we have only considered partitioning the data X into n non-overlapping
groups. That is, each vector is assigned to a group with probability either 0 or 1.
We call such a segmentation “deterministic.” In this section, we examine an im-
portant question: Is there a probabilistic segmentation of the data that can achieve
an even lower coding rate? That is, we consider a more general class of segmen-
tations in which we assign each vector xi to the group j according to a probability
πij ∈ [0, 1], with

∑n
j=1 πij = 1 for all i = 1, 2, . . . , N .

124 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

To facilitate counting the expected coding length of such (probabilistically)
segmented data, we introduce a matrix Πj that collects the membership of the N
vectors in group j:

Πj
.=


π1j 0 · · · 0

0 π2j
. . .

...
...

. 0
0 · · · 0 πNj

 ∈ RN×N . (5.13)

These matrices satisfy the constraint:
∑n
j=1 Πj = IN×N ,Πj � 0.

Obviously, the jth group has an expected number of tr(Πj) vectors and
the expected covariance is 1

tr(Πj)
XΠjX

T . If viewed as a Gaussian source,

the coding rate of the jth group is bounded by: R(Xj)
.= 1

2 log2 det
(
I +

D
tr(Πj)ε2

XΠjX
T
)
. If for each vector xi, we code it using the coding scheme

for the jth group with probability πij , then the expected total number of bits re-
quired to encode the dataW according to the segmentation Π = {Πj} is bounded
by11

Ls(X,Π) .=
n∑
j=1

tr(Πj) +D

2
log2 det

(
I +

D

tr(Πj)ε2
XΠjX

T
)

+ tr(Πj)
(
− log2

tr(Πj)
N

)
. (5.14)

Similarly, the expected number of bits needed to encode each vector is bounded
by

Rs(X,Π) .=
1
N
Ls(X,Π)

=
n∑
j=1

tr(Πj)
N

(
R(Xj)− log2

tr(Πj)
N

)
+
D

N
R(Xj).(5.15)

Thus, one may consider that the optimal segmentation Π∗ is the global mini-
mum of the expected overall coding length Ls(X,Π), or equivalently the average
coding rate Rs(X,Π). To some extent, one can view the minimum value of
Rs(X,Π) as a good approximation to the actual entropy of the given data set
X .12

Notice that the second term in the expression of Rs(X,Π), DNR(Xj), is in-
significant when the number of samples is large N � D. Nevertheless, this term,
as well as the term that encodes the membership of the vectors, gives a tight bound

11Strictly speaking, the formula is an upper bound for the expected coding length because
Ls(X,Π) is essentially a concave function of the group assignment Π (see the proof of Theorem
5.3). Hence, Ls(X,E[Π]) ≥ E[Ls(X,Π)] (using that f(E[x]) ≥ E[f(x)] for concave functions).

12Especially when the dataX indeed consist of a mixture of subsets and each group is a typical set
of samples from a (almost degenerate) Gaussian distribution.

5.3. Coding Length of Segmented Data 125

on the coding length even for small sets of samples. This essentially allows us to
find the optimal segmentation in a bottom-up manner by merging small subsets
of samples, which is effectively harnessed by the greedy algorithm introduced in
Section 5.1. That said, for the rest of this section, we examine more carefully the
asymptotic properties of the coding length/rate function.

The first term in the expression of Rs(X,Π) is the only part that matters
asymptotically (i.e. when the number of vectors in each group goes to infinity)
and we denote it as:

Rs,∞(X,Π) .=
n∑
j=1

tr(Πj)
2N

log2 det
(
I +

D

ε2 tr(Πj)
XΠjX

T
)

− tr(Πj)
N

log2

(tr(Πj)
N

)
. (5.16)

Thus, the global minimum of Rs,∞(X,Π) determines the optimal segmentation
when the sample size is large.

Theorem 5.3. The asymptotic part Rs,∞(X,Π) of the rate distortion function
Rs(X,Π) is a concave function of Π in the convex domain Ω .= {Π :

∑n
j=1 Πj =

I,Πj � 0}.

Proof. Let S be the set of all N × N non-negative definite symmetric matrices.
We will show that Rs,∞(X,Π) is concave as a function from Sn → R, and so is
it when restricted to the domain of interest, Ω ⊂ Sn.

First consider the second term of Rs,∞(X,Π). Notice that
∑n
j=1 tr(Πj) = N

is a constant. So we only need to show the concavity of the function g(P) .=
− tr(P) log2 tr(P) for P ∈ S . The function, f(x) = −x log2 x is concave, and
g(P) = f(tr(P)). So for λ ∈ [0, 1],

g(λP1 + (1− λ)P2) = f(λ tr(P1) + (1− λ) tr(P2))
≥ λf(tr(P1)) + (1− λ)f(tr(P2)) = λg(P1) + (1− λ)g(P2).

Thus, g(P) is concave in P .
Now consider the first term of Rs,∞(X,Π). Let

h(Πj)
.= tr(Πj) log2 det

(
I +

D

ε2 tr(Πj)
XΠjX

T
)
.

It is well-known in information theory that the function q(P) .= log2 det(P) is
concave for P ∈ S and P � 0 (see Theorem 7.6.7 of [?]). Now define r : S → R
to be

r(Πj)
.= log2 det(I + αXΠjX

T) = q(I + αXΠjX
T).

Since r is just the concave function q composed with an affine transformation
Πj 7→ I+αXΠjX

T , r is concave (see Section 3.2.3 of [?]). Let ψ : S×R+ → R
as

ψ(Πj , t)
.= t · log2 det

(
I +

N

ε2t
XΠjX

T
)

= t · r
(1
t
Πj

)
.

126 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

Ω

Π∗

Rs,∞(Π)

Figure 5.3. The function Rs,∞(X,Π) is a concave function of Π over a convex domain
Ω, which is in fact a polytope in the space RnN . The minimal coding length is achieved at
a vertex Π∗ of the polytope.

According to Theorem 3.2.6 of [?], ψ is concave. Notice that H .= {(Πj , t) :
t = tr(Πj)} is a linear subspace in the product space of R and the space of all
symmetric matrices. So, H ∩ (S × R+) is a convex set, and the desired function,
h(Πj) = ψ(Πj , tr(Πj)), is just the restriction of ψ to this convex set. Thus, h is
concave.

Since Rs,∞(X,Π) is a sum of concave functions in Πj , it is concave as a
function from Sn to R, and so is its restriction to the convex set Ω in Sn.

Since Rs,∞(X,Π) is concave, its global minimum Π∗ is always reached at
the boundary, or more precisely, at a vertex of the convex domain Ω, as shown in
Figure 5.3. At the vertex of Ω, the entries πij of Π∗ are either 0s or 1s. It means
that even if we allow soft assignment of each point to the n groups according
to any probabilistic distribution, the optimal solution with the minimal coding
length can always be approximately achieved by assigning each point to one of
the groups with probability one! This is the reason why Algorithm 5.1 does not
consider any probabilistic segmentation.

Another implication of the above theorem is that the problem of minimizing
the coding length is essentially a concave optimization problem. Many effec-
tive concave optimization algorithms can be adopted to find the globally optimal
segmentation, such as the simplex algorithm [?]. However, such generic concave
optimization algorithms typically have high (potentially exponential) complexity.
In the next section, we will show with extensive simulations and experiments that
the greedy algorithm proposed in Section 5.1 is already effective in minimizing
the coding length.

Interestingly, in multiple-channel communications, the goal is instead to max-
imize the channel capacity, which has very much the same formula as the coding
rate function [?]. The above theorem suggests that a higher channel capacity
may be achieved inside the convex domain Ω, i.e. by probabilistically assign-

5.4. Simulation and Experimental Results 127

ing the transmitters into certain number of groups. As the coding rate function is
concave, the maximal channel capacity can be very easily computed via convex
optimization [?].

5.4 Simulation and Experimental Results

In this section, we conduct simulations on a variety of challenging data sets to
examine the effectiveness of the proposed coding length function as well the
performance of the steepest descent algorithm. In the end, we will also demon-
strate some experimental results of applying the algorithm to segment imagery
and bioinformatic data.

5.4.1 Simulations on Synthetic Data

Segmentation of Linear Subspaces of Different Dimensions.

We first demonstrate the ability of the algorithm to segment noisy samples
drawn from a mixture of linear subspaces of different dimensions. For every
d-dimensional subspace, d × 100 samples are drawn uniformly from a ball of
diameter 1 lying on the subspace. Each sample is corrupted with independent
Gaussian noise of standard deviation ε0 = 0.04. For Algorithm 5.1, we set
ε = ε0. We compare the results of Algorithm 5.1 with the expectation maxi-
mization (EM) algorithm for mixture of factor analyzers [?], followed by an ML
classification step. We have modified [?] slightly to allow it to work for mixture
of factor analyzers with different dimensions. To avoid the model selection is-
sue, which we postpone to subsection 6), we provided the EM algorithm with the
correct number and dimensions of the subspaces. Figure 5.4 shows one represen-
tative result of Algorithm 5.1. Table 5.1 summarizes the comparison of results on
several configurations tested.

Figure 5.4. The computed segmentation for (2, 1, 1) in R3 is displayed. Left: Input data
with noise; Right: Output segmented data.

128 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

Subspace Identified Classification (%) Classification (%)
dimensions dimensions (Algorithm 5.1) (EM)

(2, 1, 1) in R3 2, 1, 1 96.62 39.33

(2, 2, 1) in R3 2, 2, 1 90.00 68.98

(4, 2, 2, 1) in R5 4, 2, 2, 1 98.53 43.36

(6, 3, 1) in R7 6, 3, 1 99.77 66.16

(7, 5, 2, 1, 1) in R8 7, 5, 2, 1, 1 98.04 42.29

Table 5.1. Simulation results for data drawn from mixtures of noisy linear subspaces. Clas-
sification percentages are averaged over 25 trials. Our algorithm correctly identifies the
number and dimension of the subspaces in all 25 trials, for all configurations. Far right col-
umn: results using EM for mixture of factor analyzers with different dimensions [?] with
random initialization.

In each case, the algorithm stops at the correct number of groups, and the di-
mensions of the segments Xi match those of the generating subspaces.13 The
correctness of the segmentation is further corroborated by the high percentage of
points correctly classified (by comparing the segments with the a priori groups).
For all five configurations, the average percentage of samples assigned to the cor-
rect group was at least 90.0%. The main cause of classification error is points
which lie near the intersection of multiple subspaces. Due to noise, it may actu-
ally be more efficient to code such points according to the optimal coding scheme
for one of the other subspaces. In all cases, Algorithm 5.1 dramatically outper-
forms EM (for mixture of factor analyzers), despite requiring no knowledge of
the subspace dimensions.

Subspace (2, 1, 1) (2, 2, 1) (4, 2, 2, 1) (6, 3, 1) (7, 5, 2, 1, 1)
dimensions in R3 in R3 in R5 in R7 in R8

log10
εmax
εmin

2.5 1.75 2.0 2.0 .75

Table 5.2. The size of the range of log ε for which the Algorithm 5.1 converges to the
correct number and dimension of groups, for each of the arrangements considered in Figure
5.4.

Since in practice, ε0 is not known, it is important to investigate the sensitivity
of the results to the choice of ε. for each of the examples in Figure 5.4, Table 5.2
gives the range of ε for which Algorithm 5.1 converges to the a-priori number and
dimension of subspaces. Notice that for each of the configurations considered,
there exists a significant range of ε for which the greedy algorithm converges.

Global Convergence.

Empirically, we find that Algorithm 5.1 does not suffer many of the difficulties
with local minima that plague iterative clustering algorithms (e.g. K-means) and

13The dimension of each segment Xi is identified using principal component analysis (PCA) by
thresholding the singular values ofXi with respect to ε.

5.4. Simulation and Experimental Results 129

parameter estimation algorithms (e.g. EM). The convergence appears to depend
mostly on the density of the samples relative to the distortion ε. For example,
if the number of samples is fixed at N = 1200, and the data are drawn from
three dD2 e-dimensional subspaces in RD, the algorithm converges to the correct
solution for D = 2 upto D = 56. Here, we choose ε = ε0 = 0.008. Beyond
D = 56, the algorithm fails to converge to the three a priori subspaces as the
samples have become too sparse. For D > 56, the computed segmentation gives
a higher coding length than the a priori segmentation.

The same observation occurs for subspaces with different dimensions. For ex-
ample, we randomly draw 800 noisy (ε0 = 0.14) samples from four subspaces of
dimension 20, 15, 15, 10 in R40. The results of the greedy algorithm at different
distortion ε are shown in Figure 5.5. As we see from the results, when the dis-
tortion ε is very small, the greedy algorithm does not necessarily converge to the
optimal coding length. Nevertheless, the number of groups, 4, is still identified
correctly by the algorithm when ε becomes relatively large.

As described in Section 5.1, ε can potentially be chosen automatically by min-
imizing Ls + ND · log ε, where the second term approximates (upto a constant)
the number of bits needed to code the residual. The green curve in Figure 5.5
shows the value of this penalized coding length. Notice that its minimum falls
very near the true log ε. We observe similar results for other simulated examples:
the penalty term is generally effective in selecting a relevant ε.

Figure 5.5. Left: the coding length found by the greedy algorithm (the red curve) compared
to the ground truth (the blue curve) for data drawn from four linear subspaces of dimension
20, 15, 15, 10 in R40. The green curve shows the penalized coding length Ls+ND · log ε.
Right: the number of groups found by the greedy algorithm – it converges to the correct
number 4 when the distortion is relatively large.

Robustness to Outliers.

We test the robustness of Algorithm 5.1 to outliers on the easily visualized exam-
ple of two lines and a plane in R3. N = 158 samples are drawn uniformly from
a 2-D disc of diameter 1. 100 samples are drawn uniformly from each of the two
line segments of length 1. The additive noise level is ε0 = 0.03. The data set is

130 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

(a) (b) (c) (d)

Figure 5.6. Segmentation results for data drawn from three linear subspaces, corrupted with
various numbers of outliers, No. (a) No = 300 (45.6% outliers). (b) No = 400 (52.8%
outliers). (c) No = 1100 (75.4% outliers). (d) No = 1200 (77.0% outliers).

contaminated with No outliers, whose three coordinates are uniformly distributed
on [−0.5, 0.5].

As the number of outliers increases, the segmentation exhibits several distinct
phases. For No ≤ 300 (45.6% outliers), the algorithm always finds the correct
segmentation. The outliers are merged into a single (three-dimensional) group.
From No = 400 (52.8% outliers) upto No = 1100 (75.4% outliers), the two lines
are correctly identified, but samples on the plane are merged with the outliers. For
No = 1200 (77.4% outliers) and higher, all of the data samples are merged into
one group, as the distribution of data has become essentially random in the am-
bient space. Figure 5.6 shows the results for No = 300, 400, 1100, 1200. Notice
that the effect of adding the outliers resembles the effect of ice (the lines and the
plane) being melted away by warm water. This suggests a similarity between the
artificial process of data clustering and the physical process of phase transition.

Number of Segments versus Distortion Level.

Figure 5.7 shows how the number of segments changes as ε varies. N = 358
points are drawn from two lines and a plane, as in the previous experiment, and
then perturbed with noise of standard deviation ε0 = 0.05. Notice that the num-
ber of groups experiences distinct phases, with abrupt transitions around several
critical values of ε. For sufficiently small ε, each data point is grouped by it-
self. However, as ε increases, the cost of coding the group membership begins to
dominate, and all the points are grouped together in a single three-dimensional
subspace (the ambient space). Around the true noise level, ε0, there is another
stable phase, corresponding to the three a priori subspaces. Finally, as ε be-
comes large, the number of segments reverts to 1, as it becomes most efficient
to represent the points using a single zero-dimensional subspace (the origin).

This behavior contrasts with the phase transition discussed in [?]. There, the
number of segments increases monotonically throughout the simulated annealing
process. Because our formulation allows the dimension of the segments to vary,
the number of segments does not decrease monotonically with ε. Notice, however,
that the phase corresponding to the “correct” (a priori) segmentation is stable over
several orders of magnitude of the parameter ε. This is important since in practice
the true noise level ε0 is usually unknown.

5.4. Simulation and Experimental Results 131

Figure 5.7. The effect of varying ε, with ε0 = 0.05. Left: number of groups, n, versus
log(ε). Center: detail of n versus log(ε) around log(ε0). Right: the coding rate (bits per
vector) versus log(ε).

Another interesting thing to notice is that the coding rate Rs(X) in many re-
gions is mostly a linear function of− log10 ε:R

s(X) ≈ −β log10 ε+α, for some
constants α, β > 0, which is a typical characteristic of the rate-distortion function
of Gaussians. For this data set, the algorithm takes about 10 seconds to run in
Matlab on a 1.6GHz PC.

Segmentation of Affine Subspaces.

Appendix 5.B shows how the coding length function should be properly modified
in the case when the data are not zero-mean. Here, we show how the modified al-
gorithm works for affine subspaces.N = 358 samples are drawn from three linear
subspaces in R3 and their centers are translated to [2.1, 2.2, 2]T , [2.4, 1.9, 2.1]T ,
[1.9, 2.5, 1.9]T .

Figure 5.8 shows the segmentation results at different noise level, with the dis-
tortion level chosen as ε = ε0. For 10−7 < ε < 0.1, the algorithm always
identifies the correct number of subspaces with ε = ε0. When ε ≤ 10−7, the
density of the samples within the subspace becomes more important than the dis-
tortion orthogonal to the subspace, and the algorithm no longer converges with
ε = ε0. However, for such small distortion, there always exists a large stable
phase (with respect to changing ε) corresponding to the correct number of sub-
spaces, n = 3. When ε0 > 0.1, the algorithm starts to fail and merge the data
samples into one or two groups.

(a) (b) (c) (d)

Figure 5.8. The segmentation results for data drawn from 3 affine subspaces at different
noise level ε0. The ε in the algorithm is chosen to be ε = ε0. (a) ε0 = 0.01, (b) ε0 = 0.03,
(c) ε0 = 0.05, (d) ε0 = 0.08.

132 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

We now fix the Gaussian noise at ε0 = 0.02, and add No outliers whose three
coordinates are uniformly distributed in the range of [1.5, 2.5], which is the same
as the range of the inliers. When the number of outliers is ≤ No = 200 (35.8%
outliers), the algorithm finds the correct segmentation, and all the outlying sam-
ples are segmented into one group. FromNo = 300 (45.6% outliers) toNo = 700
(66.2% outliers), the algorithm still identifies the two lines and one plane. How-
ever, the outliers above and below the plane are clustered into two separate groups.
For more than No = 800 (69.1% outliers), the algorithm identifies the two lines,
but samples from the plane are merged with the outliers into one group. Figure
5.9 shows the segmentation results for No = 200, 300, 700, 800, respectively.

(a) (b) (c) (d)

Figure 5.9. The segmentation results for data drawn from 3 affine subspaces with different
number of outliers No. The ε in the algorithm is ε = ε0 = 0.02. (a) No = 200 (35.8%
outliers), (b) No = 300 (45.6% outliers), (c) No = 700 (66.2% outliers), (d) No = 800
(69.1% outliers).

Model Selection for Affine Subspaces and Nonzero-Mean Gaussians.

We compare the performance of Algorithm 5.1 to that of [?] and [?] on mixed
data drawn from affine subspaces and non-zero mean Gaussians. We test the
algorithms’ performance over multiple trials for three different types of data dis-
tribution. The first is three affine subspaces: two lines and one plane, with noise
standard deviation ε0 = 0.01 and no outliers. Samples are drawn as in the pre-
vious examples. The means of the three groups are fixed (as in the previous
examples), but the orientations of the two lines are chosen randomly. The sec-
ond distribution tested is three affine subspaces: two planes and one line, with
158 points drawn from each plane and 100 from the line, again with ε0 = 0.01.
The orientations of one plane and of the line are chosen randomly. The final dis-
tribution tested is a mixture of n = 3 full-rank Gaussians in R2, with means [2, 0],
[0, 0], [0, 2] and covariance diag(2, 0.2) (this is Figure 3 of [?]). N = 900 points
are sampled (with equal probability) from the three Gaussians.

For the two subspace examples, we run Algorithm 5.1 with ε = ε0 = 0.01.
For the third example, we set ε = 0.2. We repeat each trial 50 times. Figure 5.10
shows a histogram of the number of groups arrived at by the three algorithms.
For all algorithms, all of the segmentations with n = 3 are essentially correct
(classification error < 4%). However, for degenerate, or subspace-like data (Fig-
ure 5.10(a) and Figure 5.10(b)), Algorithm 5.1 was the most likely to converge
to the a-priori group number. For full-rank Gaussians (Figure 5.10(c)), Algorithm

5.4. Simulation and Experimental Results 133

5.1 performs quite well, but is outperformed by [?], which finds the correct seg-
mentation in all 50 trials. The failures of Algorithm 5.1 occur because the greedy
descent converges to a local minimum of the coding length, rather than the global
minimum.

Please note that [?] was not explicitly designed for degenerate distributions,
whereas [?] was not designed for full-rank distributions. Also note that the
samples in this experiment were drawn from a uniform distribution. The perfor-
mance of all three algorithms improves when the generating distribution is indeed
Gaussian. The main implication of the comparison, is therefore that Algorithm
5.1 succeeds under a wide range of conditions, and requires one to make less
assumptions on the underlying data distribution.

(a) (2, 1, 1) in R3 (b) (2, 2, 1) in R3 (c) 3 Gaussians in R2

Figure 5.10. Frequency of occurrence for various n in 50 trials. Top row: Algorithm 5.1.
Middle row: [?]. Bottom row: [?]. The left and center columns show results for randomly
generated arrangements of affine subspaces. The right column shows results for datasets
generated from three full-rank Gaussians, as in [?]. For all cases, the correct number of
groups is n = 3.

5.4.2 Experiments on Real Data

As an example for practical applications, in this section, we test the proposed
clustering algorithm on some real data such as images and microarray data. The
goal is to demonstrate that this algorithm is capable of finding visually appealing
structures in real data. However, we emphasize that it does not provide a complete
solution to either of these practical problems. Such a solution usually entails a
significant amount of domain-specific knowledge and engineering. Nevertheless,
from these preliminary results with images and microarray data, we believe that
the method presented in this chapter provides a generic solution for segmenting

134 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

Figure 5.11. Hierarchical segmentation. Left: original image; Middle Left: ε = 0.005;
Middle Right: ε = 0.02; Right: ε = 0.05.

mixed data that is simple and effective enough to be easily customized for a broad
range of practical problems.14

Segmentation of Natural Images

The lossy compression based clustering Algorithm 5.1 has shed some new light
on image segmentation, where degeneracy is typically introduced from using a
common feature representation for different textures. In Chapter ??, we will have
detailed discussions on how to apply the algorithm to segmenting natural images.
As we will see, the new clustering algorithm obtains good (unsupervised) image
segmentation results even using features as simple as fixed-size Gaussian win-
dows. Figure 5.11 shows the results of an image segmented using 5× 5 windows
under different levels of distortion ε. Readers who are interested in the subject
of image segmentation please see Chapter ?? for more details and experimental
results.

Clustering of Microarray Data

Figure 5.12 shows the result of applying Algorithm 5.1 to gene expression data.
The dataset15 consists of 13,872 vectors in R19, each of which describes the
expression level of a single gene at different time points during an experiment
on anthrax sporulation. A random subset of 600 vectors is visualized in figure
5.12(a). Here, rows correspond to genes and columns to time points. We cluster
these vectors without any preprocessing, using Algorithm 5.1 with ε = 1. The
algorithm finds three distinct clusters, which are displayed in figure 5.12(b) by
reordering the rows.

Figure 5.13 shows clustering results on two additional gene expression
datasets16. The first consists of 8,448 vectors in R5, describing the expression

14We have also tested our algorithm on other mixed data such as speech and handwritten digits. The
results are equally encouraging.

15GDS930, available at http://www.ncbi.nlm.nih.gov/projects/geo.
16GDS34 (left) and GDS1316 (right), also available at http://www.ncbi.nlm.nih.gov/

projects/geo.

http://www.ncbi.nlm.nih.gov/projects/geo
http://www.ncbi.nlm.nih.gov/projects/geo
http://www.ncbi.nlm.nih.gov/projects/geo

5.4. Simulation and Experimental Results 135

=⇒

Figure 5.12. Segmentation of microarray data. Left: raw data. Each row represents the
expression level of a single gene. Right: Three distinct clusters are found, visualized by
reordering the rows.

levels of yeast genes at 5 different time points during a heat shock experiment.
Figure 5.13(a) shows expression levels for a randomly selected subset of 1,200
genes. We cluster these vectors using Algorithm 5.1, with ε = 0.1. Our algorithm
discovers a number of visually coherent clusters, shown in Figure 5.13(b). The
second dataset consists of 45,101 vectors in R10, each of which corresponds to
the expression level of a single gene under varying experimental conditions (this
experiment investigated Down Syndrome-related leukemias). We run Algorithm
5.1 with ε = 1 on a subset of 800 of these vectors (shown in Figure 5.13). Three
large, distinct clusters emerge, visualized in Figure 5.13(d) by reordering the rows
of the data.

⇒ ⇒

(a) (b) (c) (d)

Figure 5.13. Results on two microarray datasets. (a) raw yeast data. (b) segmentation, visu-
alized by reordering rows. The algorithm discovers a number of distinct clusters of varying
size. (c) raw leukemia data. (d) segmentation. Three clusters are found.

136 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

5.5 Coding Length, Effective Dimension, and Sparse
Representation

In the previous sections, we have seen that the existence of underlying subspaces
in real data essentially enables a more compact or compressible representation;
inversely, the process to find the most compact or compressed representation (ei-
ther algebraic or statistical) for the data automatically leads to correct clustering
of the data into multiple subspaces.

In Chapter 3, we have introduced the notion of minimum effective dimension
to measure compactness of the subspace arrangement that best fits the given data
set. Earlier in this chapter, we saw that minimum coding length provides another,
arguably more direct, measure of compactness for the data set. It is therefore nat-
ural to ask how these two seemingly different measures are related to each other
and more importantly, under what conditions they would give (approximately) the
same solution to the subspace segmentation problem.

To reveal the connections between effective dimension and coding length, let
us assume that an (orthonormal) basis Bj is known for each subspace Sj in the
arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn. We can collect all the bases into a single
matrix A = [B1, B2, . . . , Bn]. Now consider using A to represent each point xi
in the data setX = {x1,x2, . . . ,xN}:

xi = Aαi, ∀i = 1, . . . , N. (5.17)

If the sum of the dimensions of all the subspaces m .= d1 + · · ·+dn is larger than
D, the above equation is under-determined and the solution for αi ∈ Rm is not
unique. Among all the αi’s that satisfy the above linear equation, normally the
correct solution for αi has the fewest nonzero entries. That is, it gives the sparsest
linear representation for xi and minimizes the following objective:

(`0) min ‖αi‖0, subject to xi = Aαi, (5.18)

where ‖ · ‖0 is the 0-norm that counts the number of nonzero entries in a vector.
Under mild conditions (such as the dimension of each subspace is low enough),
the sparsest αi only have nonzero entries for base vectors of the subspace to which
xi belongs. So if xi ∈ Sk, we have ‖αi‖0 ≤ dk. Thus, we can measure how well
A represents the data setX by the smallest number of nonzero coefficients:

N∑
i=1

‖αi‖0 =
N∑
i=1

m∑
j=1

‖αij‖0. (5.19)

Notice that this is precisely the second term of the effective dimension (3.55)
(without the first term which is the overhead needed to describe the bases).

Although finding the sparsest solution αi to an under-determined system of
linear equations is an NP-hard problem, the recent work of [?] has show that if
the solution αi is sparse enough, it can be found precisely by minimizing the `1

norm instead:

(`1) min ‖αi‖1, subject to xi = Aαi. (5.20)

5.5. Coding Length, Effective Dimension, and Sparse Representation 137

x0

x

0

log

e

x1

Figure 5.14. Comparison of three functions that measure the compactness of the
representation.

This is a convex optimization problem that can be solved efficient via linear
programming.

One can view that the `1-norm ‖x‖1 for x ∈ R is a continuous “convexifi-
cation” of the `0-norm ‖x‖0. The convex function ‖ · ‖1 reaches minimum at
the same location as the nonconvex ‖ · ‖0. However, the `1-norm ‖x‖1 is not a
differentiable function art x = 0 whereas the regularized logarithmic function
log(1 + x2

ε2) is. It reaches minimum at the same location x = 0 as both ‖x‖0
and ‖x‖1 and approximates ‖x‖0 better as ε → 0. Thus, we can expect to find
approximately the same sparse solution αi by solving the following nonlinear
programming problem:

(log) min
m∑
j=1

1
2

log
(

1 +
α2
ij

ε2

)
, subject to xi = Aαi. (5.21)

Although the logarithmic function is not convex, it is a smooth function that
strikes a good balance between ‖x‖0 and ‖x‖1 in the neighborhood of the
minimum x = 0, as shown in Figure 5.14. Indeed, it has been observed em-
pirically in the literature that minimizing the logarithmic function above can
indeed further improve the algorithm’s ability to recover sparse solutions over
the `1-minimization [?].

In our context, the regularized logarithmic value is exactly the number of bits
needed to encode any coefficient. According to our derivation in Appendix 5.A,
the sum of the logarithmic value of the coefficients

N∑
i=1

m∑
j=1

1
2

log
(

1 +
α2
ij

ε2

)
(5.22)

is precisely the total lossy coding length Ls(·) (5.5), only without the overhead for
describing the bases and the segmentation. Since the minimum coding length is a
close approximation to the entropy of the data, seeking the sparsest representation
is essentially minimizing the entropy of the final representation.

From the above discussion, we now understand that minimizing either the ef-
fective dimension or the lossy coding length is simply to enforce that the resulting
subspace arrangement gives the sparsest representation for the given data set. The

138 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

theory of sparse representation ensures that when the relative dimension of each
subspace is low enough, correctly minimizing either objective function should
lead to (approximately) the same solution. However, the reader might have no-
ticed that the effective dimension is easier to compute with a global algebraic
model. Thus, it is used in the recursive GPCA Algorithm 3.5 to decide whether
or not to “split” a large subspace into multiple smaller ones. The coding length
is however easier to compute directly from the data and does not require an ex-
plicit model (although the tightness of the coding length function relies on the
assumption that the data are Gaussian or linear). Thus, it is used in the agglom-
erative clustering Algorithm 5.1 to decide whether or not to “merge” data points
into subspaces.

5.5.1 Compressed Sensing and Clustering

The relationship between the sparse measure (`0-norm) and the coding length is
not simply that they approximate each other. There is a much more fundamental
connection. In the theory of compressed sensing, a fundamental question is how
to efficiently and accurately recover a sparse vector α0 ∈ Rm from a number of
linear measurements, say x = Aα0,∈ Rn.

Clearly if α0 is an arbitrary vector in Rm, in general one must need n ≥ m lin-
early independent measurements in order to uniquely recover α0 from x = Aα.
The theory of compressed sensing has revealed that if α0 is sufficiently sparse,
say has less than d non-zero entries, it can be efficiently and uniquely recov-
ered from aboutO(d logm) linear measurements. In fact, this is an overwhelming
phenomenon in the sense that these linear measurements can be randomly con-
structed. For instance, A can be a random matrix whose entries are drawn from
independent Gaussian random variables.

In our context, the set of all d-sparse vectors in Rm form a special subspace
arrangement Zd: it contains all (md) subspaces, each spanned by a set of d coor-
dinates. Obviously any set of samples drawn from Zd has an effective dimension
d.

Now, let us consider the problem of retrieving a vector α0 ∈ Zd from the lossy
data compression viewpoint. We may construct α0 by randomly select d entries
and then set their values as independent zero-mean Gaussians variables r1, . . . , rd
with variance E[r2

i] = σ2 = 1/d. In doing so, we essentially impose that the
expected length of α0 be E[‖α0‖2] = 1. This does not lose any generality as the
equation x = Aα is linear in α.

In the context of lossy data compression, we expect to recover α0 up to a pre-
scribed quantization error ε. That is, the difference between the recovered α̂0 and
α0 is: ‖α0 − α̂0‖22 ≤ ε2. As α0 is a vector in Rm, the quantization error allowed
for each entry is therefore ε′ = ε√

m
.

5.5. Coding Length, Effective Dimension, and Sparse Representation 139

The expected lossy coding length for all such α0 is:

E

[
m∑
i=1

1
2

log
(

1 +
α2

0i

ε′2

)]
= E

[
d∑
i=1

1
2

log
(

1 +
r2
i

ε′2

)]

≤
d∑
i=1

1
2

log
(

1 +
E[r2

i]
ε′2

)
≤ 1

2
d log

(
1 +

m

dε2

)
≤ cd log(m/d) (5.23)

for some constant c > 0. In fact, in the case of independent Gaussians, the above
bound is actually tight. That is, to specify a d-sparse vector α0 in Rm (subject to
an error ε, the average number of binary bits needed is about

H
.= cd log(m/d).

This is the entropy of the set of all d-sparse vectors in consideration. We should
not expect to distinguish any two vectors in this set by any means at all if these
vectors are described with less that H ≈ O(d logm/d) bits.

Notice that the codebook that maps the vector α to the binary code could be
rather complicated and hard to compute in general.17 A surprising news from
compressed sensing is that if d� m, α can actually be retrieved very efficiently,
via linear programming, from essentially the same order, O(d logm/d), of any
(real-valued) linear measurements [?]! As revealed by the work of Donoho and
Tanner, the fundamental reason why this is even possible has a lot to do with an
amazing fact associated with high-dimensional polytopes: The set of all d sparse
vectors in Rm span the d skeleton of the standard cross polytope, the unit `1 ball,
of Rm. As it turns out, the d skeleton is preserved, with almost probability one,
under any random projection onto an n-dimensional space as long as n is large
enough:

n ≥ 2d log(m/n). (5.24)

The inequality holds for the regime where n and d are asymptotically in propor-
tion to each other. In particular, if n/d = const., we see that the two bounds
cd log(m/d) and 2d log(m/n) are essentially the same. In other words, one has
good chance to recover any d-sparse vector α0 from x = Aα for any choice of
A ∈ Rn×m, where n ∼ O(d logm/n). The way to recover α is to find out which
d-face x lies on the projection of the cross polytope via A. This can be done
precisely by solving the following `1-minimization problem:

min ‖α‖1, subject to x = Aα. (5.25)

17In fact, for a general distribution, it is an extremely difficult problem to construct a code book that
exactly achieves the rate-distortion function of the distribution.

140 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

5.5.2 Dictionary Learning and Clustering

In the discussion above, we have assumed that the set of bases are given for all
the subspaces and they are put together as a dictionary A = [B1, B2, . . . , Bn] so
that each data point in X has a sufficiently sparse representation with respect to
this dictionary. Thus, conceptually, clustering can be thought as the problem of
finding a dictionary A so that the points inX all have very sparse representations
with respect to A. This is obviously a very challenging problem.

So another way to formulate the subspace segmentation problem is to find a
special “factorization” of the data matrixX:

X = AC, (5.26)

where A is a minimal dictionary (consisting of bases of the subspaces) and C is
a matrix whose columns are expected to be very sparse. By A being minimal,
we mean its size is the smallest possible while still guaranteeing the coefficient
matrix C being sufficiently sparse. Notice that without sparsity requirement on
C, the minimal dictionary A can simply be chosen to be the standard basis of
RD : A = I . Also, if we only ask C to be the sparsest possible, we can simply
choose A to be the data matrix itself: A = X . Then, each data point x can be
represented by exactly one element, x itself, in A.

Thus, we see that the subspace segmentation problem cannot be trivially
reduced to a matrix factorization problem. In general, it needs proper joint reg-
ularization on the size of matrix A and the sparsity of C. Here we analyze the
special case when the dimension of A is known, say the number and dimensions
of all the subspaces are known in advance. That is, we know A is a D×m matrix
withm = d1+d2+· · ·+dn. In this case, we have to find a factorizationX = AC
such that C is the sparsest.

Since either A or C is unknown, this problem is still very difficult to solve
directly. One popular approach to find a matrix factorization is through iteration
between the two unknown factors: For any fixed A, we could try to find the spars-
est C such that X = AC; for a fixed C, we could find the best A that satisfies
X = AC. In the iteration, since eitherA orC might not be the actual solution, we
do not expect the equation X = AC to hold exactly. Hence, we can look for the
best approximation instead. The above iterative scheme can then be summarized
as the following algorithm for learning the dictionary A from a given datasetX .

In the literature, such a block coordinate descent algorithm is also known as
the “Method of Directions” (MOD) [?]. Other variations to this methods include
the popular K-SVD algorithm [?], which only differs from Algorithm 5.2 in how
A(k) is updated at each iteration.

As an iterative algorithm, in general there is no guarantee that the above scheme
will always converge to the correct set of base vectors for the subspaces. Indeed,
from our experience, although the above scheme in general is able to find a better
dictionary that improves the joint sparsity of the data points in X , it does not
always converge the globally optimal solution – the set of bases for the subspaces.
Seeking better algorithms for learning sparse dictionary remains an open problem

5.6. Bibliographic Notes 141

Algorithm 5.2 (Iterative Learning of Sparse Dictionary).

1: Input: the dataX = (x1, . . . ,xm) ∈ RD×N and an error tolerance τ > 0.
2: Initialize k = 0 and A(0) ∈ RD×N .
3: while error > τ do
4: k = k + 1.
5: For each xi ∈X , find ci ∈ RN as the solution to the problem:

ci = arg min ‖c‖1 subject to xi = A(k−1)c.

6: Let C(k) = [c1, . . . , cm] and update the dictionary as:

A(k) = arg min
A
‖X −AC(k)‖2F = XCT(k)

(
C(k)C

T
(k)

)−1
.

7: error = ‖X −A(k)C(k)‖2F .
8: end
9: Output: A(k) and C(k).

in machine learning. It has become a very active research topic recently due to its
importance for problems in computer vision and pattern recognition.

5.6 Bibliographic Notes

Compression-based Clustering

Analysis in this chapter has revealed strong connections between data segmenta-
tion and data compression: the correct segmentation is associated with the actual
entropy of the data. Compression as a principle has been proposed for data clus-
tering before, e.g., [?] introducing an inter-point normalized compression distance
that works for various data types. However, here the coding length gives a mea-
sure of distance between different subsets of the data. However, here we require
the data to be real-valued.

The simulations and experiments have suggested potential connections with
certain phase transition phenomena that often appear in statistical physics. From a
theoretical standpoint, it would be highly desirable to obtain analytical conditions
on the critical values of the distortion and the outlier density that can explain and
predict the phase transition behaviors. So far, only the case with zero-dimensional
subspaces, i.e. vector quantization (VQ), has been well characterized [?].

Relations to Other Metrics

It has been shown that computing the lossy ML estimate is approximately (up to
first order, asymptotically) equivalent to minimizing the coding rate of the data

142 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

subject to a distortion ε [?]:

θ̂LML = arg min
θ,π

R(p̂(X), θ, ε), (5.27)

where p̂(X) is the empirical estimate of the probabilistic distribution from a set
of sample dataX = {xi}. From the dimension-reduction perspective, one would
attempt to directly minimizing the dimension, or rank(Xi), of each subset. It is
well-known that the ε-regularized log det(·) is a good continuous surrogate for
the discrete-valued rank function [?]. Techniques from compressed sensing have
recently shown that when the rank is sufficiently low, the minimum of such surro-
gates coincides with the minimum-rank solution [?]. From the data-compression
viewpoint, one might be more interested in an accurate estimate of the total vol-
ume of the data set. Notice that det(XjX

T
j + ε2I) is an ε-regularized volume of

the subset Xj , which is well-defined even if Xj lie on a proper subspace. Thus,
minimizing the lossy coding length function Ls indeed unifies and generalizes
other statistical or geometric metrics popular for data compression and clustering.

Improving the Agglomerative Algorithm

There are many possible ways to further improve the efficiency or convergence of
the proposed greedy algorithm. For instance, one may adopt more advanced split-
and-merge strategies (such as those in [?]) or random techniques (such as [?]) to
improve the speed of the algorithm. It is possible though that in the future, one
can even develop more efficient and effective algorithms to minimize the coding
length function, entirely different from the agglomerative approach proposed in
this chapter.

Extensions to Classification

The good performance of the Agglomerative Algorithm 5.1 can be partly justified
from a classification perspective. Notice that at line 4 of Algorithm 5.1, the algo-
rithm is essentially dealing with a classification problem. For each sample point
x ∈ Rn that has not been merged into one of the existing clusters, X1, . . . ,Xk,
the algorithm compares how many additional bits are needed to encode it with
each one of the clusters:

δL(x, j) = L(Xj ∪ {x})− L(Xj) + L(j), (5.28)

where the last term is the cost of losslessly coding the label y for x as y = j. Thus,
the algorithm simply assigns x to the cluster that minimizes the number of addi-
tional bits needed to code (x, ŷ), which we refer to as the minimum incremental
coding length (MICL) criterion:

ŷ(x) .= arg min
y=1,...,k

δL(x, y). (5.29)

Somewhat surprisingly, this seemingly naive rule followed by the merging pro-
cess at each step is in fact nearly optimal! Or more precisely, classification based
on the MICL criterion is, asymptotically, equivalent to a regularized version of
maximum a posterior (MAP) classifier, see [?] for a proof.

5.7. Exercises 143

5.7 Exercises

Exercise 5.1 (Large Quantization Error). Show that when ε → ∞, the coding length
function Ls reaches minimum when all sample points are merged into one group.

Exercise 5.2 (Small Quantization Error: Zero Mean Case). Now we characterize what
happens when ε → 0. Here we assume all clusters are zero mean and consider the coding
length function (5.4).

1. Show that for two sample points x1,x2 that are linearly independent, as ε → 0,
L({x1,x2}) > Ls({x1}, {x2}).

2. Now for an arbitrary set X = {x1, . . . ,xN}, suppose N > D2, then as ε → 0,
grouping all points together will result in a shorter coding length than leaving each
point as its own group.

3. Show that under the same conditions as the previous question, if the data are drawn
from some non-singular distribution, then for sufficiently small ε, with probability
1, the minimum coding length is achieved by merging all samples into one group.

The first two facts show that for extremely small ε, the agglomerative Algorithm 5.1 will
mostly likely get stuck in a local minimum as it does not merge any pair of points at
all. This is what we have seen in the simulations. The third fact shows that for a generic
distribution, with the sample size fixed, for an extremely small ε, assigning all samples into
one group is actually the optimal solution. Notice that none of this invalidate the proposed
algorithm as it is expected to work in the regime where the sample density is comparable
to ε. But they do suggest that when the data are rather under-sampled, one should modify
Algorithm 5.4 to better impose the global subspace structures.

Exercise 5.3 (Small Quantization Error: Affine Case). Show that if we use the coding
length for the nonzero mean (affine) case (5.42), given in the Appendix 5.B, then as ε→ 0,
keeping each point separate gives a smaller coding length than grouping all points together.
This is opposite to the zero mean case.

5.A Lossy Coding Length for Subspace-Like Data

In Section 5.2, we have shown that in principle, one can construct a coding scheme
for a given set of dataX = (x1, . . . ,xN) ∈ RD×N such that the average number
of bits needed to encode each vector is bounded by

R(X) =
1
2

log2 det
(
I +

D

Nε2
XXT

)
, (5.30)

as if X is drawn from a multivariate Gaussian distribution of covariance Σ =
1
NXX

T . However, we do not know in the non-parametric setting (i.e. with finite
number of samples), whether the above coding length is still of any good. In this
appendix, we provide a constructive proof that L(X) = (N + D)R(X) indeed
gives a tight upper bound for the number of bits needed to encode X . One in-
teresting feature of the construction is that the coding scheme apparently relies
on coding the subspace spanned by the vectors (i.e., the singular vectors) and the

144 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

coordinates of the vectors with respect to the subspace. Thus geometrically, mini-
mizing the coding length (via segmentation) is essentially to reduce the dimension
of each subset of the data and the variance of each subset within each subspace.

Consider the singular value decomposition (SVD) of the data matrix X =
UΣV T . Let B = (bij) = ΣV T . The column vectors of U = (uij) form a basis
for the subspace spanned by vectors in W , and the column vectors of B are the
coordinates of the vectors with respect to this basis.

For coding purpose, we store the approximated matrices U + δU and B + δB.
The matrixX can be recovered as

X + δX
.= (U + δU)(B + δB) = UB + δUB + UδB + δUδB. (5.31)

Then δX ≈ δUB + UδB as entries of δUδB are negligible when ε is small
(relative to the dataX). The squared error introduced to the entries ofX are∑
i,j

δx2
ij = tr

(
δWδWT

)
≈ tr

(
UδBδBTUT +δUBBT δUT +δUBδBTUT +UδBBT δUT

)
.

We may further assume that the coding errors δU and δB are zero-mean inde-
pendent random variables. Using the fact that tr(AB) = tr(BA), the expected
squared error becomes

E(tr
(
δXδXT)

)
= E

(
tr(δBδBT)

)
+ E

(
tr(Σ2δUT δU)

)
.

Now, let us encode each entry bij with a precision ε′ = ε√
D

and uij with

a precision ε′′j = ε
√
N√
λjD

, where λj is the jth eigenvalue of XXT .18 This is

equivalent to assume that the error δbij is uniformly distributed in the interval[
− ε√

D
, ε√

D

]
and δuij is uniformly distributed in the interval

[
− ε

√
N√
λjD

, ε
√
N√
λjD

]
.

Under such a coding precision, it is easy to verify that

E
(
tr(δXδXT)

)
≤ 2ε2N

3
< ε2N. (5.32)

Then the mean squared error per vector inX is
1
N

E
(
tr(δXδXT)

)
< ε2. (5.33)

The number of bits to store the coordinates bij with precision ε′ = ε√
D

is

D∑
i=1

N∑
j=1

1
2

log2

(
1 +

(bij
ε′
)2) =

1
2

D∑
i=1

N∑
j=1

log2

(
1 +

b2ijD

ε2

)

≤ N

2

D∑
i=1

log2

(
1 +

D
∑N
j=1 b

2
ij

Nε2

)
=
N

2

D∑
i=1

log2

(
1 +

Dλi
Nε2

)
.

18Notice that ε′′j normally does not increase with the number of vectors N , because λj increases
proportionally to N .

5.B. Nonzero Mean Case 145

In the above inequality, we have used the concavity of the log function:

log(1 + a1) + · · ·+ log(1 + an)
n

≤ log
(

1 +
a1 + · · ·+ an

n

)
(5.34)

for nonnegative real numbers a1, a2, . . . , an ≥ 0.
Similarly, the number of bits to store the entries of the singular vectors uij with

precision ε′′ = ε
√
N√

λiD
is

D∑
i=1

D∑
j=1

1
2

log2

(
1 +

(uij
ε′′
)2) =

1
2

D∑
i=1

D∑
j=1

log2

(
1 +

u2
ijD

2λj

Nε2

)

≤ D

2

D∑
j=1

log2

(
1 +

D2λj
∑D
i=1 u

2
ij

Nε2

)
=
D

2

D∑
j=1

log2

(
1 +

Dλj
Nε2

)
.

Thus, for U and B together, we need a total of

L(X)=
N +D

2

D∑
i=1

log2

(
1+

Dλi
Nε2

)
=
N +D

2
log2 det

(
I+

D

Nε2
XXT

)
.(5.35)

We thus have proved the statement given in the beginning of this section: L(X) =
(N+D)·R(X) gives a good upper bound on the number of bits needed to encode
X .

5.B Nonzero Mean Case

In the above analysis, we have assumed that the given vectorsX = (x1, . . . ,xN)
are zero-mean. In general, these vectors may have a non-zero mean. In other
words, the points represented by these vectors may lie in an affine subspace,
instead of a linear subspace.

In caseX is not zero mean, let µ .= 1
N

∑N
i=1 xi ∈ RD and define the matrix

V
.= µ · 11×N = (µ, µ, . . . , µ) ∈ RD×N . (5.36)

Then X̄ .= X − V is a matrix whose column vectors have zero mean. We may
apply the same coding scheme in the previous section to X̄ .

Let X̄ = UΣV T .= UB be the singular value decomposition of X̄ . Let
δU, δB, δµ be the error in coding U,B, µ, respectively. Then the error induced
on the matrixX is

δX = δµ · 11×N + UδB + δUB. (5.37)

Assuming that δU, δB, δµ are zero-mean independent random variables, the
expected total squared error is

E
(
tr(δXδXT)

)
= NE(δµT δµ) + E

(
tr(δBδBT)

)
+ E

(
tr(ΣδUT δU)

)
.(5.38)

We encode entries of B and U with the same precision as before. We encode
each entry µi of the mean vector µ with the precision ε′ = ε√

D
and assume that

146 Chapter 5. Agglomerative Methods for Multiple-Subspace Segmentation

the error δµi is a uniform distribution in the interval
[
− ε√

D
, ε√

D

]
. Then we

have NE(δµT δµ) = Nε2

3 . Using equation (5.32) for the zero-mean case, the total
squared error satisfies

E
(
tr(δXδXT)

)
≤ Nε2

3
+

2Nε2

3
= Nε2. (5.39)

Then the mean squared error per vector in W is still bounded by ε2:

1
N

E
(
tr(δWδWT)

)
≤ ε2. (5.40)

Now in addition to the L(X̄) bits needed to encode U and B, the number of
bits needed to encode the mean vector µ with precision ε′ = ε√

D
is

D∑
i=1

1
2

log2

(
1 +

(µi
ε′
)2)=

1
2

D∑
i=1

log2

(
1 +

Dµ2
i

ε2

)
≤D

2
log2

(
1 +

µTµ

ε2

)
,(5.41)

where the last inequality follows from the inequality (5.34).
Thus, the total number bits needed to storeX is

L(X) =
N +D

2
log2 det

(
I +

D

Nε2
X̄X̄

T)+
D

2
log2

(
1 +

µTµ

ε2

)
. (5.42)

Notice that if X is actually zero-mean, we have µ = 0, X̄ = X , and the above
expression for L(X) is exactly the same as before.

This is page 147
Printer: Opaque this

Part II

Applications in Image
Processing & Computer

Vision

This is page 148
Printer: Opaque this

This is page 149
Printer: Opaque this

Chapter 6
Image Representation

In this chapter, we demonstrate why subspace arrangements can be a very use-
ful class of models for image processing and how the subspace-segmentation
techniques may facilitate many important image processing tasks, such as image
representation (compression), segmentation, and classification.

6.1 Image Representation as a GPCA Problem

Researchers in image processing and computer vision have long sought for
efficient and sparse representations of images. Except for a few image repre-
sentations such as fractal-based approaches [Fisher, 1995], most existing sparse
image representations use an effective linear transformation so that the energy
of the (transformed) image will be concentrated in the coefficients of a small set
of bases of the transformation. Computing such a representation is typically the
first step of subsequent (lossy) compression of the image.1 The result can also be
used for other purposes such as image segmentation,2 classification, and object
recognition.

Most of the popular methods for obtaining a sparse representation of images
can be roughly classified into two categories.

1. Fixed-Basis Linear Transformations. Methods of the first category seek to
transform all images using a pre-fixed linear transformation. Each image

1Which involves further quantization and entropy-coding of the so-obtained representation.
2As we will study in the next section.

150 Chapter 6. Image Representation

is then represented as a superposition of a set of basis functions (speci-
fied by the transformation). These methods essentially all evolved from the
classical Fourier Transform. One variation of the (discrete) Fourier Trans-
form, the Discrete Cosine Transform (DCT), serves as the core of the JPEG
standard [Wallace, 1991]. Due to the Gibbs’ phenomenon, DCT is poor
at approximating discontinuities in the imagery signal. Wavelets [DeVore
et al., 1992, Donoho et al., 1998, Mallat, 1999, Shapiro, 1993] have been
developed to remedy this problem and have been shown to be optimal for
representing 1-D signals with discontinuities. JPEG-2000 adopted wavelets
as its standard. However, because wavelet transforms only deal with 1-D
discontinuities, they are not well-suited to represent 2-D singularities along
edges or contours. Anisotropic bases such as wedgelets [Donoho, 1999],
curvelets [?], countourlets [Do and Vetterli, 2002] and bandlets [LePen-
nec and Mallat, 2005] have been proposed explicitly to capture different
2-D discontinuities. These x-lets have been shown to be (approximately)
optimal for representing objects with singularities alongC2-smooth edges.3

However, natural images, especially images that have complex textures and
patterns, do not consist solely of discontinuities along C2-smooth edges.
This is probably the reason why these edge-based methods do not seem to
outperform (separable) wavelets on complex images. More generally, one
should not expect that a (fixed) “gold-standard” transformation would work
optimally for all images (and signals) in the world. Furthermore, conven-
tional image (or signal) processing methods are developed primarily for
gray-scale images. For color images or other multiple-valued images, one
has to apply them to each value separately (e.g., one color channel at a
time). The strong correlation that is normally present among the multiple
values or colors is unfortunately ignored.

2. Adaptive Transformations & Hybrid Models Methods of the second cate-
gory aim to identify the optimal (or approximately optimal) representation
that is adaptive to specific statistics or structures of each image.4 The
Karhunen-Loève transform (KLT) or principal component analysis (PCA)
[Effros and Chou, 1995] identifies the optimal principal subspace from the
statistical correlation of the imagery data and represents the image as a
superposition of the basis of the subspace. In theory, PCA provides the
optimal linear sparse representation assuming that the imagery data sat-
isfy a uni-modal distribution. However in reality, this assumption is rarely
true. Natural images typically exhibit multi-modal statistics as they usually
contain many heterogeneous regions with significantly different geometric

3Here, “optimality” means that the transformation achieves the optimal asymptotic for
approximating the class of functions considered [DeVore, 1998].

4Here, unlike in the case of prefixed transformations, “optimality” means the representation ob-
tained is the optimal one within the class of models considered, in the sense that it minimizes certain
discrepancy between the model and the data.

6.1. Image Representation as a GPCA Problem 151

structures or statistical characteristics (e.g. Figure 6.2). Heterogeneous data
can be better-represented using a mixture of parametric models, one for
each homogeneous subset. Such a mixture of models is often referred to as
a hybrid model. Vector quantization (VQ) [Gersho and Gray, 1992] is a spe-
cial hybrid model that assumes the imagery data are clustered around many
different centers. From the dimension reduction point of view, VQ repre-
sents the imagery data with many 0-dimensional (affine) subspaces. This
model typically leads to an excessive number of clusters or subspaces.5 The
primal sketch model [Guo et al., 2003] is another hybrid model which rep-
resents the high entropy parts of images with Markov random fields [Zhu
et al., 1998, Wu et al., 2000] and the low entropy parts with sketches. The
result is also some kind of a “sparse” representation of the image as super-
position of the random fields and sketches. However, the primary goal of
primal sketch is not to authentically represent and approximate the original
image. It is meant to capture the (stochastic) generative model that produces
the image (as random samples). Therefore, this type of models are more
suited for image parsing, recognition, and synthesis than approximation and
compression. In addition, finding the sketches and estimating the parame-
ters of the random fields are computationally expensive and therefore less
appealing for developing efficient image representation and compression
schemes.

In this chapter, we would like to show how to combine the benefits of PCA and
VQ by representing an image with multiple (affine) subspaces – one subspace
for one image segment. The dimension and basis of each subspace are pertinent
to the characteristics of the image segment it represents. We call this a hybrid
linear model and will show that it strikes a good balance between simplicity and
expressiveness for representing natural images.

A Multi-Scale Hybrid Linear Model for Lossy Image Representation.

One other important characteristic of natural images is that they are comprised
of structures at many different (spatial) scales. Many existing frequency-domain
techniques harness this characteristic [?]. For instance, wavelets, curvelets, and
fractals have all demonstrated effectiveness in decomposing the original imagery
signal into multiple scales (or subbands). As the result of such a multi-scale
decomposition, the structures of the image at different scales (e.g., low v.s. high
frequency/entropy) become better exposed and hence can be more compactly rep-
resented. The availability of multi-scale structures also significantly reduces the
size and dimension of the problem and hence reduces the overall computational
complexity.

5Be aware that compared to methods in the first category, representations in the second category
typically need additional memory to store the information about the resulting model itself, e.g., the
basis of the subspace in PCA, the cluster means in VQ.

152 Chapter 6. Image Representation

Therefore, in this chapter we introduce a new approach to image representation
by combining the hybrid paradigm and the multi-scale paradigm. The result is a
multi-scale hybrid linear model which is based on an extremely simple concept:
Given an image, at each scale level of its down-sample pyramid, fit the (residual)
image by a (multiple-subspace) hybrid linear model. Compared to the single-scale
hybrid linear model, the multi-scale scheme can reduce not only the size of the
resulting representation but also the overall computational cost. Surprisingly, as
we will demonstrate, such a simple scheme is able to generate representations for
natural images that are more compact, even with the overhead needed to store
the model, than most state-of-the-art representations, including DCT, PCA, and
wavelets.

6.2 Image Representation with Hybrid Linear Models

6.2.1 Linear versus Hybrid Linear Models

In this section we introduce and examine the hybrid linear model for image repre-
sentation. The relationship between hybrid linear models across different spatial
scales will be discussed in Section 6.2.2.

An image I with width W , height H , and c color channels resides in a very
high-dimensional space RW×H×c. We may first reduce the dimension by dividing
the image into a set of non-overlapping b by b blocks.6 Each b by b block is then
stacked into a vector x ∈ RD, where D = b2c is the dimension of the ambient
space. For example, if c = 3 and b = 2, then D = 12. In this way, the image I
is converted to a set of vectors {xi ∈ RD}Ni=1, where N = WH/b2 is the total
number of vectors.

Borrowing ideas from existing unsupervised learning paradigms, it is tempting
to assume the imagery data {xi} are random samples from a (non-singular) prob-
ability distribution or noisy samples from a smooth manifold. As the distribution
or manifold can be very complicated, a common approach is to infer a best ap-
proximation within a simpler class of models for the distributions or manifolds.
The “optimal” model is then the one that minimizes certain distance to the true
model. Different choices of model classes and distance measures have led to many
different learning algorithms developed in machine learning, pattern recognition,
computer vision, and image processing. The most commonly adopted distance
measure, for image compression, is the Mean Square Error (MSE) between the
original image I and approximated image Î ,

ε2
I =

1
WHc

‖Î − I‖2. (6.1)

Since we will be approximating the (block) vectors {xi} rather than the image
pixels, in the following derivation, it is more convenient for us to define the Mean

6Therefore, b needs to be a common divisor of W and H .

6.2. Image Representation with Hybrid Linear Models 153

Square Error (MSE) per vector which is different from ε2
I by a scale,

ε2 =
1
N

N∑
i=1

‖x̂i − xi‖2 =
b2

WH

N∑
i=1

‖x̂i − xi‖2 =
b2

WH
‖Î − I‖2 = (b2c)ε2

I .

(6.2)

The Peak Signal to Noise Ratio (PSNR) of the approximated image is defined
as,7

PSNR .= −10 log ε2
I = −10 log

ε2

b2c
. (6.3)

Linear Models.

If we assume that the vectors x are drawn from an anisotropic Gaussian dis-
tribution or a linear subspace, the optimal model subject to a given PSNR can
be inferred by Principal Component Analysis (PCA) [Pearson, 1901, Hotelling,
1933, Jolliffe, 2002] or equivalently the Karhunen-Loève Transform (KLT) [Ef-
fros and Chou, 1995]. The effectiveness of such a linear model relies on the
assumption that, although D can be large, all the vectors x may lie in a sub-
space of a much lower dimension in the ambient space RD. Figure 6.1 illustrates
this assumption.

S1

I

x

x

B

G

R

Rk

Figure 6.1. In a linear model, the imagery data vectors {xi ∈ RD} reside in an (affine)
subspace S of dimension d� D.

Let x̄ = 1
N

∑N
i=1 xi be the mean of the imagery data vectors, andX = [x1 −

x̄,x2 − x̄, ... ,xN − x̄] = UΣV T be the SVD of the mean-subtracted data
matrix X . Then all the vectors xi can be represented as a linear superposition:
xi = x̄ +

∑D
j=1 α

j
iφj , i = 1, ..., N, where {φj}Dj=1 are just the columns of the

matrix U .
The matrix Σ = diag(σ1, σ2, ... , σD) contains the ordered singular values

σ1 ≥ σ2 ≥ · · · ≥ σD. It is well known that the optimal linear representation of

7The peak value of the imagery data is normalized into 1.

154 Chapter 6. Image Representation

xi subject to the MSE ε2 is obtained by keeping the first d (principal) components

x̂i
.= x̄+

d∑
k=1

αki φk, i = 1, ..., N, (6.4)

where d is chosen to be

d = min(k), s.t.
1
N

D∑
i=k+1

σ2
i ≤ ε2. (6.5)

The model complexity of the linear model, denoted as Ω, is the total number
of coefficients needed for representing the model {αki , φk, x̄} and subsequently a
lossy approximation Î of the image I . It is given by

Ω(N, d) .= Nd+ d(D − d+ 1), (6.6)

where the first term is the number of coefficients {αki } to represent {x̂i − x̄}Ni=1

with respect to the basis Φ = {φk}dk=1 and the second term is the number of
Grassmannian coordinates8 needed for representing the basis Φ and the mean
vector x̄. The second term is often called overhead.9 Notice that the original set of
vectors {xi} containND coordinate entries. If Ω� ND, the new representation,
although lossy, is more compact. The search for such a compact representation is
at the heart of any (lossy) image compression method. When the image I is large
and the block size b is small, N will be much larger than D so that the overhead
will be much smaller than the first term. However, in order to compare fairly
with other methods, in the subsequent discussions and experiments, we always
count the total number of coefficients needed for the representation, including the
overhead.

Hybrid Linear Models.

The linear model is very efficient when the target manifold or distribution func-
tion is indeed unimodal. However, if the image I contains several heterogeneous
regions {Ij}nj=1, the data vectors xi can be samples from a collection of sub-
spaces of possibly different dimensions or from a mixture of multiple (Gaussian)
distributions. Figure 6.2 shows the first three principal components of the data
vector xi (as dots in R3) of an image. Note the clear multi-modal characteristic
in the data.

Suppose that a natural image I can be segmented into n disjoint regions I =
∪nj=1Ij with Ij ∩ Ij′ = ∅ for j 6= j′. In each region Ij , we may assume the

8Notice that to represent a d-dimensional subspace in a D-dimensional space, we only need to
specify a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows
of a d × D matrix. Any nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the normal form [Id×d, G]

where G is a d× (D − d) matrix consisting of the so-called Grassmannian coordinates.
9Notice that if one uses a pre-chosen basis such as discrete Fourier transform, discrete cosine

transform (JPEG), and wavelets (JPEG-2000), there is no such overhead.

6.2. Image Representation with Hybrid Linear Models 155

Figure 6.2. Left: The baboon image. Right: The coordinates of each dot are the first three
principal components of the vectors xi. There is a clear multi-modal structure in the data.

linear model (6.4) is valid for the subset of vectors {xj,i}
Nj

i=1 in Ij :

x̂j,i = x̄j +
dj∑
k=1

αki φj,k, i = 1, ..., Nj . (6.7)

Intuitively, the hybrid linear model can be illustrated by Figure 6.3.

S1

I

x

x

B

G

R

S3

S2

S4
Rk

Figure 6.3. In hybrid linear models, the imagery data vectors {xi} reside in multiple
(affine) subspaces which may have different dimensions.

As in the linear model, the dimension dj of each subspace is determined by a
common desired MSE ε2 using equation (6.5). The model complexity, i.e., the to-
tal number of coefficients needed to represent the hybrid linear model {φj,k, x̂j,i}
is10

Ω = Ω(N1, d1) + · · ·+ Ω(Nn, dn) =
n∑
j=1

(
Njdj + dj(D − dj + 1)

)
. (6.8)

10We also need a very small number of binary bits to store the membership of the vectors. But those
extra bits are insignificant comparing to Ω and often can be ignored.

156 Chapter 6. Image Representation

Notice that Ω is similar to the effective dimension (ED) of the hybrid linear rep-
resentation defined in [?]. Thus, finding a representation that minimizes Ω is the
same as minimizing the effective dimension of the imagery data set.11

Instead, if we model the union of all the vectors ∪nj=1{xj,i}
Nj

i=1 with a single
subspace (subject to the same MSE), the dimension of the subspace in general
needs to be d = min{d1 + · · · + dn, D}. It is easy to verify from the definition
(6.6) that under reasonable conditions (e.g., n is bounded from being too large),
we have

Ω(N, d) > Ω(N1, d1) + · · ·+ Ω(Nn, dn). (6.9)

Thus, if a hybrid linear model can be identified for an image, the resulting repre-
sentation will in general be much more compressed than that with a single linear
or affine subspace. This will also be verified by experiments on real images in
Section 6.2.3.

However, such a hybrid linear model alone is not able to generate a represen-
tation that is as compact as that by other competitive methods such as wavelets.
There are at least two aspects in which the above model can be further improved.
Firstly, we need to further reduce the negative effect of overhead by incorporating
a pre-projection of the data onto a lower dimensional space. Secondly, we need to
implement the hybrid linear model in a multi-scale fashion. We will discuss the
former aspect in the remainder of this section and leave the issues with multi-scale
implementation to the next section.

Dimension Reduction via Projection.

In the complexity of the hybrid linear model (6.8), the first term is always smaller
than that of the linear model (6.6) because dj ≤ d for all j and

∑n
j=1Nj =

N . The second overhead term however can be larger than in that of the linear
model (6.6) because the bases of multiple subspaces now must be stored. We here
propose a method to further reduce the overhead by separating the estimation of
the hybrid model into two steps.

In the first step, we may project the data vectors {xi} onto a lower-dimensional
subspace (e.g., via PCA) so as to reduce the dimension of the ambient space from
D to D′. The justification for such a subspace projection has been discussed ear-
lier in Section 3.1.2. Here, the dimension D′ is chosen to achieve an MSE 1

2ε
2.

The data vectors in the lower ambient space RD′ are denoted as {x′i}. In the sec-
ond step, we identify a hybrid linear model for {x′i} within the lower-dimension
ambient space RD′ . In each subspace, we determine the dimension dj subject to
the MSE 1

2ε
2. The two steps combined achieve an overall MSE ε2, but they can

11In fact, the minimal Ω can also be associated to the Kolmogorov entropy or to the minimum
description length (MDL) of the imagery data.

6.2. Image Representation with Hybrid Linear Models 157

actually reduce the total model complexity to

Ω =
n∑
j=1

(
Njdj + dj(D′−dj + 1)

)
+D(D′+1). (6.10)

This Ω will be smaller than the Ω in equation (6.8) because D′ is smaller than D.
The reduction of the ambient space will also make the identification of the hybrid
linear model (say by GPCA) much faster.

If the number of subspaces, n, is given, algorithms like GPCA or EM can al-
ways find a segmentation. The basis {φj,k} and dimension dj of each subspace are
determined by the desired MSE ε2. As n increases, the dimension of the subspaces
may decrease, but the overhead required to store the bases may increase. The op-
timal n∗ therefore can be found recursively by minimizing Ω for different n’s,
as shown in Figure 6.4. From our experience, we found that n is typically in the

N

Omega

Noptimal

Figure 6.4. The optimal n∗ can be found by minimizing Ω with respect to n.

range from 2 to 6 for natural images, especially in a multi-scale implementation
that we will introduce next.

Algorithm 6.1 describes the pseudocode for estimating the hybrid linear model
of an image I , in which the SubspaceSegmentation(·) function is implemented
(for the experiments in this chapter) using the GPCA algorithm given in ear-
lier chapters. But it can also be implemented using EM or other subspace
segmentation methods.

Example 6.1 (A Hybrid Linear Model for the Gray-Scale Barbara Image). Figure 6.5
and Figure 6.6 show intuitively a hybrid linear model identified for the 8 × 8 blocks of
the standard 512 × 512 gray-scale Barbara image. The total number of blocks is N =
4, 096. The GPCA algorithm identifies three subspaces for these blocks (for a given error
tolerance), as shown in Figure 6.5. Figure 6.6 displays the three sets of bases for the three
subspaces identified, respectively. It is worth noting that these bases are very consistent
with the textures of the image blocks in the respective groups.

158 Chapter 6. Image Representation

Algorithm 6.1 (Hybrid Linear Model Estimation).

1: function Î = HybridLinearModel(I, ε2)

2: {xi} = StackImageIntoVectors(I);

3: {x′i}, {φk}, {αki } = PCA({xi − x̄}, 1
2
ε2);

4: for each possible n do
5: {x′j,i} = SubspaceSegmentation({x′i}, n);
6: {x̂′j,i}, {φj,k}, {αkj,i} = PCA({x′j,i − x̄′j}, 1

2
ε2);

7: compute Ωn;

8: end for

9: Ωopt = min(Ωn);

10: Î = UnstackVectorsIntoImage({x̂′j,i} with Ωopt);

11: output {αki }, {φk}, x̄, {αkj,i}, {φj,k}, {x̄′j} with Ωopt;

12: return Î .

Figure 6.5. The segmentation of the 4,096 image blocks from the Barbara image. The im-
age (left) is segmented into three groups (right three). Roughly speaking, the first subspace
contains mostly image blocks with homogeneous textures; the second and third subspaces
contain blocks with textures of different spatial orientations and frequencies.

6.2.2 Multi-Scale Hybrid Linear Models

There are at least several reasons why the above hybrid linear model needs further
improvement. Firstly, the hybrid linear model treats low frequency/entropy re-
gions of the image in the same way as the high frequency/entropy regions, which
is inefficient. Secondly, by treating all blocks the same, the hybrid linear model
fails to exploit stronger correlations that typically exist among adjacent image
blocks.12 Finally, estimating the hybrid linear model is computationally expen-
sive when the image is large. For example, we use 2 by 2 blocks, a 512 by 512
color image will have M = 65, 536 data vectors in R12. Estimating a hybrid lin-
ear model for such a huge number of vectors is difficult (if not impossible) on a
regular PC. In this section, we introduce a multi-scale hybrid linear representation
which is able to resolve the above issues.

12For instance, if we take all the b by b blocks and scramble them arbitrarily, the scrambled image
would be fit equally well by the same hybrid linear model for the original image.

6.2. Image Representation with Hybrid Linear Models 159

Figure 6.6. The three sets of bases for the three subspaces (of blocks) shown in Figure
6.5, respectively. One row for one subspace and the number of base vectors (blocks) is the
dimension of the subspace.

The basic ideas of multi-scale representations such as the Laplacian pyramid [?]
have been exploited for image compression for decades (e.g., wavelets, subband
coding). A multi-scale method will give a more compact representation because it
encodes low frequency/entropy parts and high frequency/entropy parts separately.
The low frenquecy/entropy parts are invariant after low-pass filtering and down-
sampling, and can therefore be extracted from the much smaller down-sampled
image. Only the high frenquecy/entropy parts need to be represented at a level of
higher resolution. Furthermore, the stronger correlations among adjacent image
blocks will be captured in the down-sampled images because every four images
blocks are merged into one block in the down-sampled image. At each level, the
number of imagery data vectors is one fourth of that at one level above. Thus, the
computational cost can also be reduced.

We now introduce a multi-scale implementation of the hybrid linear model. We
use the subscript l to indicate the level in the pyramid of down-sampled images.13

The finest level (the original image) is indicated by l = 0. The larger is l, the
coarser is the down-sampled image. We denote the highest level to be l = L.

Pyramid of Down-Sampled Images.

First, the level-l image I l passes a low-pass filter F1 (averaging or Gaussian filter,
etc) and is down-sampled by 2 to get a coarser version image I l+1:

I l+1
.= F1(I l) ↓ 2, l = 0, ..., L− 1. (6.11)

The coarsest level-L image IL is approximated by ÎL using a hybrid linear model
with the MSE ε2

L. The number of coefficients needed for the approximation is ΩL.

Pyramid of Residual Images.

At all other levels l, l = 0, ..., L − 1, we do not need to approximate the down-
sampled image I l because it has been roughly approximated by the image at

13This is not to be confused with the subscript j used to indicate different segments of an image.

160 Chapter 6. Image Representation

level-(l + 1) upsampled by 2. We only need to approximate the residual of this
level, denoted as I ′l:

I ′l
.= I l − F2(Î l+1) ↑ 2, l = 0, ..., L− 1, (6.12)

where the F2 is an interpolation filter. Each of these residual images I ′l, l =
0, ..., L − 1 is approximated by Î

′
l using a hybrid linear model with the MSE

ε2
l . The number of coefficients needed for the approximation is Ωl, for each l =

0, ..., L− 1.

Pyramid of Approximated Images.

The approximated image at the level-l is denoted as Î l:

Î l
.= Î
′
l + F2(Î l+1) ↑ 2, l = 0, ..., L− 1. (6.13)

Figure 6.7 shows the structure of a three-level (L = 2) approximation of the image

Hybrid Linear
Model Estimation

F2

F2

++

++

D2 U2

U2

Model Estimation

I0h

I1h

I2h

I0’hI0’

I1’ I1’h

I0

I1

I2

output0

output1

output2

_

_

Hybrid Linear
Model Estimation

Hybrid Linear

F1

F1

D2

Figure 6.7. Laplacian pyramid of the multi-scale hybrid linear model.

I . Only the hybrid linear models for Î2, Î
′
1, and Î

′
0, which are approximations for

I2, I ′1, and I ′0, respectively, are needed for the final representation of the image.
Figure 6.8 shows the I2, I ′1, and I ′0 for the baboon image.

The total number of coefficients needed for the representation will be

Ω =
L∑
l=0

Ωl. (6.14)

MSE Threshold at Different Scale Levels.

The MSE thresholds at different levels should be different but related because the
up-sampling by 2 will enlarge 1 pixel at level-(l+ 1) into 4 pixels at level-l. If the

6.2. Image Representation with Hybrid Linear Models 161

Figure 6.8. Multi-scale representation of the Baboon image. Left: The coarsest level image
I2. Middle: The residual image I ′1. Right: The residual image I ′0. The data at each level
are modeled as the hybrid linear models. The contrast of the middle and right images has
been adjusted so that they are visible.

MSE of the level-(l+ 1) is ε2
l+1, the MSE of the level-l after the up-sampling will

become 4ε2
l+1. So the MSE thresholds of level-(l + 1) and level-l are related as

ε2
l+1 =

1
4
ε2
l , l = 0, ..., L− 1. (6.15)

Usually, the user will only give the desired MSE for the approximation of original
image which is ε2. So we have

ε2
l =

1
4l
ε2, l = 0, ..., L. (6.16)

Vector Energy Constraint at Each Level.

At each level-l, l = 0, ..., L− 1, not all the vectors of the residual need to be ap-
proximated. We only need to approximate the (block) vectors {xi} of the residual
image I ′l that satisfy the following constraint:

‖x′i‖2 > ε2
l . (6.17)

In practice, the energy of most of the residual vectors is close to zero. Only a
small portion of the vectors at each level-l need to be modeled (e.g. Figure 6.9).
This property of the multi-scale scheme not only significantly reduces the overall
representation complexity Ω but also reduces the overall computational cost as
the number of data vectors processed at each level is much less than those of
the original image. In addition, for a single hybrid linear model, when the image
size increases, the computational cost will increase in proportion to the square
of the image size. In the multi-scale model, if the image size increases, we can
correspondingly increase the number of levels and the complexity increases only
linearly in proportion to the image size.

The overall process of estimating the multi-scale hybrid linear model can be
written as the recursive pseudocode in Algorithm 6.2.

162 Chapter 6. Image Representation

Figure 6.9. The segmentation of (residual) vectors at the three levels—different subspaces
are denoted by different colors. The black regions correspond to data vectors whose energy
is below the MSE threshold ε2l in equation (6.17).

Algorithm 6.2 (Multi-Scale Hybrid Linear Model Estimation).

1: function Î = MultiscaleModel(I, level, ε2)

2: if level < MAXLEVEL then
3: Idown = Downsample(F1(I));
4: Înextlevel = MultiscaleModel(Idown, level + 1, 1

4
ε2);

5: end if

6: if level = MAXLEVEL then
7: I ′ = I;

8: else
9: Iup = F2(Upsample(Înextlevel));

10: I ′ = I − Iup;

11: end if

12: Î ′ = HybridLinearModel(I ′, ε2);

13: return Iup + I ′.

6.2.3 Experiments and Comparisons

Comparison of Different Lossy Representations.

The first experiment is conducted on two standard images commonly used to com-
pare image compression schemes: the 480 × 320 hill image and the 512 × 512
baboon image shown in Figure 6.10. We choose these two images because they
are representative of two different types of images. The hill image contains large
low frequency/entropy regions and the baboon image contains mostly high fren-
quency/entropy regions. The size of the blocks b is chosen to be 2 and the level
of the pyramid is 3 – we will test the effect of changing these parameters in

6.2. Image Representation with Hybrid Linear Models 163

Figure 6.10. Testing images: the hill image (480×320) and the baboon image (512×512).

subsequent experiments. In Figure 6.11, the results of the multi-scale hybrid
linear model are compared with several other commonly used image represen-
tations including DCT, PCA/KLT, single-scale hybrid linear model and Level-3
(Daubechies) biorthogonal 4.4 wavelets (adopted by JPEG-2000). The x-axis
of the figures is the ratio of coefficients (including the overhead) kept for the
representation, which is defined as,

η =
Ω

WHc
. (6.18)

The y-axis is the PSNR of the approximated image defined in equation (6.3). The

Figure 6.11. Left: Comparison of several image representations for the hill image. Right:
Comparison for the baboon image. The multi-scale hybrid linear model achieves the best
PSNR among all the methods for both images.

multi-scale hybrid linear model achieves the best PSNR among all the methods
for both images. Figure 6.12 shows the two recovered images using the same
amount of coefficients for the hybrid linear model and the wavelets. Notice that
in the area around the whiskers of the baboon, the hybrid linear model preserves

164 Chapter 6. Image Representation

the detail of the textures better than the wavelets. But the multiscale hybrid linear
model produces a slight block effect in the smooth regions.

Figure 6.12. Left: The baboon image recovered from the multi-scale hybrid linear model
using 7.5% coefficients of the original image. (PSNR=24.64). Right: The baboon image
recovered from wavelets using the same amount of coefficients. (PSNR=23.94).

We have tested the algorithms on a wide range of images. We will summarize
the observations in Section 6.2.4.

Effect of the Number of Scale Levels.

The second experiment shown in Figure 6.13 compares the multi-scale hybrid

Figure 6.13. Top: Comparison of the multi-scale hybrid linear model with wavelets for
level-3 and level-4 for the hill image. Bottom: The same comparison for the baboon image.
The performance increases while the number of levels increases from 3 to 4.

linear representation with wavelets for different number of levels. It is conducted
on the hill and baboon image with 2 by 2 blocks. The performance increases while
the number of levels is increased from 3 to 4. But if we keep increasing the number
of levels to 5, the level-5 curves of both wavelets and our method (which are not

6.2. Image Representation with Hybrid Linear Models 165

shown in the figures) coincide with the level-4 curves. The performance cannot
improve any more because the down-sampled images in the fifth level are so small
that it is hard to be further compressed. Only when the image is large, can we use
more levels of down-sampling to achieve a more compressed representation.

Effect of the Block Size.

The third experiment shown in Figure 6.14 compares the multi-scale hybrid lin-

Figure 6.14. Comparison of the multi-scale hybrid linear model with different block sizes:
16, 8, 4, 2. The performance increases while the size of blocks decreases.

ear models with different block sizes from 2 × 2 to 16 × 16. The dimension of
the ambient space of the data vectors x ranges from 12 to 192 accordingly. The
testing image is the baboon image and the number of down-sampling levels is 3.
For large blocks, the number of data vectors is small but the dimension of the
subspaces is large. So the overhead would be large and seriously degrade the per-
formance. Also the block effect will be more obvious when the block size is large.
This experiment shows that 2 is the optimal block size, which also happens to be
compatible with the simplest down-sampling scheme.

6.2.4 Limitations

We have tested the multi-scale hybrid linear model on a wide range of images,
with some representative ones shown in Figure 6.15. From our experiments and
experience, we observe that the multi-scale hybrid linear model is more suitable
than wavelets for representing images with multiple high frequency/entropy re-
gions, such as those with sharp 2-D edges and rich of textures. Wavelets are prone
to blur sharp 2-D edges but better at representing low frequency/entropy regions.
This probably explains why the hybrid linear model performs slightly worse than
wavelets for the Lena and the monarch – the backgrounds of those two images are
out of focus so that they do not contain much high frequency/entropy content.

166 Chapter 6. Image Representation

Figure 6.15. A few standard testing images. From the top-left to the bottom-right: monarch
(768× 512), sail (768× 512), canyon (752× 512), tiger (480× 320), street (480× 320),
tree (512× 768), tissue (microscopic) (1408× 1664), Lena (512× 512), earth (satellite)
(512× 512), urban (aerial) (512× 512), bricks (696× 648). The multi-scale hybrid linear
model out-performs wavelets except for the Lena and the monarch.

Another limitation of the hybrid-linear model is that it does not perform well on
gray-scale images (e.g., the Barbara image, Figure 6.5). For a gray-scale image,
the dimensionD of a 2 by 2 block is only 4. Such a low dimension is not adequate
for any further dimension reduction. If we use a larger block size, say 8 by 8, the
block effect will also degrade the performance.

Unlike pre-fixed transformations such as wavelets, our method involves iden-
tifying the subspaces and their bases. Computationally, it is more costly. With
unoptimized MATLAB codes, the overall model estimation takes 30 seconds to 3
minutes on a Pentium 4 1.8GHz PC depending on the image size and the desired
PSNR. The smaller the PSNR, the shorter the running time because the number
of blocks needed to be coded in higher levels will be less.

6.3 Multi-Scale Hybrid Linear Models in Wavelet
Domain

From the discussion in the previous section, we have noticed that wavelets can
achieve a better representation for smooth regions and avoid the block artifacts.

6.3. Multi-Scale Hybrid Linear Models in Wavelet Domain 167

Therefore, in this section, we will combine the hybrid linear model with the
wavelet approach to build multi-scale hybrid linear models in the wavelet do-
main. For readers who are not familiar with wavelets, we recommend the books
of [Vetterli and Kovacevic, 1995].

6.3.1 Imagery Data Vectors in Wavelet Domain

In the wavelet domain, an image is typically transformed into an octave tree of
subbands by certain separable wavelets. At each level, the LH, HL, HH subbands
contain the information about high frequency edges and the LL subband is further
decomposed into subbands at the next level. Figure 6.16 shows the octave tree

LL LL LL LH

LL HL

LH

HHHL

LL HH

Figure 6.16. The subbands of a level-2 wavelet decomposition.

structure of a level-2 wavelet decomposition. As shown in the Figure 6.17, the

S1

I

x

x

B

G

R

S3

S2

S4

LL

HL HH

LH

Rk

Figure 6.17. The construction of imagery data vectors in the wavelet domain. These data
vectors are assumed to reside in multiple (affine) subspaces which may have different
dimensions.

vectors {xi ∈ RD}Mi=1 are constructed by stacking the corresponding wavelet

168 Chapter 6. Image Representation

coefficients in the LH, HL, HH subbands. The dimension of the vectors isD = 3c
because there are c color channels. One of the reasons for this choice of vectors is
because for edges along the same direction, these coefficients are linearly related
and reside in a lower dimensional subspace. To see this, let us first assume that
the color along an edge is constant. If the edge is along the horizontal, vertical or
diagonal direction, there will be an edge in the coefficients in the LH, HL, or HH
subband, respectively. The other two subbands will be zero. So the dimension of
the imagery data vectors associated with such an edge will be 1. If the edge is not
exactly in one of these three directions, there will be an edge in the coefficients
of all the three subbands. For example, if the direction of the edge is between
the horizontal and diagonal, the amplitude of the coefficients in the LH and HH
subbands will be large. The coefficients in the HL subband will be insignificant
relative to the coefficients in the other two subbands. So the dimension of the
data vectors associated with this edge is approximately 2 (subject to a small error
ε2). If the color along an edge is changing, the dimension the subspace will be
higher but generally lower than the ordinal dimension D = 3c. Notice that the
above scheme is only one of many possible ways in which one may construct
the imagery data vector in the wavelet domain. For instance, one may construct
the vector using coefficients across different scales. It remains an open question
whether such new constructions may lead to even more efficient representations
than the one presented here.

6.3.2 Estimation of Hybrid Linear Models in Wavelet Domain

In the wavelet domain, there is no need to build a down-sampling pyramid. The
multi-level wavelet decomposition already gives a multi-scale structure in the
wavelet domain. For example, Figure 6.18 shows the octave three structure of

Figure 6.18. The subbands of level-3 bior-4.4 wavelet decomposition of the baboon image.

a level-3 bior-4.4 wavelet transformation of the baboon image. At each level, we
may construct the imagery data vectors in the wavelet domain according to the

6.3. Multi-Scale Hybrid Linear Models in Wavelet Domain 169

previous section. A hybrid linear model will be identified for the so-obtained vec-
tors at each level. Figure 6.19 shows the segmentation results using the hybrid
linear model at three scale levels for the baboon image.
Vector Energy Constraint at Each Level. In the nonlinear wavelet approxima-
tion, the coefficients which are below an error threshold will be ignored. Similarly
in our model, not all the vectors of the imagery data vectors need to be modeled
and approximated. We only need to approximate the (coefficient) vectors {xi}
that satisfy the following constraint:

‖xi‖2 > ε2. (6.19)

Notice that here we do not need to scale the error tolerance at different levels
because the wavelet basis is orthonormal by construction. In practice, the energy
of most of the vectors is close to zero. Only a small portion of the vectors at each
level need to be modeled (e.g. Figure 6.19).

Figure 6.19. The segmentation of data vectors constructed from the three subbands at each
level—different subspaces are denoted by different colors. The black regions correspond
to data vectors whose energy is below the MSE threshold ε2 in equation (6.19).

The overall process of estimating the multi-scale hybrid linear model in the
wavelet domain can be summarized as the pseudocode in Algorithm 6.3.

6.3.3 Comparison with Other Lossy Representations

In this section, in order to obtain a fair comparison, the experimental setting is
the same as that of the spatial domain in the previous section. The experiment is
conducted on the same two standard images – the 480 × 320 hill image and the
512× 512 baboon image shown in Figure 6.10.

The number of levels of the model is also chosen to be 3. In Figure 6.20, the
results are compared with several other commonly used image representations
including DCT, PCA/KLT, single-scale hybrid linear model and Level-3 biorthog-
onal 4.4 wavelets (JPEG 2000) as well as the multi-scale hybrid linear model in

170 Chapter 6. Image Representation

Algorithm 6.3 (Multi-Scale Hybrid Linear Model: Wavelet Domain).

1: function Î = MultiscaleModel(I, level, ε2)

2: Ĩ = WaveletTransform(I, level);

3: for each level do
4: ˆ̃Ilevel = HybridLinearModel(Ĩlevel, ε2);

5: end for

6: Î = InverseWaveletTransform(ˆ̃I, level);

7: return Î.

Figure 6.20. Top: Comparison of several image representations for the hill image. Bottom:
Comparison for the baboon image. The multi-scale hybrid linear model in the wavelet
domain achieves better PSNR than that in the spatial domain.

the spatial domain. The multi-scale hybrid linear model in the wavelet domain
achieves better PSNR than that in the spatial domain. Figure 6.21 shows the three
recovered images using the same amount of coefficients for wavelets, the hybrid
linear model in the spatial domain, and that in the wavelet domain, respectively.
Figure 6.22 shows the visual comparison with the enlarged bottom-right cornners
of the images in Figure 6.21.

Notice that in the area around the baboon’s whiskers, the wavelets blur both
the whiskers and the subtle details in the background. The multi-scale hybrid
linear model (in the spatial domain) preserves the sharp edges around the whiskers
but generates slight block artifacts in the relatively smooth background area. The
multi-scale hybrid linear model in the wavelet domain successfully eliminates the
block artifacts, keeps the sharp edges around the whiskers, and preserves more
details than the wavelets in the background. Among the three methods, the multi-
scale hybrid linear model in the wavelet domain achieves not only the highest
PSNR, but also produces the best visual effect.

As we know from the previous section, the multi-scale hybrid linear model in
the spatial domain performs slightly worse than the wavelets for the Lena and

6.3. Multi-Scale Hybrid Linear Models in Wavelet Domain 171

Figure 6.21. Visual comparison of three representations for the baboon image approx-
imated with 7.5% coefficients. Top-left: The original image. Top-right: The level-3
biorthogonal 4.4 wavelets (PSNR=23.94). Bottom-left: The level-3 multi-scale hybrid lin-
ear model in the spatial domain (PSNR=24.64). Bottom-right: The level-3 multi-scale
hybrid linear model in the wavelet domain (PSNR=24.88).

monarch images (Figure 6.15). Nevertheless, in the wavelet domain, the multi-
scale hybrid linear model can generate very competitive results, as shown in
Figure 6.23. The multi-scale hybrid linear model in the wavelet domain achieves
better PSNR than the wavelets for the monarch image. For the Lena image, the
comparison is mixed and merits further investigation.

6.3.4 Limitations

The above hybrid linear model (in the wavelet domain) does not produce very
competitive results for gray-scale images as the dimension of the vector is merely
3 and there is little room for further reduction. For gray-scale images, one may
have to choose a slightly larger window in the wavelet domain or to construct the
vector using wavelet coefficients across different scales. A thorough investigation
of all the possible cases is beyond the scope of this book. The purpose here is

172 Chapter 6. Image Representation

Figure 6.22. Enlarged bottom-right corner of the images in Figure 6.21. Top-left: The
original image. Top-right: The level-3 biorthogonal 4.4 wavelets. Bottom-left: The level-3
multi-scale hybrid linear model in the spatial domain. Bottom-right: the level-3 multi-scale
hybrid linear model in the wavelet domain.

to demonstrate (using arguably the simplest cases) the vast potential of a new
spectrum of image representations suggested by combining subspace methods
with conventional image representation/approximation schemes. The quest for the
more efficient and more compact representations for natural images without doubt
will continue as long as the nature of natural images remains a mystery and the
mathematical models that we use to represent and approximate images improve.

6.4 Bibliographic Notes

There is a vast amount of literature on finding adaptive bases (or transforms)
for signals. Adaptive wavelet transform and adapted wavelet packets have been
extensively studied [Coifman and Wickerhauser, 1992, Ramchandran et al.,
1996, Meyer, 2002, Meyer, 2000, Ramchandran and Vetterli, 1993, Delsarte et al.,
1992, Pavlovic et al., 1998]. The idea is to search for an optimal transform from

6.4. Bibliographic Notes 173

Figure 6.23. Top: Comparison of multi-scale hybrid linear model in the wavelet domain
with wavelets for the Lena image. Bottom: Comparison of multi-scale hybrid linear model
in the wavelet domain with wavelets for the Monarch image. The multi-scale hybrid linear
model in the wavelet domain achieves better PSNR than wavelets for a wide range of PSNR
for these two images.

a limited (although large) set of possible transforms. Another approach is to find
some universal optimal transform based on the signals [?,Rabiee et al., 1996,Del-
sarte et al., 1992, Pavlovic et al., 1998]. Spatially adapted bases have also been
developed such as [Chen et al., 2003,Sikora and Makai, 1995,Muresan and Parks,
2003].

The notion of hybrid linear model for image representation is also closely re-
lated to the sparse component analysis. In [Olshausen and D.J.Field, 1996], the
authors have identified a set of non-orthogonal base vectors for natural images
such that the representation of the image is sparse (i.e., only a few compo-
nents are needed to represent each image block). In the work of [Donoho and
Elad, 2002, Donoho, 1995, Donoho, 1998, Chen et al., 1998, Elad and Bruck-
stein, 2002, Feuer and Nemirovski, 2003, Donoho and Elad, 2003, Starck et al.,
2003, Elad and Bruckstein, 2001], the main goal is to find a mixture of models

174 Chapter 6. Image Representation

such that the signals can be decomposed into multiple models and the overall
representation of the signals is sparse.

This is page 175
Printer: Opaque this

Chapter 7
Image Segmentation

Natural-image segmentation is one of the classical problems in computer vision.
It is widely accepted that a good segmentation should group image pixels into
regions whose statistical characteristics (of the color or texture) are homogeneous
or stationary, and whose boundaries are simple and spatially accurate [?]. Never-
theless, from a statistical viewpoint, natural-image segmentation is an inherently
ambiguous problem for at least the following two technical reasons1:

1. The statistical characteristics of local features (e.g., color, texture, edge,
contour) of natural images usually do not show the same level of homo-
geneity or saliency at the same spatial or quantization scale. This is not only
the case for different natural images, but also often the case for different re-
gions within the same image. Thus, one should not expect the segmentation
result to be unique [?], and instead should seek a hierarchy of segmentations
at multiple scales.

2. Even after accounting for variations due to scale, different regions or tex-
tures may still have different intrinsic complexities, making it a difficult
statistical problem to determine the correct number of segments and their
model dimensions. For instance, if we use Gaussian distributions to model
the features of different textures, the Gaussian for a simple texture obvi-
ously has a higher degree of degeneracy (or a lower dimension) than that
for a complex texture.

1It is arguably true that human perception of an image is itself ambiguous. However, here we are
only concerned with ambiguities in computational image segmentation.

176 Chapter 7. Image Segmentation

In the literature, many statistical models and methods, supervised or unsu-
pervised, have been proposed to address some of these difficulties. Here we
are mainly interested in unsupervised image segmentation. Popular methods
in this category include feature-based Mean-Shift [?], graph-based methods
[?, ?], region-based split-and-merge techniques [?, ?], and global optimization
approaches based on either energy functions [?] or minimum description length
[?].

Although the reported performance of image segmentation algorithms has im-
proved significantly over the years, these improvements have come partly at the
price of ever more sophisticated feature selection processes, more complex statis-
tical models, and more costly optimization techniques. In this chapter, however,
we aim to show that using texture features as simple as fixed-size Gaussian win-
dows, with the choice of a likely more relevant class of statistical models and the
associated clustering algorithm, one can achieve equally good, if not better, seg-
mentation results as many of the sophisticated statistical models and optimization
methods.

7.1 Image Segmentation as a GPCA Problem

Extant image segmentation methods segment features based on their cluster cen-
ters (e.g., K-Means) or density modes (e.g., Mean-Shift). They typically work
well for low-level segmentation using low-dimensional features that have blob-
like distributions (as shown in Figure 7.1 left). But for mid-level segmentation

Algebraic VarietyManifold Distribution

Figure 7.1. Mixture of regular (left) or degenerate (right) Gaussians.

using texture features extracted at a larger spatial scale, we normally choose a
feature space whose dimension is high enough that the structures of all textures
in the image can be genuinely represented.2 Such a representation unavoidably
has redundancy for individual textures: The cluster of features associated with
one texture typically lies in a low-dimensional submanifold or subspace whose
dimension reflects the complexity of the texture (Figure 7.1 right). Thus, the dis-
tribution of texture features in a natural image can be well modeled as a mixture
of almost degenerate Gaussians or subspaces that may have different dimensions

2Here a genuine representation means that we can recover every texture with sufficient accuracy
from the representation.

7.1. Image Segmentation as a GPCA Problem 177

(see Figure 7.1 right), one for each image segment. Properly harnessed, such low-
dimensional structures can be much more informative for distinguishing textures
than the cluster means.

In chapter 5, we have revealed a fundamental relationship between data clus-
tering and compression. We have derived an effective clustering algorithm for
mixtures of subspaces. By minimizing the overall coding length of the given
mixed data subject to a given distortion, the algorithm automatically merges the
data points into a number of subspace-like clusters. Thus, we propose to measure
the “goodness” of image segmentation in terms of a coding-theoretic criterion: the
optimal segmentation is the one that minimizes the coding length of the features.
It is debatable whether this is how humans segment images. Coding length is an
objective measure while human segmentation is highly subjective – much prior
knowledge is incorporated in the process. Later we will quantitatively evaluate
the extent to which the segmentation results emulate those of humans, in fair com-
parison with other unsupervised image segmentation techniques. Be aware that,
although we here have adopted the data compression paradigm for image segmen-
tation, it is different from compressing the image per se. Instead of pixel values,
we compress and segment texture features extracted from the image values.

The lossy data compression paradigm of chapter 5 has another attractive feature
for image segmentation. Varying the distortion provides a simple but effec-
tive means of considering textural information at different quantization scales.3

Compressing the image features with different distortions, we naturally obtain a
hierarchy of segmentations: the smaller the distortion, the more refined the seg-
mentation is (see Figure 7.6 for an example). In a way, the distortion also plays
an important role in image segmentation as a measure of the saliency of the seg-
ments in an image: First, how small the distortion needs to be in order for certain
regions to be segmented from the background, and second, how much we can
change the distortion without significantly altering the segmentation (see Figure
7.6 again). Thus, lossy compression offers a convenient framework for diagnosing
the statistics of a natural image at different quantization scales.

This chapter is organized as follows: Section 7.2 discusses in detail how
to customize the lossy compression-based clustering algorithm of chapter 5
for image segmentation. Particularly, we discuss how to adaptively select the
distortion threshold to achieve good segmentation. Section 7.3 gives experi-
mental results on the Berkeley segmentation database, and compares to other
existing algorithms and human segmentation. The software package is avail-
able at the website: http://www.eecs.berkeley.edu/˜yang/lossy_
segmentation/.

3However, we do not consider varying spatial scale as we will always choose a fixed-size window
as the feature vector. Nevertheless, as we will demonstrate, excellent segmentation can already be
obtained.

http://www.eecs.berkeley.edu/~yang/lossy_segmentation/
http://www.eecs.berkeley.edu/~yang/lossy_segmentation/

178 Chapter 7. Image Segmentation

7.2 Image Segmentation via Lossy Compression

In this section, we describe how the lossy compression-based method in Section
5.2 is applied to segment natural images. We first discuss what features we use
to represent textures and why. We then describe how a low-level segmentation
is applied to partition an image into many small homogeneous patches, known
as superpixels. The superpixels are used to initialize the mid-level texture-based
segmentation, which minimizes the total coding length of all the texture features
by repeatedly merging adjacent segments, subject to a distortion ε2. Finally, we
study several simple heuristics for choosing a good ε for each image.

7.2.1 Constructing Feature Vectors

We choose to represent a 3-channel RGB color image in terms of the L∗a∗b∗

color metric, which was specially designed to best approximate perceptually
uniform color spaces.4 While the dependence of the three coordinates on the
traditional RGB metric is nonlinear [?], the L∗a∗b∗ metric better facilitates rep-
resenting texture via mixtures of Gaussians. Perceptual uniformity renders the
allowable distortion ε2 meaningful in terms of human perception of color differ-
ences, tightening the link between lossy coding and our intuitive notion of image
segmentation.

In the literature, there have been two major types of features used to capture
local textures. The first type considers responses of a 2D filter bank as texture
features [?, ?]. The second directly uses a w × w cut-off window around each
pixel and stacks the color values inside the window into a vector [?, ?]. Each
texture window is usually smoothed by convolving with a 2D Gaussian kernel
before stacking. Figure 7.2 illustrates this process.

Figure 7.2. The construction of texture features: A w × w window of each of the three
L∗a∗b∗ channels is convoluted with a Gaussian and then all channels are stacked into a
single vector v.

We have experimented with using simple window features, as well as two clas-
sical filter banks, the Leung-Malik set [?] and the Schmid set [?], in conjunction
with our clustering algorithm. We found the difference in the segmentation result
is small despite the fact that filter-bank features are more computationally expen-
sive as they involve convolutions of the image with large number of filters. One
likely reason for the similar performance is that the compression-base cluster-
ing algorithm is capable of automatically harnessing the low-dimensional linear
structures of the features, despite noise and outliers (see Figure ?? and additional
evidence in [?]).

4Equivalently, one can also use the L∗u∗v∗ metric.

7.2. Image Segmentation via Lossy Compression 179

For simplicity, we here choose to use the window features. We find that a 7 ×
7 window provides satisfactory results, although other similar sizes also work
well.5 Finally, to reduce the computational cost, we project the feature vectors
into an 8-dimensional space by PCA. This operation preserves all linear structures
of dimension less than 8 in the feature space. Experimentally, we found an 8-
dimensional space to be sufficient for most natural image textures.

7.2.2 Initialization with Superpixels

Given the feature vectors extracted from an image, one “naive” approach would
be to directly apply Algorithm 5.1, and segment the pixels based on the grouping
of the feature vectors. Figure 7.3 shows one such result. Notice that the result-
ing segmentation merges pixels near the strong edges into a single segment. This
should be expected from the compression perspective, since windows across the
boundary of two segments have significantly different structures from the (homo-
geneous) textures within those segments [?]. However, such a segmentation does
not agree well with human perception.

Figure 7.3. Two segmentation results of the left original using Algorithm 5.1 with different
ε’s. Notice that the pixels near the boundaries of segments are not grouped correctly.

In order to group edge pixels appropriately, we preprocess an image with a
low-level segmentation based on local cues such as color and edges. That is,
we oversegment the image into (usually several hundred) small, homogeneous
regions, known as superpixels. This preprocessing step has been generally rec-
ommended for all region merging algorithms in [?]. Such low-level segmentation
can be effectively computed using K-Means or Normalized-Cuts (NCuts) [?]
with a conservative homogeneity threshold. Here we use the publicly available
superpixel code [?].

5We did not test window sizes larger than 9 pixels, as the current MATLAB implementation cannot
store all such texture vectors from a typical 320 × 240 color image. However, this problem can be
alleviated by sampling a subset of the texture features from an image.

180 Chapter 7. Image Segmentation

Since the superpixel segmentation respects strong edges in an image (see Fig-
ure 7.4 middle), it does not suffer from the misassignment of edge pixels seen in
Figure 7.3. All feature vectors associated with pixels in each superpixel are initial-
ized as one segment, forcing the subsequent merging process to group boundary
pixels together with the interior pixels. An additional benefit from the superpixel
preprocessing is a significant reduction in the computational cost. Using super-
pixel segments as initial grouping, the algorithm only needs to search amongst
several hundred of superpixels for the optimal pair to merge, instead of search-
ing amongst all feature vectors (the number of vectors is on the order of tens of
thousands).

To further reduce the computational cost, one may consider using only a por-
tion of the feature vectors associated with each superpixel. For instance, feature
vectors at the boundary of a superpixel represent a combination of textures from
two adjacent superpixels, and their distribution can be rather complicated com-
pared to the distribution of the feature vectors in the interior of the superpixel.
Thus, one may use only feature vectors from the interior of each superpixel.6 Our
experiments show that, under the same distortion parameter ε, this modification
tends to partition an image into smaller texture segments. This phenomenon will
be discussed in more detail in Section 7.3.3. For clarity, all segmentation results
presented in this chapter will use both interior and boundary feature vectors of
every superpixel unless stated otherwise.

7.2.3 Enforcing Connected Segments

Notice that in the definition of the overall coding length function (??), we use
the Huffman coding length to upper bound the number of bits required to encode
the membership of the feature vectors. This obviously over-estimates the coding
length since it does not take into account the fact that in natural images, adjacent
pixels have higher probability that belong to the same segment.

In order to enforce that the resulting segmentation respects spatial continuity
and consists of only connected segments, we impose an additional constraint that
two segments Si and Sj can be merged together only if they are spatially adjacent
in the 2D image. To this end, we need to construct and maintain a region adja-
cency graph (RAG) G in the clustering process. RAG is popularly used in other
merge-and-split type segmentation methods [?]. We represent the RAG using an
adjacency list G{i} for each segment Si. Index j is in the set G{i} if the seg-
ment Sj is a neighbor of Si. At each iteration, the algorithm searches for a pair
of adjacent segments Si and Sj which lead to maximal decrease in the total cod-
ing length. Note, however, that in some applications such as image compression,
disconnected regions may be allowed to be grouped as the same segment. In this
case, one can simply discard the adjacency constraint in our implementation.

6If a superpixel only consists of boundary pixels, these pixels are used anyway.

7.2. Image Segmentation via Lossy Compression 181

Figure 7.4 shows an example of the two-step segmentation process. For this
image, we find that all feature vectors approximately lie in a 6D subspace in the
8D feature space (i.e. the first 8 principal components of the Gaussian windows).
Furthermore, feature vectors of each segment can be well modeled as a 1D to
4D subspace. Figure 7.5 plots the singluar values of two representative segments.
This validates our initial assumption that the distributions of texture features are
typically (close to) degenerate.

Figure 7.4. The segmentation pipeline. Left: Original. Middle: Superpixels obtained from
low-level over-segmentation. Right: Segments obtained by minimizing the coding length
with ε = 0.2.

Figure 7.5. Singluar values of the feature vectors drawn respectively from two image
segments in Figure 7.4 right: one is on the women’s cloth and the other is the background.

7.2.4 Choosing the Distortion

As discussed in the introduction, the distortion ε effectively sets the quantization
scale at which we segment an image. Figure 7.6 shows the segmentation of several
images under different values of ε. As the figure suggests, a single ε will not
give good performance across a widely varying data set such as the Berkeley
image segmentation database. Differences in the contrast of the foreground and
background, lighting conditions, and image category cause the distribution of the
texture features to vary significantly from image to image

Figure 7.6. Segmentation results under different ε. Left: Originals. Middle left: ε = 0.1.
Middle right: ε = 0.2. Right: ε = 0.4.

182 Chapter 7. Image Segmentation

There are several ways to adaptively choose ε to achieve good segmentation
for each image. For example, if a desired number of segments is known a priori,
we can search a range of ε values for the one that gives the desired number of
segments. When such information is not available a priori, as is the case for im-
age segmentation, a formal way in information theory to estimate the distortion
parameter is to minimize a cost function such as the following one:

ε∗
.= arg min

ε∈E
{Ls(V, ε) + λND log2(ε)}, (7.1)

where λ is a parameter provided by the user that weights the two terms. Notice
that the first term Ls(V, ε) decreases as ε increases, as opposed to the second term
ND log2(ε). Hence, the expression essentially seeks a balance between the cod-
ing length of the data and the complexity of the model measured as ND log2(ε).
It is studied in [?] that (7.1) can accurately recover the true value of ε for the
simulated Gaussian mixture models by simply setting λ = 1. However, when ap-
plied to image segmentation on real natural images, the so-estimated ε∗ tends to
over-segment the images. One reason for this discrepancy between simulation and
experiment is that the noise associated with different texture segments can have
different covariance.

Here, we choose to adaptively select the distortion ε by stipulating that fea-
ture distributions in adjacent texture regions must be sufficiently dissimilar. In
the literature, the similarity measure between two texture distributions has been
extensively studied. In information theory, the Kullback-Leibler (KL) divergence
measures the relative entropy between two arbitrary distribution functions p(x)
and q(x) [Cover and Thomas, 1991]:

dKL =
∑
x∈X

p(x) log
p(x)
q(x)

. (7.2)

However, the KL divergence is ill-posed for distributions functions p(x) and q(x)
that have different supports, where q(x) may be equal to zero as the denominator
in the log function. Unfortunately, this is often the case to compare two degenerate
distributions (e.g., , texture vectors from images).

In computer vision, the heuristic Earth Mover’s Distance (EMD) is a metric
to measure the similarity of two image distributions [?, ?]. Levina and Bickel
[?] further show that EMD is equivalent to the Mallows distance in statistics,
which has a closed-form expression for two Gaussian distributions N(θ1,Σ1)
and N(θ2,Σ2) [?]:

dM (N(θ1,Σ1), N(θ2,Σ2))2 = (θ1−θ2)T (θ1−θ2)+tr(Σ1 +Σ2−2(Σ1Σ2)
1
2).

(7.3)
Finally, as a reasonable approximation to the Mallows distance, one can

measure the similarity of N(θ1,Σ1) and N(θ2,Σ2) using their mean vectors:

dm(N(θ1,Σ1), N(θ2,Σ2))2 = (θ1 − θ2)T (θ1 − θ2). (7.4)

In our experiment, we tested both the Mallows distance dM and the mean dis-
tance dm to measure the similarity between texture segments. For a given ε, the

7.3. Experiments 183

minimal distance d(ε) of an image is calculated between all pairs of adjacent
segments after the compression-based merging. The selection process gradually
increases the value of ε (from a list of candidate values) until the minimal distance
d(ε) is larger than a preselected threshold γ:

ε∗ = min{ε : d(ε) ≥ γ}. (7.5)

The final segmentation result then gives the most refined segmentation which sat-
isfies the above constraint. We note that increasing ε typically causes the number
of segments to decrease and results in a shorter coding length. We may therefore
use the segmentation computed with a smaller ε to initialize the merging pro-
cess with a larger ε, allowing us to search for the optimal ε more efficiently. The
experiment shows that both dM and dm give very similar segmentation results.

It may seem that we have merely replaced one free parameter, ε, with another,
γ. This replacement has two strong advantages, however. Experimentally we find
that even with a single fixed value of γ the algorithm can effectively adapt to all
image categories in the Berkeley database, and achieve segmentation results that
are consistent with human perception. Furthermore, the appropriate γ can be es-
timated empirically from human segmentations, whereas ε cannot. This heuristic
thresholding method is similar in spirit to several robust techniques in computer
vision for estimating mixture models, e.g., , the Hough transform and RANSAC.

The complete segmentation process is specified as Algorithm 7.1. In terms of
speed, on a typical 3GHz Intel PC, the MATLAB implementation of the CTM
algorithm on a 320× 240 color image takes about two minutes to preprocess su-
perpixels, and less than one minute to minimize the coding length of the features.

7.3 Experiments

In this section, we demonstrate the segmentation results of Algorithm 7.1 (CTM)
on natural images in the Berkeley segmentation database [?], which also contains
benchmark segmentation results obtained from human subjects.

7.3.1 Visual Verification

We first visually verify the segmentation results on the Berkeley database. Repre-
sentative segmentation results of the CTM algorithm with γ = 0.1 and γ = 0.2
are shown in Figures 7.8 – 7.13. For better visual evaluation, we have parti-
tioned the database into six different image categories, each of which consists
of images that are more relevant, namely, Landscape (Figure 7.8), Ocean (Fig-
ure 7.9), Urban (Figure 7.10), Animals (Figure 7.11), People (Figure 7.12), and
Objects (Figure 7.13). Smaller γ’s tend to generate more segments and over-
segment the images, and larger γ’s tend to generate less segments and hence
undersegment the images. The benchmarking MATLAB script and the complete

184 Chapter 7. Image Segmentation

Algorithm 7.1 (CTM: Compression-based Texture Merging).
Input: Image I ∈ RH×W×3 in L∗a∗b∗ metric, reduced dimension D, window

size w, distortion range E , and minimum mean distance γ.
1: Partition I into superpixels S1, . . . , SK . For pixel pi ∈ Sj , initialize its label
li = j.

2: Construct RAG G{1}, . . . , G{K} for the K segments S1, . . . , SK .
3: Sample w × w windows, and stack the resulting values into a feature vector
vi ∈ R3w2

.
4: Replace vi with their first D principal components.
5: for all ε ∈ E in ascending order do
6: for all initial segments Si, i = 1, . . . ,K do
7: Compute Ls(Si, ε).
8: for all j ∈ G{i} do
9: Uij

.= Ls(Si, ε) + Ls(Sj , ε)− Ls(Si ∪ Sj , ε)
10: end for
11: end for
12: while Uij

.= max{U} > 0 do
13: Merge Si and Sj . Update arrays l, G, L, and U .
14: Segment number K ← K − 1.
15: end while
16: if γ ≤ mini,j∈G(i){d(Si, Sj , ε)} then
17: break.
18: end if
19: end for
Output: Final pixel labels l1, . . . , lH×W .

visualization results of the Berkeley image segmentation database are also avail-
able for download at our website: http://www.eecs.berkeley.edu/
˜yang/lossy_segmentation/.

7.3.2 Quantitative Verification

We now compare quantitatively CTM against three unsupervised algorithms
that have been made available publicly: Mean-Shift [?], NCuts [?], and Felzen-
szwalb and Huttenlocker (FH) [?]. The comparison is based on four quantitative
performance measures:

1. The Probabilistic Rand Index (PRI) [?] counts the fraction of pairs of pixels
whose labellings are consistent between the computed segmentation and
the ground truth, averaging across multiple ground truth segmentations to
account for scale variation in human perception.

2. The Variation of Information (VoI) metric [?] defines the distance between
two segmentations as the average conditional entropy of one segmentation

http://www.eecs.berkeley.edu/~yang/lossy_segmentation/
http://www.eecs.berkeley.edu/~yang/lossy_segmentation/

7.3. Experiments 185

given the other, and thus roughly measures the amount of randomness in
one segmentation which cannot be explained by the other.

3. The Global Consistency Error (GCE) [?] measures the extent to which one
segmentation can be viewed as a refinement of the other. Segmentations
which are related in this manner are considered to be consistent, since they
could represent the same natural image segmented at different scales.

4. The Boundary Displacement Error (BDE) [?] measures the average dis-
placement error of boundary pixels between two segmented images.
Particularly, it defines the error of one boundary pixel as the distance
between the pixel and the closest pixel in the other boundary image.

Since all methods are unsupervised, we use both the training and testing im-
ages for the evaluation. Due to memory issues with the NCuts implementation in
MATLAB, all images are normalized to have the longest side equal to 320 pixels.
We ran Mean-Shift [?] with parameter settings (hs, hr) chosen at regular intervals
of [7, 16] × [3, 23], and found that on the Berkeley database, (hs, hr) = (13, 19)
gives a good overall tradeoff between the above quantitative measures. We there-
fore use this parameter choice for our comparison. For NCuts [?], we choose the
number of segments K = 20 to agree with the average number of segments from
the human subjects. For the FH algorithm, we choose the Gaussian smoothing
parameter σ = 0.5, the threshold value k = 500, and the minimal region size to
be 200 pixels, as suggested by the authors [?].

Table 7.1 gives the quantitative comparion of CTM against the other three al-
gorithms on the Berkeley segmentation benchmark. In the experiment, three γ
values were tested for CTM, namely, γ = 0.1, 0.15, 0.2. The mean distance dm
defined in equation (7.4) was used to measure the texture similarity between ad-
jacent segments. The distortion range E for the ε value was between 0.01 and 0.5,
which are relative scales in terms of normalized texture vectors.

Table 7.1. Average performance on the Berkeley Database (bold indicates best of all the
algorithms). PRI ranges between [0, 1], higher is better. VoI ranges between [0,∞), lower
is better. GCE ranges between [0, 1], lower is better. BDE ranges between [0,∞) in the
unit of pixel, lower is better.

PRI VoI GCE BDE
Humans 0.8754 1.1040 0.0797 4.994
CTMγ=0.1 0.7561 2.4640 0.1767 9.4211
CTMγ=0.15 0.7627 2.2035 0.1846 9.4902
CTMγ=0.2 0.7617 2.0236 0.1877 9.8962
Mean-Shift 0.7550 2.477 0.2598 9.7001
NCuts 0.7229 2.9329 0.2182 9.6038
FH 0.7841 2.6647 0.1895 9.9497

Table 7.1 shows that quantitatively, CTM outperforms Mean-Shift, NCuts, and
FH in terms of most indices: At γ = 0.15, CTM is better than Mean-Shift and

186 Chapter 7. Image Segmentation

NCuts in terms of all four indices; and for all chosen γ’s, CTM is better than
FH except for the PRI index. It is perhaps not surprising that CTM significantly
outperforms the other three algorithms in terms of the VoI index, since we are
optimizing an information-theoretic criterion. These numbers show that minimiz-
ing the coding length leads to segmentation that is closer to human segmentation.
This suggests that perhaps human perception also approximately minimizes some
measure of the compactness of the representation.

One may also interpret the results in terms of the differences among the four
segmentation indices. The GCE and BDE indices, penalize under-segmentation
more heavily than over-segmentation. In particular, GCE does not penalize over-
segmentation at all, i.e., , the highest score is achieved by assigning each pixel
as an individual segment. As a result, CTMγ=0.01 has returned the best GCE and
BDE values among all the results in Table 7.1, but its VoI value is one of the worst
in the table. From our experience (also shown in Figures 7.8 – 7.13), PRI and VoI
seem to be more correlated with human segmentation in term of visual perception.

To summarize both visual and quantitative comparison, we notice that on one
hand, if we tune the algorithms to give the visually best match with human seg-
mentation, none of the algorithms or parameters is a clear winner in terms of all
four indices; on the other hand, none of the indices seems to be a better indica-
tor of human segmentation than others, which suggests that human segmentation
uses much more comprehensive cues. Nevertheless, the extensive visual demon-
stration and quantitative comparison does serve to validate our hypotheses that
the distribution of texture features of natural images can be well approximated by
a mixture of (possibly degenerate) Gaussians. As a result, the compression-based
clustering algorithm becomes a powerful tool that exploits the redundancy and
degeneracy of the distribution for good texture segmentation.

7.3.3 Difficulties and Possible Extensions

To fairly assess an image segmentation algorithm, we also need to investigate
examples for which the algorithm has failed to produce good results. In this sub-
section, we will show a handful of such examples from the Berkeley database,
and discuss several possible extensions to the CTM algorithm to further improve
the segmentation results.

A particular category that CTM has trouble with is a set of images of animals
with very severe camouflage. Figure 7.7 shows some representative examples.
For these examples, it is difficult for CTM to segment the animal from the back-
ground even with very small distortion ε. Comparing with Figure 7.6, human
figures often endure a larger ε, as human complexion and clothes stand out from
the (man-made) surroundings. Thus, in a way, the distortion ε can be interpreted
as a measure for how “salient” an object is in an image and how much “attention”
is needed to segment the object. The effectiveness of certain camouflage can be
measured by the coding length of the texture in question together with the texture
of the background.

7.3. Experiments 187

(a)
Orig-
i-
nal
im-
ages

(b)
Seg-
men-
ta-
tion
re-
sults
with
CTM+,γ=0.1

(c)
Seg-
men-
ta-
tion
re-
sults
with
CTM−,γ=0.1

Figure 7.7. Segmentation results on certain animal images. CTM+ represents the CTM
algorithm applied to all texture vectors including those at the boundaries. CTM− represents
the same algorithm without sampling the texture vectors at the boundaries.

In order to extract severely camouflaged animals from their surroundings, a
straightforward extension of the CTM algorithm is to exclude texture vectors at
the boundaries of the superpixels. A texture vector, say the Gaussian window,
at the boundary contains pixels from the two adjacent superpixels that share the
common boundary. By excluding these texture vectors, the set of texture vectors
from the superpixel become more homogeneous. Hence, the compression-based
algorithm can more effectively distinguish the texture of the animal from that of
the background. This variation of CTM is denoted as CTM− while the original
version is denoted as CTM+. Figure 7.7 demonstrates the improvement of the
CTM− algorithm on these images. But notice that it still failed to segment out
the body of the crocodile from the background; in this case the camouflage is
effective enough to fool even human eyes.

We also observe another limitation of CTM from the results in Figure 7.7. As
an example, for the second image of Figure 7.7, the algorithm needs to use a
relatively small ε to extract the segment of the leopard from the background. Nev-
ertheless, under the the same ε, the background textures are oversegmented. At a
fixed γ, the CTM algorithm searches for the best distortion parameter ε value to

188 Chapter 7. Image Segmentation

code the feature vectors of the entire image, despite the fact that these textures
may have different noise variances.

A possible solution to this problem is to assign different ε values to different im-
age regions. Given a set of training images that are segmented by a human subject,
one can learn the distribution of ε of all the textures. Then, given a new image, one
needs to infer the appropriate ε to use for different regions in a Bayesian fashion.

Such an extension may give more relevant segmentation results for several im-
portant applications, such as salient object detection. For instance, saliency is
arguably a subjective notion, as people have their own preference to which region
of an image is the most salient one. We have shown through extensive experiments
in this chapter that whether an image region can be easily segmented out from
its surroundings is closely related to the distortion allowed in the lossy coding.
Therefore, it is possible to learn a compression-based saliency detector through a
set of examples. The segmentation results will most likely resemble the results of
the individual human subject who has provided the training examples.

7.4 Bibliographic Notes

In this chapter, we have proposed that texture features of a natural image should
be modeled as a mixture of possibly degenerate distributions. We have introduced
a lossy compression-based clustering algorithm, which is particularly effective for
segmenting degenerate Gaussian distributions. We have shown that the algorithm
can be customized to successfully segment natural images by harnessing the nat-
ural low-dimensional structures that are present in raw texture features such as
Gaussian windows.

In addition, the lossy compression-based approach allows us to introduce the
distortion as a useful parameter so that we can obtain a hierarchy of segmentations
of an image at multiple quantization scales. We have proposed a simple heuristic
criterion to adaptively determine the distortion for each image if one wants to
match the segmentation with that of humans.

In this chapter, we have studied only unsupervised segmentation of natural
images. However, the proposed framework can also be extended to supervised
scenarios. We believe that it is of great importance better understand how humans
segment natural images from the lossy data compression perspective. Such an un-
derstanding would lead to new insights into a wide range of important problems
in computer vision such as salient object detection and segmentation, perceptual
organization, and image understanding and annotation. These are some of the
challenging problems left open for future investigation.

One may refer to [?] for a review on the topic of image segmentation. Recent
developments in image segmentation have mainly focused on the problem of how
to integrate textural information at different scales. For example, one can use more
sophisticated region-growing or split-and-merge techniques [?,?,?,?] to partition
inhomogeneous regions; or one can use Markov random fields to model textures

7.4. Bibliographic Notes 189

or other image cues [?, ?, ?]. For a more detailed survey of these methods, the
reader is referred to [?, ?, ?].

Our method bears resemblance to some global optimization approaches, such
as using region merging techniques to minimize the MDL cost function [?].

Image Segmentation.

Image segmentation based on local color and texture information extracted from
various filter banks has been studied extensively in the computer vision literature
(see e.g., [?, ?, ?]). In this chapter, we directly used the unfiltered pixel values of
the image. Our segmentation is a byproduct of the global fitting of a hybrid linear
model for the entire image. Since the image compression standard JPEG-2000
and the video compression standard MPEG-4 have started to incorporate texture
segmentation [?], we expect that the method introduced in this chapter will be
useful for developing new image processing techniques that can be beneficial to
these new standards.

Figure 7.8. Examples in Category Landscape. Left: Original. Middle: CTMγ=0.1. Right:
CTMγ=0.2.

190 Chapter 7. Image Segmentation

Figure 7.9. Examples in Category Ocean. Left: Original. Middle: CTMγ=0.1. Right:
CTMγ=0.2.

Figure 7.10. Examples in Category Urban. Left: Original. Middle: CTMγ=0.1. Right:
CTMγ=0.2.

7.4. Bibliographic Notes 191

Figure 7.11. Examples in Category Animals. Left: Original. Middle: CTMγ=0.1. Right:
CTMγ=0.2.

Figure 7.12. Examples in Category People. Left: Original. Middle: CTMγ=0.1. Right:
CTMγ=0.2.

192 Chapter 7. Image Segmentation

Figure 7.13. Examples in Category Objects. Left: Original. Middle: CTMγ=0.1. Right:
CTMγ=0.2.

This is page 193
Printer: Opaque this

Chapter 8
3-D Motion Segmentation from Point
Correspondences

A classic problem in visual motion analysis is to estimate a motion model for a set
of 2-D feature points as they move in a video sequence. When the scene is static,
i.e., when either the camera or a single object move, the problem of fitting a 3-D
model compatible with the structure and motion of the scene is well understood
[?, ?]. For instance, it is well-known that two perspective views of a scene are
related by the epipolar constraint [?] and that multiple views are related by the
multilinear constraints [?]. These constraints can be used to estimate a motion
model for the scene using linear techniques such as the eight-point algorithm and
its generalizations.

However, these techniques can not deal with dynamic scenes in which both the
camera and an unknown number of objects with unknown 3-D structure move in-
dependently. In principle, one could model such scenes with a collection of 2-D
motion models and segment them using the 2-D motion segmentation techniques
developed in the previous chapter. However, because of depth discontinuities, per-
spective effects, etc, 2-D techniques would tend to interpret a single 3-D motion
as multiple 2-D motions, which would result in over segmentation of the scene.

In this chapter, we develop techniques for segmentation of 3-D motion models.
In particular, we consider the segmentation of three types of models of increasing
complexity: linear, bilinear and trilinear. The segmentation of linear models shows
up in motion segmentation from multiple affine views, and can be solved using
the GPCA algorithm presented in Chapter 3. The segmentation of bilinear and
trilinear models shows up in motion segmentation from point correspondences in
two and three perspective views, respectively, and will require the development
of extensions of GPCA to certain classes of bilinear and trilinear surfaces.

194 Chapter 8. 3-D Motion Segmentation from Point Correspondences

8.1 The Motion Estimation Problem

Before delving into the details of segmentation of multiple 3-D motion models,
we present a brief overview of the classical 3-D motion estimation problem from
point correspondences. Sections 8.1.2 and 8.1.3 review the two-view geometry
of non-planar and planar scenes, respectively, and Section 8.1.4 reviews the three
view geometry of non-planar scenes. We refer the readers to [?, ?] for further
details.

8.1.1 Rigid-Body Motions and Camera Projection Models

Consider a video sequence taken by a moving camera observing a static scene. We
assume that the camera is moving rigidly, so that its pose at frame f = 1, . . . , F
can be expressed as (Rf , Tf) ∈ SE(3), whereRf ∈ SO(3) is the camera rotation
and Tf ∈ R3 is the camera translation. Without loss of generality, we assume that
the first camera frame coincides with the world frame, so that (R1, T1) = (I,0).

Consider a generic point p, with coordinates X1 = (X1, Y1, Z1)> ∈ R3 rel-
ative to the world reference frame. As illustrated in Figure 8.1, the coordinates
Xf = (Xf , Yf , Zf)> of the same point p relative to the f th camera frame are
given the rigid-body transformation (Rf , Tf) ofX1:

Xf = RfX1 + Tf ∈ R3. (8.1)

Adopting the pinhole camera model shown in Figure 8.2 with focal length d(f),
the point p with coordinatesXf is projected onto the image plane at the pointxfyf

1

 =
1
Zf

d(f) 0 0
0 d(f) 0
0 0 1

Xf

Yf
Zf

 . (8.2)

The projection model (8.2) is specified relative to a very particular reference
frame centered at the optical center with one axis aligned with the optical axis. In

Xc

p

C
o

y

x
z

Xw

Twc

g=(R,T)
Yo

Z

W

X

Figure 8.1. A rigid-body motion between a moving frame C and a world frame W .

8.1. The Motion Estimation Problem 195

y

x
ix

image plane

o

f

x

z

y

p

Figure 8.2. Frontal pinhole imaging model: the image of a 3-D point p is the point x at the
intersection of the ray going through the optical center o and the image plane at a distance
d(f) in front of the optical center.

practice, when one captures digital images the measurements are obtained in pixel
coordinates, which are related to the image coordinates by the transformation

xf
.=

sx sθ ox
0 sy oy
0 0 1

xfyf
1

 , (8.3)

where (sx, sy) is a scale factor, sθ is a skew factor and (ox, oy) is a translation so
that the origin is in the upper-left corner of the image.

Combining the camera motion model (8.1), the camera projection model (8.2)
and the camera calibration model (8.3), leads to the following camera model:

λfxf =

sx sθ ox
0 sy oy
0 0 1

d(f) 0 0
0 d(f) 0
0 0 1


︸ ︷︷ ︸

Kf∈R3×3

[
Rf Tf

] 
X1

Y1

Z1

1

 , (8.4)

where λf = Zf and Kf are, respectively, the depth of the point and the camera
calibration matrix in the f th frame. When Kf = I , we say that the camera is
calibrated. We call the 3× 4 matrix Πf = Kf [Rf Tf] the projection matrix.

8.1.2 The Fundamental Matrix

Let x1 and x2 be images of point p in the first and second frames of a video
sequence consisting of F = 2 frames. As illustrated in Figure 8.3, the vectors
X2, T2 and R2X1 must be coplanar, hence their triple product must be zero, i.e.,

X2 · (T2 ×R2X1) = 0 ⇐⇒ X>2 T̂2R2X1 = 0. (8.5)

where T̂2 ∈so(3) is a skew-symmetric matrix generating the cross product by T2.

196 Chapter 8. 3-D Motion Segmentation from Point Correspondences

p

L1 L2

RT

e1
O2

x1

e2

x2

O1

x

y
z

x

y

z

Figure 8.3. Epipolar geometry: Two projections x1,x2 ∈ R3 of a 3-D point X from two
vantage points. The relative Euclidean transformation between the two vantage points is
given by (R, T) ∈ SE(3). The intersections of the line (o1, o2) with each image plane
are called epipoles and are denoted as e1 and e2. The intersections of the plane (o1, o2, p)
with the two image planes are called epipolar lines and are denoted `1 and `2.

It follows from equation (8.4) that λ1x1 = K1X1 and λ2x2 = K2X2. There-
fore, the following epipolar constraint [?] must be satisfied by the relative camera
motion (R2, T2) and the image pair (x1,x2)

x>2 K
−>
2 T̂2R2K

−1
1 x1 = 0 ⇐⇒ x>2 Fx1 = 0. (8.6)

The matrix F = K−>2 T̂2R2K
−1
1 ∈ R3×3 is called the fundamental matrix and is

defined up to an indeterminate scale. By construction, F is a rank-2 matrix having
e1 = R>2 K1T2 and e2 = K2T2 as its right and left null spaces. The vectors e1

and e2 are known as the epipoles in the first and second view, respectively.
Since there are 9 unknowns in the fundamental matrix F (up to a scale), one

can linearly solve for F from the epipolar constraint (8.6) from N ≥ 8 point
correspondences {(x1i,x2i)}Ni=1 in general configuration. Given some additional
knowledge about the camera calibration K1 and K2, one can solve for the camera
motion (R2, T2) from F using the eight-point algorithm [?].

8.1.3 The Homography Matrix

The motion estimation scheme described in the previous subsection assumes that
the displacement of the camera between the two views is nonzero, i.e., T2 6= 0,
otherwise the fundamental matrix F = K−>2 T̂2R2K

−1
1 would be zero. Further-

more, it also requires that the 3-D points be in general configuration, otherwise
one cannot uniquely recover F from the epipolar constraint [?]. The latter case oc-
curs, for example, when the 3-D points lie in a planeN>X1 = d, whereN ∈ S2

is the normal to the plane and d is the distance from the plane to the origin of
the first view. It follows from the equations X2 = R2X1 + T2, N>X1 = d,
λ1x1 = K1X1 and λ2x2 = K2X2 that the following homography constraint

8.1. The Motion Estimation Problem 197

holds

X2 =
(
R2 +

1
d
T2N

>
)
X1 =⇒ x2∼K2

(
R2 +

1
d
T2N

>
)
K−1

1 x1 (8.7)

The matrix H = K2(R2 + 1
dTN>)K−1

1 is called the homography matrix and
is, in general, defined up to an indeterminate scale. Notice that the homography
constraint x2 ∼ Hx1 also holds for non-planar scenes undergoing pure rotation.
In this case we simply have H = K2R2K

−1
1 . Since there are 9 unknowns in

the homographt matrix H (up to a scale), one can linearly solve for H from the
homography constraint (8.7) fromN ≥ 8 point correspondences {(x1i,x2i)}Ni=1.
Given some additional knowledge about the camera calibration K1 and K2, one
can solve for the camera motion (R2, T2) from F using linear methods.

8.1.4 The Trifocal Tensor

Let x1 ↔ x2 ↔ x3 be a point correspondence in three perspective views with
3× 4 camera matrices

Π1 = [K1 0], Π2 = [K2R2 e2] and Π3 = [K3R3 e3], (8.8)

where e2 ∈ P2 and e3 ∈ P2 are the epipoles in the 2nd and 3rd views, respec-
tively. Let `2 be any line passing through x2, i.e., `>2 x2 = 0, and `3 be any line
passing through x3, i.e., `>3 x3 = 0. Then, the multiple view matrix [?][

`>2 K2R2x1 `>2 e2

`>3 K3R3x1 `>3 e3

]
∈ R2×2 (8.9)

must have rank 1, hence its determinant must be zero, i.e.,

`>2 (K2R2x1e
>
3 − e2x

>
1 R
>
3 K

>
3)`3 = 0. (8.10)

This is the well-known point-line-line trilinear constraint among the three
views [?], which we will denote as

T (x1, `2, `3) =
∑
p,q,r

Tpqrx1p`2q`3r = 0 (8.11)

where T ∈ R3×3×3 is the so-called trifocal tensor.

Computing the trifocal tensor

Since there are 27 unknowns in the trifocal tensor T (up to a scale factor), one
can linearly solve for T from the trilinear constraint (8.11) given at least 26
point-line-line correspondences. However, if we are given point-point-point cor-
respondences, then for each point in the 2nd view x2, we can obtain two lines `21

and `22 passing through x2, and similarly for the 3rd view. Therefore, each point
correspondence gives 22 = 4 linearly independent equations on T and we only
need 7 point correspondences to linearly estimate T .

198 Chapter 8. 3-D Motion Segmentation from Point Correspondences

Computing epipoles, epipolar lines and camera matrices

Given the trifocal tensor T , it is well known how to compute the epipolar lines in
the 2nd and 3rd views of a point x1 in the 1st view [?]. Specifically, notice from
(8.11) that the matrix

(K2R2x1e
>
3 − e2x

>
1 R
>
3 K

>
3) ∈ R3×3 (8.12)

has rank 2. In fact its left null-space is `2(x1) = e2 × K2R2x1 and its right
null-space is `3(x1) = e3 ×K3R3x1, i.e., the epipolar lines of x1 in the second
and third views, respectively.

The epipoles in the second and third views e2 and e3 must lie in the epipolar
lines in the second and third views, {`2(x1i)}Ni=1 and {`3(x1i)}Ni=1, respectively.
Thus we can obtain the epipoles from

e>2 [`2(x11), . . . , `2(x1N)] = 0 and e>3 [`3(x11), . . . , `3(x1N)] = 0. (8.13)

Clearly, we only need 2 epipolar lines to determine the epipoles, hence we do not
need to compute the epipolar lines for all points in the first view. However, it is
better to use more than two lines in the presence of noise.

Finally, given T , e2 and e3, one can solve for the camera matrices Π1, Π2 and
Π3 using linear techniques [?].

8.2 The Motion Segmentation Problem

Consider a moving camera with pose g0(t) ∈ SE(3) at time t observing a scene
containing n moving objects with poses {gj(t) ∈ SE(3)}nj=1 at time t. The mo-
tion of object j relative to the camera between the zeroth and f th frame is given
by (Rfj , Tfj) = gj(f)g0(f)−1g0(0)gj(0)−1 ∈ SE(3). Let {Xi ∈ R3}Ni=1 be a
collection of points in 3-D space lying in the n moving objects. The projection of
a pointXi lying in the jth object onto the f th camera frame is given by

xfi = πf (RjfXi + Tjf), (8.14)

where πf : R3 7→ I is the camera projection model (orthographic, perspective,
etc.). In this chapter, we will consider the following problem.

Problem 8.1 (3D Motion Segmentation from Point Correspondences)

Given N image points {xfi}f=1,...,F
i=1,...,N taken from F views of a motion sequence

related by a collection of n 3-D motion models, estimate the number of motion
models n and their parameters {Mj}nj=1 without knowing which measurements
correspond to which motion model.

In some cases, the camera model is such that the 3-D motion models are linear
on the image measurements, thus Problem 8.1 is a direct application of GPCA. In
other cases, the motion models are more complex, e.g., bilinear or trilinear. We
develop extensions of GPCA to deal with such classes of segmentation problems.

8.3. Segmentation of Linear Motion Models 199

8.3 Segmentation of Linear Motion Models

In this section, we consider the 3-D motion segmentation problem (Problem 8.1)
in cases in which the projection model is such that the resulting 3-D motion
model is linear in the image measurements. In particular, we consider the seg-
mentation of rigid-body motions from point correspondences in multiple affine
views and show that the motion segmentation problem boils down to segmenting
low-dimensional subspaces of a high-dimensional space.

8.3.1 The Affine Motion Subspaces

Let {xfi ∈ R2}f=1,...,F
i=1,...,N be the images of N 3-D points {Xi ∈ P3}Ni=1 seen by

a rigidly moving camera in F frames. Under the affine projection model, which
generalizes orthographic, weak perspective, and paraperspective projection [?],
the images satisfy the equation

xfi = AfXi, (8.15)

where Af = Kf

[
1 0 0
0 1 0

]
[Rf Tf] ∈ R2×4 is the so-called affine camera

matrix at frame f and depends on the pose of the camera relative to the world
(Rf , Tf) ∈ SE(3) and the internal camera calibration parameters Kf ∈ SL(2).

When the set of points {Xi}Ni=1 all correspond to a single rigidly moving ob-
ject, we can stack of all the image measurements {xfi} into a 2F ×N matrix W ,
which can be decomposed into a motion matrix M and structure matrix S as

W = MSx11 · · · x1N

...
...

xF1 · · · xFN


2F×N

=

A1

...
AF


2F×4

[
X1 · · · XN

]
4×N . (8.16)

It follows from equation (8.16) that rank(W) ≤ 4. In addition, notice that the
two rows of each Af are linear combinations of the first two rows of a rotation
matrixRf , hence rank(W) ≥ rank(Af) ≥ 2. Therefore, the 2-D point trajectories
of 3-D points lying in a single rigidly moving object (the columns of the data
matrix W) live in a subspace of R2F of dimension d = 2, 3 or 4.1

Consider now the case in which the set of points {Xi}Ni=1 corresponds to n
rigid objects moving independently. It follows from our analysis in the previous
section that, if we knew the segmentation of the feature points, then we could
write the measurement matrix as W = [W1,W2, . . . ,Wn], where the columns of
Wj ∈ R2F×Nj are the Nj measurements associated with the jth moving object,
so that

∑n
j=1Nj = N . It also follows from our analysis in the previous section

1This rank constraint was derived in [?], and was used to propose the first multi-frame algorithm
for estimating the motion of an affine camera observing a static scene.

200 Chapter 8. 3-D Motion Segmentation from Point Correspondences

that each measurement matrix Wj satisfies

Wj = MjSj j = 1, . . . , n, (8.17)

where Mj ∈ R2F×4 and Sj ∈ R4×Ni are, respectively, the motion and structure
matrices associated with the jth moving object.

8.3.2 Segmenting Affine Motion Subspaces

In reality, the segmentation of the feature points is unknown, and so the mea-
surement matrix is given by W = [W1,W2, . . . ,Wn]P , where P ∈ RN×N is
an unknown permutation matrix. Nevertheless, the columns of W still live in a
union of n motion subspaces {Sj ⊂ R2F }nj=1 of dimensions dj ∈ {2, 3, 4} for
j = 1, . . . , n.

It is worth noting that, under certain additional assumptions, the problem of
segmenting the motion subspaces can be solved using a simpler algorithm that
depends only on the SVD of the data matrixW = UΣV >. For example, when the
motion subspaces are fully dimensional, i.e., dim(Sj) = 4, and fully independent,
i.e.,

dim(S1 ∪ S2 ∪ · · · ∪ Sn) = dim(S1) + dim(S2) + · · ·+ dim(Sn),

or equivalently Sj ∩ Sk = {0} for all j 6= k, one can apply the Costeira and
Kanade (CK) algorithm [?] to segment the nmotion subspaces. The CK algorithm
is based on thresholding the entries of the so-called shape interaction matrix

Q = V (1 : 4)V (1 : 4)> ∈ RN×N , (8.18)

where V (1 : 4) contains the first four columns of V . The matrix Q has the
property that [Kanatani, 2001]

Qij = 0 if i and j correspond to different motions. (8.19)

This property has been the basis for most existing motion segmentation
algorithms, such as [?, Kanatani, 2001, Kanatani, 2002, ?, Wu et al., 2001].

In general, however, the motions need not be fully free. For example, the motion
of ground automobiles relative to a camera is constrained to be planar, which
reduces the dimension of the motion subspaces to d = 3. In addition, the motion
subspaces may be partially dependent, i.e., max{dim(Sj),dim(Sk)} < dim(Sj∪
Sk) < dim(Sj) + dim(Sk) or equivalently Sj ∩ Sk 6= {0}, Sj ∩ Sk 6= Sj and
Sj ∩ Sk 6= Sk, which happens for instance when two objects move with the
same rotation but different translation relative to the camera. As reported in [?,
?, Vidal and Hartley, 2004], most existing motion segmentation algorithms show
poor performance in the presence of degenerate or partially dependent motions,
because they cannot deal with subspaces that have nontrivial intersection and have
different dimensions.

Nevertheless, the GPCA algorithm discussed in Chapter 3 does not impose any
restriction on either the intersection or the dimensionality of the subspaces, hence

8.4. Segmentation of Bilinear Motion Models 201

it can deal with all the spectrum of affine motions: from two-dimensional and par-
tially dependent to four-dimensional and fully independent. Segmentation of 3-D
motions from point correspondences in multiple affine views is equivalent to seg-
menting subspaces of R2F of dimensions d1, . . . , dn ≤ dmax = 4. As discussed
in Chapter 3, we can solve this problem by applying GPCA to the 2F -dimensional
point trajectories projected onto a subspace of dimension D = dmax + 1 = 5 in
R2F . That is, if W = UΣV > is the SVD of the data matrix, then we can solve
the motion segmentation problem by applying GPCA (Algorithm 3.4) to the first
5 columns of V .

8.3.3 Experimental Results

We tested the GPCA algorithm on three different sequences shown in Figure 8.4.
The data for these sequences consist of point correspondences in multiple views,
which are available at http://www.suri.it.okayama-u.ac.jp/data.html. Sequence A
consists of 30 frames of an outdoor sequence taken by a moving camera tracking
a car moving in front of a parking lot. Sequence B consists of 17 frames of an
outdoor sequence taken by a moving camera tracking a car moving in front of a
building. Sequence C consists of 100 frames of an indoor sequence taken by a
moving camera tracking a person moving his head.

For all sequences, we first projected the point trajectories onto a 5-dimensional
subspace of R2F , where F is the number of frames in the sequence. We assumed
that the motion subspaces are 4-dimensional, so that the motion segmentation
problem is reduced to segmenting 4-dimensional hyperplanes in R5. The number
of motions is correctly estimated from (3.20) as n = 2. We used the criterion
(2.48) with κ ∈ [2, 20] 10−7 to determine the rank of the embedded data matrix.

As shown in Table 8.1, GPCA gives a percentage of correct classification of
100.0% for all three sequences. The table also shows results reported in [?] from
existing multiframe algorithms for motion segmentation. The only algorithm hav-
ing a comparable performance to GPCA is Kanatani’s multi-stage optimization
algorithm, which is based on solving a series of EM-like iterative optimization
problems, at the expense of a significant increase in computation.

8.4 Segmentation of Bilinear Motion Models

In this section, we consider the 3-D motion segmentation problem (Problem 8.1)
in cases in which the projection model is such that the resulting 3-D motion model
is bilinear in the image measurements. In particular, we consider the segmentation
of rigid-body motions from point correspondences in two perspective views of
nonplanar (Section 8.4.1) and planar (Section 8.4.2) scenes. In both cases, we
show that the motion segmentation problem can be solved using extensions of
GPCA to certain classes of bilinear surfaces.

202 Chapter 8. 3-D Motion Segmentation from Point Correspondences

Figure 8.4. Segmenting the point correspondences of sequences A (left), B (center) and
C (right) in [?] by clustering subspaces in R5. First row: first frame of the sequence with
point correspondences superimposed. Second row: last frame of the sequence with point
correspondences superimposed.

Table 8.1. Classification rates given by various subspace segmentation algorithms for
sequences A, B, C in [?].

Sequence A B C
Number of points 136 63 73
Number of frames 30 17 100
Costeira-Kanade 60.3% 71.3% 58.8%
Ichimura 92.6% 80.1% 68.3%
Kanatani: subspace separation 59.3% 99.5% 98.9%
Kanatani: affine subspace separation 81.8% 99.7% 67.5%
Kanatani: multi-stage optimization 100.0% 100.0% 100.0%
GPCA 100.0% 100.0% 100.0%

8.4.1 Segmenting Fundamental Matrices

In this subsection, we consider the problem of segmenting n 3-D rigid-body mo-
tions {(Rj , Tj) ∈ SE(3)}nj=1 from point correspondences in two perspective
views. We assume that the 3-D scene is nonplanar and that the individual trans-
lations Ti are all nonzero. In this case, the motion of the objects relative to the
camera between the two views can be modeled as a mixture of fundamental ma-
trices {Fj}nj=1. In order for the problem to be well posed, we assume that the
fundamental matrices are different from each other (up to a scale factor).

The multibody epipolar constraint and the multibody fundamental matrix

As shown in Section 8.1.2, if (x1,x2) is an image pair associated with any the
n moving objects, then exists a fundamental matrix Fj such that x>2 Fjx1 = 0.

8.4. Segmentation of Bilinear Motion Models 203

Therefore, the following multibody epipolar constraint must be satisfied by the
number of independent motions n, the fundamental matrices {Fj}nj=1 and the
image pair (x1,x2), regardless of which motion is associated with the image pair

pn(x1,x2) .=
n∏
j=1

(
x>2 Fjx1

)
= 0. (8.20)

The multibody epipolar constraint (8.20) and the multibody brightness con-
stancy constraint (MBCC) for affine motions (??) are both homogeneous
polynomials of degree n that factor as a product of n bilinear forms. Therefore, as
shown in Theorem ??, the multibody epipolar constraint can be written in bilinear
form as

n∏
j=1

(
x>2 Fjx1

)
= νn(x2)>Fνn(x1) = 0. (8.21)

We call the matrix F ∈ RMn(3)×Mn(3) the multibody fundamental matrix as it is
a natural generalization of the fundamental matrix to the case of multiple moving
objects. Also, since equation (8.21) clearly resembles the bilinear form of the
epipolar constraint for a single rigid-body motion, we will refer to both equations
(8.20) and (8.21) as the multibody epipolar constraint from now on.

Although the multibody fundamental matrixF seems a complicated mixture of
all the individual fundamental matrices F1, . . . , Fn, it is still possible to recover
all the individual fundamental matrices fromF , under some mild conditions (e.g.,
the Fj’s are different). The rest of the section is devoted to providing a construc-
tive proof for this. We first show how to recover n and F from data, and then
show how to recover {Fj}nj=1 from F .

Estimating the number of motions n and the multibody fundamental matrix F

Both the MBCC for affine motions (??) and the multibody epipolar constraint
(8.21) are bilinear expressions on the embedded image measurements and lin-
ear expressions on the multibody motion parameters. Therefore, given N ≥
Mn(3)2 − 1 ∼ O(n4) generic point correspondences {(x1i,x2i)}Ni=1, we can
solve for the stack of the columns of the multibody fundamental matrix F ,
vec(F) ∈ RMn(3)2 , from the linear system (see equation (??))

V Fn vec(F) .=
[
νn(x11)⊗ νn(x21), . . . , νn(x1N)⊗ νn(x2N)

]>
vec(F) = 0,

(8.22)
and for the number of independent motions n from (see Theorem ??)

n
.= min{j : rank(V Fj) = Mj(3)2 − 1}. (8.23)

Factorization of the multibody fundamental matrix

Given the multibody fundamental matrix F and the number of independent
motions n, we now show how to recover the fundamental matrices and the seg-
mentation of the image points. We first show that the gradients of the multibody

204 Chapter 8. 3-D Motion Segmentation from Point Correspondences

epipolar constraint at the point correspondences lie in a collection of hyperplanes
in R3 whose normal vectors are the n epipoles. Therefore, one can apply GPCA
to these gradients in order to obtain the epipoles as well as the segmentation of
the data. Once the data has been segmented, computing a fundamental matrix for
each group is a linear problem.

1. Given an image pair (x1,x2) associated with the jth motion, its epipolar
line in the second view (see Figure 8.3) is defined as `j

.= Fjx1 ∈ P2. Since
x>2 Fjx1 = 0, we can compute `j as the partial derivative of the multibody
epipolar constraint with respect to x2 evaluated at (x1,x2), because

∂

∂x2

(
νn(x2)>Fνn(x1)

)
=

n∑
j=1

∏
k 6=j

(x>2 Fkx1)(Fjx1) (8.24)

=
∏
k 6=j

(x>2 Fkx1)(Fjx1) ∼ `j . (8.25)

Therefore, given a set of point correspondences {(x1i,x2i)}Ni=1, we can
compute its associated set of epipolar lines {`i}Ni=1 as the gradient of the
multibody epipolar constraint at the correspondences.

2. Given an epipolar line ` associated with the jth motion, there exists an
epipole ej such that e>j ` = e>j Fjx1 = 0, because ej is the left null space
of Fj . Therefore, the set of N epipolar lines can be interpreted as a set
of points in R3 lying in n hyperplanes with normal vectors {ej}nj=1. We
can apply the GPCA algorithm (Algorithm 3.4) to estimate the n epipoles
{ej}nj=1 up to a scale factor. If the n epipoles are different,2 we can immedi-
ately segment the data into n groups by assigning the image pair (x1i,x2i)
to group j if

j = arg min
k=1,...,n

(e>k `i)
2 (8.26)

3. Once the data has been clustered, solving for the fundamental matrix Fj
from the epipolar constraint x>2 Fjx1 = 0 is a linear problem of the form
(see equation (8.22))[

w1jx11 ⊗ x21, w2j , . . . , wNjx1N ⊗ x2N

]>
vec(Fi) = 0, (8.27)

where wij = 1 if the ith point belongs to the jth group, and wij = 0
otherwise.

Algorithm 8.1 summarizes the algorithm for segmenting n fundamental matri-
ces. Table 8.2 gives the minimum number of point correspondences required by
the algorithm as a function of the number of motions.

2This is not a strong assumption. If two individual fundamental matrices share the same (left)
epipoles, one can consider the right epipoles (in the first image frame) instead, because it is extremely
rare that two motions give rise to the same left and right epipoles. In fact, this happens only when the
rotation axes of the two motions are equal to each other and parallel to the translation direction [?].

8.4. Segmentation of Bilinear Motion Models 205

Algorithm 8.1 (Segmentation of Fundamental Matrices).

Given two perspective views {(x1i,x2i)}Ni=1 of a set of N 3-D points undergoing n dif-
ferent rigid-body motions, recover the number of independent motions n, the fundamental
matrix Fj associated with each motion, and the motion model associated with each image
pair as follows:

1: Number of motions: Form the embedded data matrix of degree j ≥ 1, V Fj ∈
RN×Mj(3)2 , as in (8.22). Compute the number of independent motions n from (8.23)
or else from

n = arg min
j≥1

σ2
Mj(3)2(V Fj)PMj(3)2−1

k=1 σ2
k(V Fj)

+ µMj(3)2. (8.28)

2: Multibody fundamental matrix: Compute the multibody fundamental matrix F as
the least-squares solution to the linear system V Fn vec(F) = 0 in (8.22), where V Fn
is computed using the Veronese map νn of degree n.

3: Epipolar lines: Compute the epipolar lines {`i}Ni=1 in the second view associated
with each image pair {(x1i,x2i)}Ni=1 as the gradient of the multibody epipolar
constraint with respect to x2 evaluated at each image pair.

4: Epipoles: Apply GPCA to the epipolar lines {`i}Ni=1 to obtain the individual epipoles
{ej}nj=1.

5: Feature segmentation: Assign image pair (x1i,x2i) to motion j =
arg mink=1,...,n(eTk `i)

2.

6: Fundamental matrices: Obtain the individual fundamental matrices {Fj}nj=1 by
applying the eight-point algorithm to each group.

Simulation and experimental results

We first test Algorithm 8.1 on synthetic data. We randomly pick n = 2 collections
of N = 100n feature points and apply a different (randomly chosen) rigid body
motion (Ri, Ti) ∈ SE(3), withRi ∈ SO(3) the rotation and Ti ∈ R3 the transla-
tion. We add zero-mean Gaussian noise with standard deviation (STD) from 0 to
1 pixels to the images x1 and x2. The image size is 1000 × 1000 pixels. We run
1000 trials for each noise level. For each trial, the classification error is computed
as the percentage of misclassified points, and the error between the true motions
{(Ri, Ti)}ni=1 and their estimates {(R̂i, T̂i)}ni=1 are computed as

Rotation error =
1
n

n∑
i=1

acos
(trace(RiR̂Ti)− 1

2

)
(degrees).

Translation error =
1
n

n∑
i=1

acos
(TTi T̂i

‖Ti‖‖T̂i‖

)
(degrees).

Figure 8.5 plots the mean classification error (%), the rotation error (degrees)
and the translation error (degrees) as a function of noise. In all trials the number

206 Chapter 8. 3-D Motion Segmentation from Point Correspondences

of motions was correctly estimated from equation (8.23) as n = 2.3 The mean
classification error is less than 7% using an assignment based on epipoles and
epipolar lines, and can be reduced to about 3.25% using an assignment based on
the Sampson error. The rotation error is less than 0.38◦ and the translation error
is less than 0.83◦.

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

Noise level [pixels]

Cl
as

sif
ica

tio
n

er
ro

r [
%

]

Segmentation with epipoles and epipolar lines
Segmentation with Sampson error

(a) Classification error

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Noise level [pixels]

Ro
ta

tio
n

an
d

tra
ns

la
tio

n
er

ro
rs

 [d
eg

re
es

] Rotation error
Translation error

(b) Motion estimation error

Figure 8.5. Percentage of misclassification and error in the estimation of rotation and
translation (in degrees) as a function of the level of noise for n = 2 moving objects.

We also tested the proposed approach by segmenting a real sequence in which a
moving camera observes a can moving in front of a static background consisting
of a T-shirt and a book. We manually extracted a total of N = 170 correspon-
dences: 70 for the can and 100 for the background. For comparison purposes, we
estimated the ground truth motion (Ri, Ti) by applying the eight-point algorithm
to manually segmented correspondences.

Figure 8.6 shows the first frame of the sequence as well as the relative displace-
ment of the correspondences between the two frames. We applied Algorithm 8.1
to estimate the number of motions as n = 2.4 We obtained a misclassification
error of 5.88% when the clustering is obtained using epipolar lines and epipoles
only. We used this segmentation to obtain the motion parameters for each group.
The error in rotation was 0.07◦ for the background and 4.12◦ for the can. The
error in translation was 0.21◦ for the background and 4.51◦ for the can. Given the
motion parameters for each group, we re-clustered the features using the Sampson
error (??). The misclassification error reduced to 0%.

8.4.2 Segmenting Homography Matrices

The motion segmentation scheme described in the previous subsection assumes
that the displacement of each object between the two views relative to the camera

3We use κ = 5× 10−3 in equation (2.48) for computing the number of motions.
4We use κ = 5× 10−3 in equation (2.48) for computing the number of motions.

8.4. Segmentation of Bilinear Motion Models 207

(a) First frame of the sequence

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

(b) 2-D displacement between two frames

0 70 170

1

2

(c) Segmentation based on epipolar lines

0 70 170

1

2

(d) Segmentation based on Sampson error

Figure 8.6. Segmenting two frames of a video sequence with two different rigid-body mo-
tions – the can and the background. (a) First frame of the sequence. (b) 2-D displacements
of the 170 correspondences from the first view (’o’) to the second (’→’). (c) Segmentation
of the 170 correspondences using epipoles and epipolar lines. (d) Segmentation of the 170
correspondences using Sampson distance.

is nonzero, i.e., T 6= 0, otherwise the individual fundamental matrices F = T̂R
would be zero. Furthermore, it also requires that the 3-D points be in general
configuration, otherwise one cannot uniquely recover each fundamental matrix
from its epipolar constraint. The latter case occurs, for example, in the case of
planar structures, i.e., when the 3-D points lie in a plane [?].

Both in the case of purely rotating objects (relative to the camera) or in the case
of a planar 3-D structure, the motion (R, T) between the two views x1 ∈ P2 and
x2 ∈ P2 is described by a homography matrix H ∈ R3×3. If N ∈ R3 is the
(unit) normal to the plane and d is the distance from the plane to the origin, the
homography matrix H = R+ 1

dTN
> is such that [?]

x2 ∼ Hx1 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1. (8.29)

208 Chapter 8. 3-D Motion Segmentation from Point Correspondences

When the camera calibrationK ∈ R3×3 is also unknown, the homography matrix
is written as H = K(R+ 1

dTN
>)K−1.

The multibody homography

Consider now a scene that can be modeled with n different homographies
{Hj}nj=1. Note that the n homographies do not necessarily correspond to n dif-
ferent rigid-body motions, as one rigidly moving object could consists of two or
more planes whose motion is described by two or more homographies. Therefore,
the n homographies can represent anything from 1 up to n rigid-body motions.

It is evident from the form of equation (8.29) that in order to eliminate the
segmentation of the data we cannot take the product of all the equations, as we
did with the epipolar constraints, because in this case we have two linearly inde-
pendent equations per image pair. In Chapter 3 we dealt with this issue by using
multiple polynomials to represent multiple subspaces of co-dimension more than
one. In the case of homographies, one can avoid using multiple polynomials by
exploiting properties of the cross product in R3, as we show now.

We start by noticing that if ` is a line passing through x2, i.e., ` is such that
`>x2 = 0, then it follows from (8.29) that there is a motion i such that `>Hjx1 =
0. Therefore, the following multibody homography constraint must hold

pn(x1, `) =
n∏
j=1

(`>Hjx1) = νn(`)>Hνn(x1) = 0. (8.30)

We call the matrixH ∈ RMn(3)×Mn(3) the multibody homography. Notice that
H plays the analogous role of the multibody affine matrix A, or the multibody
fundamental matrix F .

Computing the number of homographies n and the multibody homographyH

In order to compute n and H from a given a set of point P correspondences
{(x1p,x2p)}Pp=1, notice that given an image pair (x1,x2), we can generate two
linearly independent lines `1 and `2 passing through x2. This may lead us to
conclude that each correspondence gives two linearly independent constraints on
the entries ofH. In reality, each correspondence gives n+ 1 constraints onH.

To see this, notice that equation (8.30) must hold for any line passing through
x2. Since the family of lines α`1 + `2 passes through x2 for all α ∈ R, we have

q(α) =
n∏
j=1

((α`1 + `2)>Hjx1) = νn(α`1 + `2)>Hνn(x1) = 0. (8.31)

One can show that (see Exercise 8.2)

νn(α`1 + `2) =
n∑
j=0

αjfj(`1, `2), (8.32)

where fj(`1, `2) ∈ RMn(3) a polynomial of degree i in `1 and (n − i) in `2 for
j = 0, . . . , n. Therefore, q(α) is a polynomial of degree n in α such that q(α) = 0

8.4. Segmentation of Bilinear Motion Models 209

for all α, and so each one of its n+ 1 coefficients must be zero, i.e.,

fj(`1, `2)>Hνn(x1) = 0, j = 0, . . . , n. (8.33)

This gives n + 1 constraints per point correspondence on the entries of H.
Therefore, given P ≥ Mn(3)3−1

n+1 ∼ O(n3) generic point correspondences
{(x1p,x2p)}Pp=1, we can solve for the stack of the columns of the multibody
homographyH, h ∈ RMn(3)2 , from the linear system

V Hn h = 0, (8.34)

where the ith row of V Hn ∈ RP (n+1)×Mn(3)2 is given by νn(x1)⊗ fj(`1, `2).
Finally, similarly to (??) and (8.23), the number of homographies is given by

n
.= min{j : rank(V Hj) = Mj(3)2 − 1}. (8.35)

Factorization of the multibody homography

Once H is known, computing the homographies {Hj}nj=1 is equivalent to fac-
torizing the multibody homography constraint (8.30) into a product of n bilinear
factors. In general, solving such a factorization problem is difficult, unless some
structure about the matricesHj is known. In the case of fundamental matrices dis-
cussed in Section 8.4.1, we exploited the fact that epipoles are the left null spaces
of the fundamental matrices. In the case of affine matrices discussed in Section
??, we exploited the fact that the 3rd row of each affine matrix is known.

Unfortunately, homographies are usually full rank and none of their rows are
known. Hence, the factorization of H is more challenging than the factorization
of the multibody affine matrix A or the multibody fundamental matrix F . In fact,
we will show that the factorization of H requires a combination of the methods
for factorizing A and F , according to the following four steps:

1. Compute derivatives of pn(x1, `) with respect to x1 to obtain linear
combinations of the rows of each Hj .

2. Obtain three vectors orthogonal to the three pairs of rows of each Hj by
solving three hyperplane clustering problems.

3. Obtain the rows of each Hj up to a scale factor from the cross products of
these vectors.

4. Solve linearly for the unknown scales of the rows of Hj from the
homography constraint.

For step 1, notice from (??) that if the image pair (x1,x2) is associated with the
ith motion and ` is any line passing through x2, then the derivative of pn(x1, `)
with respect to x1 at (x1, `) gives `>Hj . Thus, by properly choosing ` we can
get different linear combinations of the rows of Hj = [hj1 hj2 hj3]>. If we
choose `12 = (y2,−x2, 0), `23 = (0, 1,−y2) and `31 = (1, 0,−x2) as three
lines passing through x2 = (x2, y2, 1), we can compute the vectors

g12 ∼ y2hj1 − x2hj2, g23 ∼ hj2 − y2hj3 and g31 ∼ hj1 − x1hj3 (8.36)

210 Chapter 8. 3-D Motion Segmentation from Point Correspondences

from the derivatives of pn at (x1, `12), (x1, `23) and (x1, `31), respectively.
For step 2, notice that g12 lives in the plane spanned by hj1 and hj2, whose

normal vector is b12j = hj1 × hj2. Therefore, if we evaluate g12 at all the given
point correspondences, we obtain a set of N vectors {g12i}Ni=1 lying in a union
of n planes with normal vectors {b12j}nj=1. Similarly, the vectors {g23i}Ni=1 and
{g31i}Ni=1 lie in a union of n planes with normal vectors {b23j = hj2 × hj3}nj=1

and {b31j = hj3 × hj1}nj=1, respectively. In principle we can obtain the vectors
{b12j}nj=1, {b23j}nj=1 and {b31j}nj=1 by applying the GPCA algorithm (Algo-
rithm 3.4) to each one of the three sets of points {g12i}, {g23i} and {g31i}
separately. However, if we do so we would not know which b12j correspond to
which b13j . Exercise 3.5 shows how to resolve this difficulty by exploiting the
fact that the correspondences among the data points {g12i}, {g23i} and {g31i} are
known, because these three vectors are computed as a triplet associated with the
same point correspondence (x1i,x2i). The main idea is to compute three polyno-
mials p12, p23 and p31 fitting the points {g12i}, {g23i} and {g31i}, respectively,
and then obtain the normal vector for the jth group from the gradients of these
polynomials. In order for the normal vectors b12i, b23i and b31i to correspond,
we can choose the points at which the gradients by minimizing the sum of the
squared distances to all hyperplanes, i.e., we compute the normal vectors as

b12j ∼ ∇p12(g12ij), b23j ∼ ∇p23(g23ij) and b31j ∼ ∇p31(g31ij), (8.37)

where

ij = arg min
j=1,...,N

|p12(g12j)|
‖∇p12(g12j)‖∏k=n
i+1 |b

T
12kg12j |

+

|p23(g23j)|
‖∇p23(g23j)‖∏k=n
i+1 |b

T
23kg23j |

+

|p31(g31j)|
‖∇p31(g31j)‖∏k=n
i+1 |b

>
31kg31j |

. (8.38)

For step 3, given b12 = hi1 × hi2, b23 = hi2 × hi3 and b31 = hi3 × hi1, we
can immediately obtain the rows of Hj up to a scale factor as

hi1 ∼ h̃i1
.= b12 × b31,hi2 ∼ h̃i2

.= b23 × b12,hi3 ∼ h̃i3
.= b31 × b23. (8.39)

For step 4, we know that x2 ∼ Hjx1. Therefore, we can obtain the n
homograhies as

Hj =
[

x2

h̃
>
j1x1

h̃j1
y2

h̃
>
j2x1

h̃j2
1

h̃
>
j3x1

h̃j3
]>

, j = 1, . . . , n. (8.40)

Algorithm 8.2 summarizes the algorithm for segmenting homography matrices.
Table 8.2 gives the minimum number of point correspondences required by the
algorithm as a function of the number of motions.

Experimental results

We applied Algorithm 8.2 to segment two frames of a 2048 × 1536 video se-
quence, shown in Figure 8.7(a)-(b), with two moving objects – a cube and a
checkerboard. Notice that although there are only two rigid-body motions, the
scene contains three different homographies, each one associated with each one
of the three visible planar structures. Furthermore, notice that the top side of the

8.4. Segmentation of Bilinear Motion Models 211

Algorithm 8.2 (Segmentation of Homography Matrices).

Given two perspective views {(x1i,x2i)}Ni=1 of a set of N 3-D points whose
motion can be modeled with n homography matrices {Hj}nj=1, recover the
number of independent motions n, the homography matrix {Hj}nj=1 associated
with each motion, and the motion model associated with each image pair as
follows:

1: Number of motions: Compute two lines (`21i, `22i) passing through x2i. Form the
embedded data matrix of degree j ≥ 1,V Hi ∈ RN(j+1)×Mn(3), as in (8.34). Compute
the number of motions from (8.35), or else from

n = arg min
j≥1

σ2
Mj(3)2(V Hj)PMj(3)2−1

k=1 σ2
k(V Hj)

+ µMj(3)2. (8.41)

2: Multibody homography matrix: Compute the multibody homography matrix H as
the least-squares solution to the linear system V Hn vec(H) = 0 in (8.34), and let

pn(x1, `) = νn(`)>Hνn(x1).

3: Homography matrices:

1. For all i = 1, . . . , N , let `12i = (y2i,−x2i, 0)>, `23i = (0, 1, y2i)
> and

`31i = (1, 0,−x2i)
> be three lines passing through x2i = (x2i, y2i, 1)>.

Compute a linear combination of rows 1 & 2, 2 & 3, and 3 & 1 of the
homography matrix at each point correspondence as

g12i=
∂pn
∂x1

(x1i, `12i); g23i=
∂pn
∂x1

(x1i, `23i); g31i=
∂pn
∂x1

(x1i, `31i).

2. Solve for the coefficients cjk of the polynomials p12(g) = c>12νn(g),
p23(g) = c>23νn(g) and p31(g) = c>31νn(g), from the linear system

[νn(gjk1), νn(gjk2), . . . , νn(gjkN)]>cjk = 0.

3. Compute the homography matrices from the cross products of the gradients of
p12, p23 and p31 as follows:
for all j = n : 1 do

ij = arg min
j=1,...,N

|p12(g12j)|
‖∇p12(g12j)‖Qk=n
j+1 |b>12kg12j |

+

|p23(g23j)|
‖∇p23(g23j)‖Qk=n
j+1 |bT23kg23j |

+

|p31(g31j)|
‖∇p31(g31j)‖Qk=n
j+1 |b>31kg31j |

;

b12j = ∇p12(g12ij
); b23j = ∇p23(g23ij

); b31j = ∇p31(g31ij
);

Hj =

»
x2ij

(b12j×b31j)

det([b12j b31j x1ij
])

y2ij
(b23j×b12j)

det([b23j b12j x1ij
])

(b31j×b23j)

det([b31j b23j x1ij
])

–>
.

end for

4: Feature segmentation: Assign the image pair (x1i,x2i) to group j if j =
arg mink=1,...,n ‖x2 − Hkx1

e>3 Hkx1
‖2.

212 Chapter 8. 3-D Motion Segmentation from Point Correspondences

cube and the checkerboard have approximately the same normals. We manually
tracked a total of N = 147 features: 98 in the cube (49 in each of the two visible
sides) and 49 in the checkerboard. We applied Algorithm 8.2 to segment the image
data and obtained a 97% of correct classification, as shown in Figure 8.7(c).

(a) First frame (b) Second frame

0 49 98 147

1

2

3

Feature point index

G
ro

up
 in

de
x

(c) Feature segmentation

Figure 8.7. Segmenting two different rigid-body motions, a cube and a plane, according to
three different homography models corresponding to the three planes in the scene.

We then added zero-mean Gaussian noise with standard deviation between 0
and 1 pixels to the features, after rectifying the features in the second view in
order to simulate the noise free case. Figure 8.7(c) shows the mean percentage of
correct classification for 1000 trials per level of noise. The percentage of correct
classification of our algorithm is between 80% and 100%, which gives a very good
initial estimate for any of the existing iterative/optimization/EM based motion
segmentation schemes.

8.5. Segmentation of Trilinear Motion Models 213

0 0.2 0.4 0.6 0.8 170

75

80

85

90

95

100

Noise level [pixels]

Co
rre

ct
 c

la
ss

ific
at

io
n

[%
]

Figure 8.8. Percentage of correct classification as a function of noise synthetically added
to the point correspondences of the scene in Figure 8.7.

8.5 Segmentation of Trilinear Motion Models

In this section, we consider the problem of segmenting n 3-D rigid-body motions
{(Rj , Tj) ∈ SE(3)}nj=1 from point correspondences in three perspective views.
As shown in Section 8.1.4, in this case the motion of the each object relative to
the camera among the three views can be modeled as a mixture of trifocal tensors
{Tj ∈ R3×3×3}nj=1 relating a point, a line and a line in the first, second and third
views. To avoid degenerate situations, we assume that the 3-D scene is nonplanar
and that the trifocal tensors are different from each other (up to a scale factor).

8.5.1 The Multibody Trifocal Tensor

The multibody trilinear constraint and the multibody trifocal tensor

Let x1 ↔ x2 ↔ x3 be an arbitrary point correspondence. Then, there exists a
trifocal tensor Tj that relates the point in the first view x1 = (x11, x12, x13)>, a
line in the second view `2 = (`21, `22, `23)> passing through x2 and a line in the
third view `3 = (`31, `32, `33)> passing through x3 via the trilinear constraint:

Tj(x1, `2, `3) =
∑
p,q,r

Tj,pqrx1p`2q`3r = 0. (8.42)

Therefore, regardless of which motion is associated with the correspondence, the
following constraint must be satisfied by the number of independent motions n,
the trifocal tensors {Tj}nj=1 and the point-line-line correspondence x1↔ `2↔ `3

n∏
j=1

Tj(x1, `2, `3) = 0. (8.43)

This multibody constraint is a homogeneous polynomial of degree n in each of
x1, `2 or `3. Thus, we can write it as a sum of monomials of degree n in each of
x1, `2 and `3. By collecting the coefficients of these monomial in a 3-dimensional

214 Chapter 8. 3-D Motion Segmentation from Point Correspondences

tensor T ∈ RMn(3)×Mn(3)×Mn(3), we can write the constraint (8.43) as

T (νn(x1), νn(`2), νn(`3)) = 0. (8.44)

We call the array T the multibody trifocal tensor and equation (8.44) the multi-
body trilinear constraint, as they are natural generalizations of the trifocal tensor
and the trilinear constraint, respectively, valid for n = 1.

Computing the number of motions and the multibody trifocal tensor

Notice that, although (8.44) has degree n in the entries of x1, `2 and `3, it is in
fact linear in the entries of νn(x), νn(`2) and νn(`3). Hence, given a point-line-
line correspondence x1 ↔ `2 ↔ `3, we can compute the entries of the vectors
νn(x), νn(`2) and νn(`3) and use the multibody trilinear constraint (8.44) to
obtain a linear relationship in the entries of T . Therefore, we may estimate T
linearly from Mn(3)3 − 1 ∼ O(n6) point-line-line correspondences. That is 26
correspondences for one motion, 215 for two motions, 999 for three motions, etc.

Fortunately, as in the case of n = 1 motion, one may significantly re-
duce the data requirements by working with point-point-point correspondences
x1 ↔ x2 ↔ x3. Since each point in the second view x2 gives two independent
lines `21 and `22 passing through it and each point in the third view x3 gives two
independent lines `31 and `32 passing through it, a naive calculation would give
22 = 4 constraints per point-point-point correspondence. However, due to the al-
gebraic properties of the Veronese map, each correspondence provides in general
(n+ 1)2 independent constraints on the multibody trifocal tensor.

To see this, remember from Section 8.1.4 that the trilinear constraint is satisfied
by all lines `2 = α`21 + `22 and `3 = β`31 + `32 passing through x2 and x3,
respectively. Therefore, for all α ∈ R and β ∈ R we must have

n∏
j=1

Tj(x1, α`21 + `22, β`31 + `32) = 0. (8.45)

The above equation, viewed as a function of α, is a polynomial of degree n,
hence its n+ 1 coefficients must be zero. Each coefficient is in turn a polynomial
of degree n in β, whose n + 1 coefficients must be zero. Therefore, each point-
point-point correspondence gives (n + 1)2 constraints on the multibody trifocal
tensor T , and we need only (Mn(3)3 − 1)/(n + 1)2 ∼ O(n4) point-point-point
correspondences to estimate T . That is 7, 24 and 63 correspondences for one, two
and three motions, respectively. This reduction on the number of required cor-
respondences represents a significant improvement, not only with respect to the
case of point-line-line correspondences, as explained above, but also with respect
to the case of two perspective views. As discussed in Section 8.4.1, one needs
Mn(3)2 − 1 point-point correspondences for linearly estimating the multibody
fundamental matrix F , i.e., 8, 35 and 99 correspondences for one, two and three
motions, respectively, as shown in Table 8.2.

Given a correspondence x1 ↔ x2 ↔ x3, we generate the (n + 1)2 linear
equations in the entries of T by choosing `21, `22, `31 and `32 passing through

8.5. Segmentation of Trilinear Motion Models 215

x2 and x3, respectively, and then computing the coefficient of αiβj in (8.45). As
shown in Exercise 8.3, these (n+ 1)2 coefficients are given by

T (νn(x1),fj(`21, `22), fk(`31, `32))

=
(
νn(x1)⊗ fj(`21, `22)⊗ fk(`31, `32)

)>
vec(T), j, k = 1, . . . , n,

where vec(T) ∈ RMn(3)3 is the stack of all the entries of T and fj is defined in
(8.32). Therefore, we can solve for T from the linear system

V Tn vec(T) = 0, (8.46)

where the rows of the matrix V Tn ∈ RP (n+1)2×Mn(3)3 are of the form νn(x1i)⊗
fj(`21i, `22i)⊗ fk(`31i, `32i), for j, k = 1, . . . , n and i = 1, . . . , N .

Finally, similarly to (??), (8.23) and (8.35), the number of trifocal tensors can
be computed from

n
.= min{j : rank(V Tj) = Mj(3)3 − 1}. (8.47)

8.5.2 Segmenting Trifocal Tensors

Computing the epipolar lines

Given the trifocal tensor T , it is well known how to compute the epipolar lines
`2(x1) and `3(x1) in the 2nd and 3rd views associated with a point x1 in the 1st
view. For example, as shown in Section 8.1.4, the epipolar line in the second view
`2(x1) must satisfy the relationship

∀`3 ∈ R3 T (x1, `2(x1), `3) = 0. (8.48)

In the case of multiple motions, we are faced with the more challenging prob-
lem of computing the epipolar lines `2(x1) and `3(x1) without knowing the
individual trifocal tensors {Tj}nj=1 or the segmentation of the correspondences.
The question is then how to compute such epipolar lines from the multibody tri-
focal tensor T . To this end, notice that with each point in the first view x1 we
can associate n epipolar lines corresponding to the nmotions between the 1st and
2nd views. If `2(x1) is an epipolar line of x1 according to the jth motion, then
from equation (8.48) we have that for all `3 ∈ R3, Tj(x1, `2(x1), `3) = 0. This
implies that

∀`3 ∈ R3
n∏
j=1

Tj(x1, `2(x1), `3) = T (νn(x1), νn(`2(x1)), νn(`3) = 0. (8.49)

As this equation holds for any of the n epipolar lines, the question of determin-
ing the epipolar line of a point x1 is not well posed as such, because the epipolar
line depends on which of the n motions the point x1 belongs to, which cannot
be determined without additional information. We therefore pose the question a
little differently, and suppose that we know the point x2 in the second view cor-
responding to x1. Since the epipolar line `2(x1) must of course pass through x2,

216 Chapter 8. 3-D Motion Segmentation from Point Correspondences

we can parameterize it as

`2(x1) = α`21 + `22, (8.50)

where, as before, `21 and `22 are two different lines passing through x2.
Replacing (8.50) in equation (8.49) gives

∀`3 ∈ R3 T (νn(x1), νn(α`21 + `22), νn(`3)) = 0. (8.51)

As `3 ranges over all of R3, this gives a total of up to Mn(3) linearly independent
equations. Each one of such equations is a polynomial of degree n in α. These
polynomials must have a common root α∗ for which all the polynomials vanish.
The epipolar line of x1 in the second view is then `2(x1) = α∗`21 + `22. The
epipolar line of x1 in the third view can be obtained in an analogous fashion.

We may apply this process to allN correspondences {x1i ↔ x2i ↔ x3i}Ni=1 to
obtain the set of all N epipolar lines in the second and third views, {`2(x1i)}Ni=1

and {`3(x1i)}Ni=1, according to their individual motion models. Notice, again,
that this is done from the multibody trifocal tensor T only, without knowing the
individual trifocal tensors or the segmentation of the correspondences.

Computing the epipoles

As shown in Section 8.1.4, in the case of one rigid-body motion, the epipoles in
the second and third views, e2 and e3, can be computed from the epipolar lines
in the second and third views, {`2(x1i)}Ni=1 and {`3(x1i)}Ni=1, respectively, by
solving the linear systems

e>2 [`2(x11), . . . , `2(x1N)] = 0> and e>3 [`3(x11), . . . , `3(x1N)] = 0>. (8.52)

In the case of n motions there exist n epipole pairs, {(e2j , e3j)}nj=1, where
e2j and e3j are epipoles in the second and third views corresponding to the jth
motion. Given a set of correspondences {x2i ↔ x3i ↔ x3i}we may compute the
multibody trifocal tensor T and determine the epipolar lines `2(x1i) and `3(x1i)
associated with each correspondence by the method described in the previous
subsection. Then, for each pair of epipolar lines

(
`2(x1i), `3(x1i)

)
there exists

an epipole pair (e2j , e3j) such that

e>2j`2(x1i) = 0 and e>3j`3(x1i) = 0. (8.53)

Therefore, the problem of finding the epipole pairs {(e2j , e3j)}nj=1 is equivalent
to one of segmenting two sets of points lying in two collections of hyperplanes
whose normal vectors are the epipole pairs.

Exercise 3.5 provides a solution to this problem based on a simple extension of
the GPCA (Algorithm 3.4). The first step is to fit two polynomials,

p2(`2) =
n∏
j=1

(e>2j`2) = c>2 νn(`2) = 0,

p3(`3) =
n∏
j=1

(e>3j`3) = c>3 νn(`3) = 0,

(8.54)

8.5. Segmentation of Trilinear Motion Models 217

to the epipolar lines {`2(x1i)}Ni=1 and {`3(x1i)}Ni=1, respectively. Similarly to
(8.52), we may find the coefficients of p2 and p3 by solving the linear systems

c>2 [νn(`2(x11)), . . . , νn(`2(x1N))] = 0>,

c>3 [νn(`3(x11)), . . . , νn(`3(x1N))] = 0>.
(8.55)

The second step is to compute the epipoles as the gradients of these polynomials
at a collection of n pairs of epipolar lines {(`2j , `3j)}nj=1 passing through each
one of the epipole pairs, i.e.,

e2j ∼ ∇p2(`2j) and e3j ∼ ∇p3(`3j), j = 1, . . . , n. (8.56)

The pairs of epipolar lines {(`2j , `3j)}nj=1 are chosen as the n pairs of epipolar
lines in {(`2(x1i), `3(x1i))}Ni=1 that minimize a certain distance to their respec-
tive epipoles. More specifically, for j = n, . . . , 2, 1 set `2j = `2(x1ij) and
`2j = `2(x1ij), where

ij = arg min
i=1,...,N

p2(`2(x1i))
2

‖∇p2(`2(x1i))‖2∏n
k=j+1(e>2k`2(x1i))2

+
p3(`3(x1i))

2

‖∇p3(`2(x1i))‖2∏n
k=j+1(e>3k`2(x1i))2

. (8.57)

Computing the trifocal tensors

Once the n epipole pairs {e2j , e3j)}nj=1 have been computed, we can segment
the data into n groups by assigning the image pair (x1i,x2i) to group j if

j = arg min
k=1,...n

(e>2k`2(x1i))2 + (e>3k`3(x1i))2 (8.58)

provided that the n epipoles pairs are different. Given the segmentation of the cor-
respondences, one may obtain trifocal tensors, fundamental matrices and camera
matrices using the algebraic methods described in Section 8.1.4.

Algorithm summary

Algorithm 8.3 summarizes the main steps of the algorithm for segmenting tri-
focal tensors described in this section. Table 8.2 gives the minimum number of
point correspondences required by the algorithm as a function of the number of
motions.

Table 8.2. Number of correspondences required to linearly solve for the different multibody
motion models.

Correspondence 1 2 3
Multibody fundamental matrix F point-point 8 35 99
Multibody homography matrixH point-point 4 12 25
Multibody trifocal tensor T point-point-point 7 24 63
Multibody trifocal tensor T point-line-line 26 215 999

218 Chapter 8. 3-D Motion Segmentation from Point Correspondences

Algorithm 8.3 (Segmentation of Trifocal Tensors).

Given a set of points {(x1i,x2i,x3i)}Ni=1 corresponding to N points under-
going n different rigid-body motions relative to a moving perspective camera,
recover the number of independent motions n, the trifocal tensors {Tj}nj=1 asso-
ciated with each motion, and the motion associated with each correspondence as
follows:

1: Number of motions: Compute two lines (`21i, `22i) passing through x2i, and two
lines (`31i, `32i) passing through x3i. Form the embedded data matrix of degree
j = 1, . . . , n, V Tj ∈ RN(j+1)2×Mj(3)3 , as defined in (8.46). Compute the number
of independent motions n from

n = arg min
j≥1

σ2
Mj(3)3(V Tj)PMj(3)3−1

k=1 σ2
k(V Tj)

+ µMj(3)3. (8.59)

2: Multibody trifocal tensor: Compute the multibody trifocal tensor T as the least-
squares solution to the linear system V Tn vec(T) = 0 in (8.46).

3: Epipolar lines: For all i = 1, . . . , N , compute the epipolar lines of x1i in the second
and third views, `2(x1i) and `3(x1i), as follows:

1. Let qk(α) =
Pn
j=0 T (νn(x1i), fj(`21i, `22i), ek)αj , for all k =

1, . . . ,Mn(3). Compute the common root α∗ of these Mn(3) polynomials as
the value of α that minimizes q(α) =

PMn(3)
k=1 qk(α)2. The epipolar line of

x1i in the second view is `2(x1i) = α∗`21i + `22i.
2. Compute the epipolar line of x1i in the third view as `3(x1i) =
β∗`31i + `32i, where β∗ is the common roots of the polynomials qk(β) =Pn
j=0 T (νn(x1i), ek, fj(`31i, `32i))β

j .

4: Epipoles: Given a set of epipolar lines {(`2(x1i), `3(x1i))}Ni=1,
1. Compute the multibody epipoles c2 ∈ RMn(3) and c3 ∈ RMn(3) from (8.55),

and let p2(`2) = c>2 νn(`2) and p3(`3) = c>3 νn(`3).
2. Compute the epipole pairs from the gradients of p2 and p3 as follows:

for all j = n : 1 do

ij = arg min
i=1,...,N

|p2(`2(x1i))|
‖∇p2(`2(x1i))‖Qn

k=j+1 |e>2k`2(x1i)|
+

|p3(`3(x1i))|
‖∇p3(`2(x1i))‖Qn

k=j+1 |e>3k`2(x1i)|
;

e2j ∼ ∇p2(`2(x1ij)) and e3j ∼ ∇p3(`3(x1ij)).

end for
5: Feature segmentation: Assign point correspondence (x1i,x2i,x3i) to motion j =

arg mink=1,...,n(e>2k`2(x1i))
2 + (e>3k`3(x1i))

2.
6: Trifocal tensors: Obtain the individual trifocal tensors {Tj}nj=1 from the trilinear

constraint for each group.

8.6 Bibliographical Notes

3-D motion estimation and segmentation has been an active topic of research
in the computer vision community over the past few years. Earlier work [?]
solves this problem by first clustering the features corresponding to the same

8.7. Exercises 219

motion using e.g., K-means or spectral clustering, and then estimating a single
motion model for each group. This can also be done in a probabilistic frame-
work [?] in which a maximum-likelihood estimate of the parameters of each
motion model is sought by alternating between feature clustering and single-
body motion estimation using the Expectation Maximization (EM) algorithm.
However, the convergence of EM to the global maximum depends strongly on
initialization [Torr et al., 2001].

In order to deal with the initialization problem of EM-like approaches, recent
work has concentrated on the study of the geometry of dynamic scenes, includ-
ing the analysis of multiple points moving linearly with constant speed [?, ?] or
in a conic section [?], multiple points moving in a plane [?], multiple translating
planes [?], self-calibration from multiple motions [?, ?], multiple moving objects
seen by an affine camera [Boult and Brown, 1991, ?, Kanatani, 2001, Wu et al.,
2001,?, ?, ?,Vidal and Hartley, 2004], and two-object segmentation from two per-
spective views [?]. The case of multiple moving objects seen by two perspective
views was recently studied in [?, ?, Vidal and Ma, 2004, ?], and has been ex-
tended to three perspective views via the so-called multibody trifocal tensor [?].
Such works have been the basis for the material presented in this chapter. Recent
extensions omnidirectional cameras can be found in [?, ?].

8.7 Exercises

Exercise 8.1 Motion Segmentation from Optical Flow in Multiple Perspective Views.
Let Ωf = (ω1f , ω2f , ω3f)> and Vf = (v1f , v2f , v3f)> be, respectively, the rota-
tional and translational velocities of one a moving object relative to the camera at frame
f = 1, . . . , F . Under the perspective projection model, the projection of point Xp =
(Xp, Yp, Zp, 1)> ∈ P3 on the zeroth frame is (xp, yp)

> = (Xp, Yp)
>/Zp. Show that the

optical flow ufp ∈ R2 of point p in the f th frame relative to the zeroth is:

ufp =

»
xpyp −(1 + x2

p) −yp 1/Zp 0 xp/Zp
(1 + y2

p) −xpyp xp 0 1/Zp yp/Zp

–»
Ωf
Vf

–
.

Given measurements for the optical flow {ufp} of P pixels in F frames, define the
matrix of image measurements as

W =

264u11 · · · u1P

...
...

uF1 · · · uFP

375
2F×P

(8.60)

220 Chapter 8. 3-D Motion Segmentation from Point Correspondences

Show that W can be factored into its motion and structure components as W = MS>,
where

M =

2666664
ω11 ω21 −ω31 0 0 v11 v31 0
−ω21 0 0 ω11 ω31 v21 0 v31

...
...

ω1F ω2F −ω3F 0 0 v1F v3F 0
−ω2F 0 0 ω1F ω3F v2F 0 v3F

3777775
2F×8

S =

2664
x1y1 z1 − x2

1 y1 y2
1 − z1 x1

1
Z1

x1
Z1

y1
Z1

...
...

xP yP zP − x2
P yP y2

P − zP xP
1
ZP

xP
ZP

yP
ZP

3775
P×8

.

(8.61)

Exercise 8.2 Show that for all `1, `2 ∈ R3 and α ∈ R

νn(α`1 + `2) =

nX
i=0

αifi(`1, `2), (8.62)

where fi(`1, `2) ∈ RMn(3) is a bi-homogeneous polynomial of degree i in `1 and (n− i)
in `2 for i = 0, . . . , n.

Exercise 8.3 Show that

T (νn(x1), νn(α`21 + `22), νn(β`31 + `32))

= T (νn(x1),

nX
i=0

αifi(`21, `22),

nX
j=0

βjfj(`31, `32))

=

nX
i=0

nX
j=0

αiβjT (νn(x1), fi(`21, `22), fj(`31, `32))

(8.63)

Exercise 8.4 In this exercise and next few exercises, we investigate yet another algebraic
technique that allows us to segment multiple homographies. We may interpret the second
image x2 ∈ P2 as a point in CP by considering the first two coordinates in x2 as a complex
number and appending a one to it. However, we still think of x1 as a point in P2. With this
interpretation, we can rewrite (8.29) as

x2 ∼ Hx1
.
=

»
h11 + h21

√
−1 h12 + h22

√
−1 h13 + h23

√
−1

h31 h32 h33

–
x1, (8.64)

where H ∈ C2×3 now represents a complex homography5. Let w2 be the vector in CP
perpendicular to x2, i.e., if x2 = [z, 1]T then w2 = [1,−z]T . Then we can rewrite (8.64)
as the following complex bilinear constraint

w>2 Hx1 = 0, (8.65)

which we call the complex homography constraint. We can therefore interpret the motion
segmentation problem as one in which we are given image data {xj1∈P2}Nj=1 and {wj2∈

5Strictly speaking, we embed each real homography matrix into an affine complex matrix.

8.7. Exercises 221

CP}Nj=1 generated by a collection of n complex homographies {Hi ∈ C2×3}ni=1. Then
each image pair (x1,w2) has to satisfy the multibody homography constraint

p(x1,w2) =

nY
i=1

(w>2 Hix1) = νn(w2)>Hνn(x1) = 0, (8.66)

regardless of which one of the n complex homographies is associated with the image
pair. We call the matrix H ∈ CMn(2)×Mn(3) the multibody homography. Now, since the
multibody homography constraint (8.66) is linear in the multibody homographyH, we can
linearly solve for H from (8.66) given N ≥ Mn(2)Mn(3) − (Mn(3) + 1)/2 ∼ O(n3)
image pairs in general position6 with at least 4 pairs per moving object.

1. Show that given a pair of images (x1,w2) associated with the ith homography Hi,
the partial derivative ∂p(x1,w2)

∂x1
is perpendicular to the (right) null space of Hi.

2. Use the above fact and show how to use GPCA to obtain the null spaces of all Hi
simultaneously from the derivatives.

3. Use the above fact to contrive a scheme to segment (image pairs associated with)
the n homographies.

Exercise 8.5 There is yet another way to retrieve individual Hi from H without seg-
menting the image pairs first. The right null space of the complex homography matrix Hi
defined in the previous exercise is called the complex epipole of Hi, denoted as ei.

1. Show that, once ei is known, the partial derivative ∂p(x1,w2)
∂x1

˛̨̨
(ei,w2)

is a linear

combination of the rows of Hi (up to scale).

2. Show that, by properly evaluating the derivative at different values of w2, one can
retrieve Hi.

Exercise 8.6 In the above exercises, we have implicitly assumed that the complex epipoles
are different. Show that, under mild conditions, e.g., the third rows of each Hi are differ-
ent, the null spaces of the corresponding complex homographies are indeed different for
different real homographies.7

Exercise 8.7 A homography is typically of the form H = R+ Tπ> where π is the plane
normal and (R, T) are the rotation and translation of the camera. If the homographies come
from different planes (different π) undergoing the same rigid-body motion, show that the
epipoles of the corresponding complex homographies are different too.

Exercise 8.8 (Trifocal tensors from second order derivatives of the multibody trilinear
constraint) Let x be an arbitrary point in P2 (not necessarily a point in the first view) and
let (e′i, e

′′
i be the ith epipole pair.

6The multibody homography constraint gives two equations per image pair, and there are
(Mn(2)− 1)Mn(3) complex entries inH and Mn(3) real entries (the last row).

7In fact, one can further show that the set of complex homographies that share the same null
space is a five-dimensional subset (hence a zero-measure subset) of all real homography matrices.
Furthermore, one can complexify any other two rows of H instead of the first two. As long as two
homography matrices are different, one of the complexifications will give different complex epipoles.

222 Chapter 8. 3-D Motion Segmentation from Point Correspondences

1. Given e′i, propose a method to compute the epipolar line of x in the second view
`′ix according to the ith motion. Show also how to compute the epipolar line of x
in the third view `′′ix, given e′′i .

2. Show that the slices of the trifocal tensor Ti can be expressed in terms of the second
derivative of the multibody epipolar constraint, as follows:

∂2(exè′è′′T)

∂`′∂`′′

˛̨̨̨
˛
(x,`′ix,`

′′
ix)

= Mix ∼ xTi ∈ R3×3. (8.67)

This is page 223
Printer: Opaque this

Part III

Appendices

This is page 224
Printer: Opaque this

This is page 225
Printer: Opaque this

Appendix A
Basic Facts from Mathematical
Statistics

“A knowledge of statistics is like a knowledge of foreign languages or
of algebra; it may prove of use at any time under any circumstances.”

– A. L. Bowley

In the practice of science and engineering, data are often modeled as samples
of a random variable (or vector) drawn from a certain probability distribution.
Mathematical statistics then deals with the problem how to infer the underlying
distribution from the given samples. To render the problem tractable, we typi-
cally assume that the unknown distribution belongs to certain parametric family
(e.g., Gaussian), and the problem becomes how to estimate the parameters of the
distribution from the samples.

In this appendix, we provide a brief review of some of the relevant concepts and
results from mathematical statistics used in this book. The review is not meant to
be exhaustive, but rather to make the book self-contained for readers who already
have basic knowledge in probability theory and statistics. If one is looking for a
more formal and thorough introduction to mathematical statistics, we recommend
the classic books of [Wilks, 1962] or [Bickel and Doksum, 2000].

A.1 Estimation of Parametric Models

Let x be a random variable or vector. For simplicity, we assume the distribution
of x has a density p(x, θ), where the parameter (vector) θ = [θ1, θ2, . . . , θd]> ∈
Rd, once known, uniquely determines the density function p(·, θ). Now suppose

226 Appendix A. Basic Facts from Mathematical Statistics

X = {x1,x2, . . . ,xN} are a set of samples of x independently drawn according
to the density p(x, θ). That is,X has the density

p(X, θ) =
N∏
i=1

p(xi, θ). (A.1)

We call any real or vector-valued function of the samples X a statistic and
denote it by T (X). The goal here is to properly choose the function T (·) so that
it gives a “good” estimate for the true parameter θ.

Definition A.1 (Sufficient Statistic). A statistic T (X) is said to be sufficient for
θ if, and only if, the conditional distribution of X given T (X) does not depend
on θ.

That is, p(X, θ|T (X)) no longer depends on θ. Thus, the original samples X
do not contain any more information about θ than T (X).

Theorem A.2 (Factorization Theorem). A statistic T (X) is sufficient for θ if, and
only if, there exists a function g(t, θ) and a function h(X) such that

p(X, θ) = g(T (X), θ)h(X). (A.2)

A popular measure of “goodness” of a statistic T (X) ∈ Rd as an estimate of
θ ∈ Rd is the mean squared error between T (X) and θ:

R(θ, T) = E[‖T (X)− θ‖2]. (A.3)

The choice of this measure is not just for convenience: When the sample sizeN is
large, the distribution of many estimates converges to a normal distribution with
θ as the mean. Then R is the variance of the estimates. In some literature, such a
function is also referred to as the “risk function,” hence the capital letter “R.”

We may rewrite the expression R(θ, T) as follows:

R(θ, T) = E[‖T (X)− E[T (X)] + E[T (X)]− θ‖2]

= E[‖T (X)− E[T (X)]‖2] + ‖E[T (X)]− θ‖2
.= Var(T (X)) + b2(θ, T),

(A.4)

where b(θ, T) = E[T (X)] − θ is called the bias of the estimate T (X), and
Var(T (X)) ∈ R is the trace of the covariance matrix

Cov(T (X)) .= E[T (X)T (X)>] ∈ Rd×d. (A.5)

We refer to Var(T (X)) as the “variance” of T (X). Thus, a good estimate is one
that has both small bias and small variance.

Unfortunately, there is no such thing as a universally optimal estimate that gives
a smaller error R than any other estimates for all θ. For instance, if the true pa-
rameter is θ0, for the estimate S(X) = θ0, it achieves the smallest possible error
R(θ, S) = 0. Thus, the universally optimal estimate, say T , would have to have
R(θ0, T) = 0 too. As θ0 can be arbitrary, then T has to estimate every potential
parameter θ perfectly, which is impossible except for trivial cases. One can view

A.1. Estimation of Parametric Models 227

this as a manifestation of the so-called No Free Lunch Theorem known in learn-
ing theory: Without any prior knowledge in θ, we can only expect a statistical
estimate to be better than others most of the time, but we can never expect it to
be the best all the time. Thus, in the future, whenever we claim some estimate is
“optimal,” it will be in the restricted sense that it is optimal within a special class
of estimates considered (e.g., unbiased estimates).

Define the Fisher information matrix to be

I(θ) .= E
[(∂
∂θ

log p(X, θ)
)(∂
∂θ

log p(X, θ)
)>] ∈ Rd×d. (A.6)

Let ψ(θ) .= E[T (X)] = [ψ1(θ), ψ2(θ, . . . , ψd(θ)]> and define:

∂ψ(θ)
∂θ

.=


∂ψ1(θ)
∂θ1

∂ψ1(θ)
∂θ2

· · · ∂ψ1(θ)
∂θd

∂ψ2(θ)
∂θ1

∂ψ2(θ)
∂θ2

· · · ∂ψ2(θ)
∂θd

...
... · · ·

...
∂ψd(θ)
∂θ1

∂ψd(θ)
∂θ2

· · · ∂ψd(θ)
∂θd

 ∈ Rd×d. (A.7)

Theorem A.3 (Information Inequality). Under reasonable conditions, we have
that for all θ, ψ(θ) is differentiable and

Cov(T (X)) ≥ ∂ψ(θ)
∂θ

I(θ)−1
(∂ψ(θ)

∂θ

)T
, (A.8)

where the inequality is between semi-positive definite symmetric matrices.

For unbiased estimate ψ(θ) = θ, we have ψ′(θ) = I . The information inequal-
ity can be thought of as giving a lower bound for the variance of any unbiased
estimate: Cov(T (X)) ≥ I(θ)−1, which is often referred to as the Cramér-Rao
lower bound.

As X = {x1,x2, . . . ,xN} are i.i.d. samples from the distribution p(x, θ), we
define I1(θ) .= E

[
∂
∂θ log p(x1, θ)(∂∂θ log p(x1, θ))T

]
∈ Rd×d. Then, we have

I(θ) = NI1(θ). (A.9)

The Cramér-Rao lower bound can be rewritten as Cov(T (X)) ≥ 1
N I1(θ)−1.

A.1.1 Uniformly Minimum Variance Unbiased Estimates

As we have mentioned earlier, to make the model estimation problem well-
conditioned, one must restrict the class of estimates. For instance, we may require
the estimate T (X) needs to be unbiased, i.e., b(θ, T) = 0. Then the problem of
finding the best unbiased estimate becomes

min
T (·)

R(θ, T) = Var(T (X)) s.t. E[T (X)] = θ. (A.10)

The optimal T ∗ is then called the uniformly minimum variance unbiased (UMVU)
estimate. Such a T ∗ often exists and in the absence of knowledge about θ, it seems
to be the best estimate one can hope to obtain.

228 Appendix A. Basic Facts from Mathematical Statistics

Definition A.4 (Complete Statistic). A statistic T is said to be complete if the only
real function g(·) which satisfies E[g(T)] = 0 for all θ is the function g(T) ≡ 0.

Starting with a sufficient and complete statistic T (X), the following theorem
simplifies the computation of the UMVU estimate:

Theorem A.5 (Lehmann-Scheffé). If T (X) is a complete sufficient statistic and
S(X) is any unbiased estimate of θ, then T ∗(X) = E[S(X)|T (X)] is an UMVU
estimate of θ. If further Var(T ∗(X)) <∞ for all θ, T ∗(X) is the unique UMVU
estimate.

Even so, the UMVU estimate is often too difficult to compute in practice.
Furthermore, the property of unbiasedness is not invariant under functional trans-
formation: if T (X) is an unbiased estimate for θ, g(T (X)) is in general not an
unbiased estimate for g(θ). To have the functional invariant property, we often
resort to the so-called Maximum Likelihood estimate.

A.1.2 Maximum Likelihood Estimates

If the N samplesX = {xi}Ni=1 are independently drawn from the same distribu-
tion p(x, θ), their joint distribution has the density p(X, θ) =

∏N
i=1 p(xi, θ).

Consider p(X, θ) as a function of θ with X fixed. We call this function the
likelihood function, denoted as L(θ,X) = p(X, θ). The maximum likelihood
(ML) estimate of θ is given by the solution to the following optimization problem:

θ̂N = arg max
θ

(
L(θ,X) = p(X, θ) =

N∏
i=1

p(xi, θ)

)
. (A.11)

As θ̂N maximizes the likelihood function L(θ,X), a necessary condition for
optimality is that

∂L(θ,X)
∂θ

∣∣∣
θ̂N

= 0. (A.12)

It is easy to see that the ML estimate is invariant under functional transformations.
That is, if θ̂N is an ML estimate of θ, then g(θ̂N) is an ML estimate of g(θ).

Since the logarithmic function is monotonic, we may choose to maximize the
log likelihood function instead:

θ̂N = arg max
θ

(
log(L(θ,X)) =

N∑
i=1

log p(xi, θ)

)
, (A.13)

which often turns out to be more convenient to use in practice. The ML estimate is
a more popular choice than the UMVU estimate because its existence is easier to
establish and is usually easier to compute than the UMVU estimate. Furthermore,
when the sample size is large, the ML estimate is asymptotically optimal for a
wide variety of parametric models. Thus, both UMVU and ML estimates give
essentially the same answer in a way that we explain in more detail.

A.1. Estimation of Parametric Models 229

A.1.3 Estimates from a Large Number of Samples

Definition A.6 (Consistency). An estimate θ̂N of θ is said to be consistent if, and
only if,

P
[
‖θ̂N − θ‖ ≥ ε

]
→ 0 (A.14)

for all ε > 0 as N →∞.

In other words, θ̂N is consistent if it converges in probability to θ.

Definition A.7 (Asymptotic Unbiasedness). Let µN = E[θ̂N] ∈ Rd and ΣN =
Cov(θ̂N) ∈ Rd×d. We say that θ̂ is asymptotically unbiased if as N →∞

√
N(µN − θ)→ 0, and NΣN → Σ > 0 (A.15)

for some positive-definite symmetric matrix Σ ∈ Rd×d.

It is easy to see that asymptotic unbiasedness is a stronger property than consis-
tency. That is, an estimate can be consistent but asymptotically biased. In addition,
most “reasonable” estimates θ̂N (e.g., the ML estimate) are often asymptotically
normally distributed with mean µN and covariance matrix ΣN due to the law
of large numbers. Therefore, the asymptotical distribution of an asymptotically
unbiased estimate is uniquely characterized by the parameters θ and Σ.

Between any two asymptotically unbiased estimates, say θ̂(1)
N and θ̂(2)

N , their
relative asymptotic efficiency of θ̂(1)

N to θ̂(2)
N is defined to be the ratio

e
(
θ̂

(1)
N , θ̂

(2)
N

) .= det(Σ(2))
det(Σ(1))

, (A.16)

where Σ(i) = limN→∞NCov
(
θ̂

(i)
N

)
, for i = 1, 2. The larger the efficiency ratio

e, the smaller the asymptotic variance of θ̂(1), relative to that of θ̂(2). Thus, θ̂(1)

gives a more accurate or “sharper” estimate for θ, although both θ̂(1) and θ̂(2) are
asymptotically unbiased.

Nevertheless, according to Theorem A.3, an estimate cannot be arbitrarily more
efficient than others. That is, for any asymptotically unbiased estimate θ̂N , using
(A.9) and (A.15), its covariance matrix is bounded asymptotically from below by
the Cramér-Rao bound:

lim
N→∞

NΣN = Σ ≥ I1(θ)−1
. (A.17)

Definition A.8 (Asymptotic Efficiency). An estimate θ̂N is said to be asymp-
totically efficient if it is asymptotically normal and it achieves equality in the
Cramér-Rao bound (A.17).

Obviously, an asymptotically efficient estimate has efficiency e ≥ 1 with
respect to any other asymptotically unbiased estimates that satisfy (A.17).

Asymptotic efficiency is a desirable property for an estimate and it is sometimes
referred to as asymptotic optimality. It often can be shown that UMVU estimates
are asymptotically efficient. We also have that:

230 Appendix A. Basic Facts from Mathematical Statistics

Proposition A.9. In general, the maximum likelihood estimate is asymptotically
efficient.

Proof. We here outline the basic ideas for a “proof,” which can also be used to es-
tablish for other estimates their asymptotic unbiasedness or efficiency with respect
to the ML estimate. Define the function

ψ(x, θ) .=
∂

∂θ
log p(x, θ) ∈ Rd. (A.18)

Assume that the maximum likelihood estimate θ̂N exists. It satisfies the equation

∂L(θ,X)
∂θ

∣∣∣
θ̂N

=
N∑
i=1

ψ(xi, θ̂N) = 0. (A.19)

By the mean value theorem,

N∑
i=1

ψ(xi, θ̂N)−
N∑
i=1

ψ(xi, θ) =
[N∑
i=1

∂ψ(xi, θ∗N)
∂θ

](
θ̂N − θ

)
, (A.20)

where θ∗N is a point between θ and θ̂N . Using (A.19),

√
N
(
θ̂N − θ

)
=
[1
N

N∑
i=1

∂ψ(xi, θ∗N)
∂θ

]−1(
−N− 1

2

N∑
i=1

ψ(xi, θ)
)
. (A.21)

Under suitable conditions, θ̂N is consistent, and by the law of large numbers,
1
N

∑N
i=1

∂ψ(xi,θ
∗
N)

∂θ behaves like 1
N

∑N
i=1

∂ψ(xi,θ)
∂θ which converges to

E
[∂ψ(x1, θ)

∂θ

]
= E

[∂2

∂θ2
log p(x1, θ)

]
= −E

[∂
∂θ

log p(x1, θ)
(∂
∂θ

log p(x1, θ)
)T] = −I1(θ).

It is easy to show that ψ(x, θ) is zero-mean and thus, by the central limit theorem,
the right-hand side of (A.21) converges to a normal distribution with zero mean
and variance I1(θ)−1. That is, the asymptotic variance of the ML estimate reaches
the Carmér-Rao lower bound.

When the sample size is large, one can appeal to the law of large numbers to
derive an information-theoretic justification for the ML estimate, which can be
somewhat more revealing. Notice that maximizing the log likelihood function is
equivalent to minimizing the following objective function:

min
θ
H(θ,N) .=

1
N

N∑
i=1

− log p(xi, θ). (A.22)

In information theory, the quantity − log p(x, θ) is associated with the number of
bits required to represent a random event x that has the probability p(x, θ) [Cover

A.2. Expectation Maximization 231

and Thomas, 1991]. When the sample size N is large, due to the law of large
numbers, the quantity H(θ,N) converges to

lim
N→∞

H(θ,N) = H(θ) = E[− log p(x, θ)] =
∫ (
−log p(x, θ)

)
p(x, θ0) dx,

(A.23)
where p(x, θ0) is the true distribution. Notice that the above quantity is a measure
similar to the notion of “entropy”:H(θ) is asymptotically the average code length
of the sample set {xi} when we assume that it is of the distribution p(x, θ) while
x is actually drawn according to p(x, θ0). Thus, the goal of ML estimate is to
find the θ̂ that minimizes the empirical entropy of the given sample set. This is
obviously a smart thing to do as such estimate θ̂ gives the most compact repre-
sentation of the given sample data if an optimal coding scheme is adopted [Cover
and Thomas, 1991]. We refer to this as the “minimum entropy principle.”

Notice also that the θ̂ that minimizes
∫ (
−log p(x, θ)

)
p(x, θ0) dx is the same

as that minimizing the so-called Kullback-Leibler (KL) divergence between the
two distributions p(x, θ0) and p(x, θ), i.e.,

D
(
p(x, θ0)‖p(x, θ)

) .= ∫ (log
p(x, θ0)
p(x, θ)

)
p(x, θ0) dx, (A.24)

One may show that under general conditions, the KL divergence is always non-
negative and becomes zero if and only if θ = θ0. In essence, when the sample size
is large, the ML objective is equivalent to minimizing the KL divergence.

However, the ML estimate is known to have very bad performance in some
models even with a large number of samples. This is particularly the case when
the models have many redundant parameters or the distributions are degenerate.
Furthermore, both UMVU and ML estimates are not the optimal estimates in a
Bayesian1 or minimax2 sense. For instance, the ML estimate can be viewed as a
special Bayesian estimate only when the parameter θ is uniformly distributed.

In this book, the concepts introduced in this section can help us understand
under what assumptions on the distribution of the data, the estimates given
by the GPCA algorithms can be asymptotically unbiased (hence consistent), or
asymptotically efficient.

A.2 Expectation Maximization

In many practical situations, one is required to estimate a statistical model with
only part of the random states being observable and the rest being “missing,” or

1A bayesian estimate T ∗ is the solution to the following problem minT
R
R(θ, T)π(θ) dθ for a

given prior distribution π(θ) of θ. That is, T ∗ is the best estimate in terms of its average risk.
2A minimax estimate T ∗ is the solution to the problem minT maxθ R(θ, T). That is, T ∗ is the

best estimate according to its worst performance. Of course, such a T ∗ does not have to always exist
or be easier to compute than the ML estimate.

232 Appendix A. Basic Facts from Mathematical Statistics

“hidden,” or “latent,” or “unobserved.” For instance, suppose that two random
vectors (x, z) have a joint distribution (density) p(x, z, θ) but only samples of x
are observable and z is not available. Our goal is, as before, to find an optimal
estimate θ̂ for θ from the observations.

As samples of z are not available, there is no way one can find the maximum
likelihood estimate of θ from the complete log likelihood function:

max
θ
Lc(θ,X,Z) =

N∑
i=1

log p(xi, zi, θ). (A.25)

Thus, it makes sense to use only the marginal distribution of x: p(x, θ) =∫
p(x, z, θ) dz and find the maximum likelihood estimate from

max
θ
L(θ,X) =

N∑
i=1

log p(xi, θ), (A.26)

which, in this context, is often referred to as the incomplete log likelihood func-
tion in the statistical literature. The problem is now reduced to a standard ML
estimation problem and one can adopt any appropriate optimization method (say
conjugate gradient) to find the maximum. It seems that there is no need of
involving z at all.

An alternative approach to maximizeL(θ,X) is to use the available data ofx to
estimate the values ẑ of the latent variables, and then search for the ML estimate θ̂
from the complete log likelihood Lc(θ,X, Ẑ). There are several reasons why this
often turns out to be a better idea. First, for some models p(x, z, θ), marginalizing
z out can be difficult to do or that could destroy good structures in the models.
The alternative approach may better harness these structures. Second, directly
maximizing L(θ,X) may turn out to be a very difficult optimization problem
(e.g., high-dimension, many local minima), the introduction of intermediate latent
variables z actually makes the optimization easier (as we will see later). Third, in
some applications, it is desired to obtain an estimate of the unobservables z from
the observables x. The alternative approach can simultaneously estimate both θ
and z. Be aware that regardless of the introduction of the latent variables z or not,
as far as the parameter θ is concerned, the ultimate objective has always been to
maximize the objective function maxθ L(θ,X).

Using the following identities

∀z p(x, θ) =
p(x, z, θ)
p(z|x, θ)

and
∫
p(z|x, θ) dz = 1, (A.27)

we have

L(θ,X) =
N∑
i=1

log p(xi, θ) =
N∑
i=1

∫
p(z|xi, θ) log

p(xi, z, θ)
p(z|xi, θ)

dz

=
N∑
i=1

∫ [
p(z|xi, θ) log p(xi, z, θ)− p(z|xi, θ) log p(z|xi, θ)

]
dz. (A.28)

A.2. Expectation Maximization 233

Although the last expression seems more complicated than the original log like-
lihood L(θ,X), it reveals that the likelihood is a function of the a posterior
probability wi(z) .= p(z|xi, θ). The a posterior distribution of z gives us the
best estimate of z given xi and θ. In turn, we can update the parameter θ based
on the estimate of z. This leads to the well-known Expectation and Maximization
(EM) algorithm for optimizing the log likelihood L(θ,X):

Step 1 (Expectation): For fixed θk and every i = 1, 2, . . . , N ,

wk+1
i (z) = arg max

wi

[
wi(z) log p(xi, z, θk)− wi(z) logwi(z)

]
.

Step 2 (Maximization): For fixed wk+1
i ,

θk+1 = arg max
θ

N∑
i=1

∫
wk+1
i (z) log p(xi, z, θ) dz.

The Maximization step does not involve the second term in (A.28) because it is
constant with wi fixed. The Expectation step is decomposed to every i because
the a posterior wi(z) depends only on xi. It is important to know that each step
of the EM algorithm is in general a much simpler optimization problem than
directly maximizing the log likelihood L(θ,X) as the sum

∑N
i=1 log p(xi, θ).

For many popular models (e.g., mixtures of Gaussians), one might even be able
to find closed-form formulae for both steps (see Chapter 3).

Notice that the EM algorithm is an iterative algorithm. Like gradient ascent, it
is essentially a hill-climbing algorithm that each iteration increases the value of
the log likelihood.

Proposition A.10. The Expectation Maximization process converges to one of the
stationary points (extrema) of the (log) likelihood function L(θ,X).

Proof. We here give a sketch of the basic ideas of the proof. Notice that the a
posterior wi defined above depend on both z and the parameter θ. By substituting
w = {wi} into the incomplete log-likelihood, we can view L(θ,X) as

L(θ,X) .= g(w, θ) (A.29)

for some function g(·). Instead of directly maximizing the L(θ,X) with respect
to θ, the EM algorithm maximizes the functional g(w(θ), θ) in a “hill-climbing”
style by iterating between the following two steps:

E Step: partially maximizing g(w, θ) with respect tow with the second variable
θ fixed;

M Step: partially maximizing g(w, θ) with respect to the second variable θ with
w fixed.

Notice that at each step the value of g(w, θ) does not decrease, so does L(θ,X).
When both steps become stationary and no longer increase the value, the process

234 Appendix A. Basic Facts from Mathematical Statistics

reaches a (local) extremum θ∗ of the function L(θ,X). To see this, examine the
equation3

dL(θ,X)
dθ

=
∂g(w, θ)
∂w

∂w

∂θ
+
∂g(w, θ)
∂θ

. (A.30)

Since at θ∗, each step is stationary, we have ∂g(w,θ)
∂w = 0 and ∂g(w,θ)

∂θ = 0.

Therefore, dL(θ,X)
dθ

∣∣∣
θ∗

= 0.

For a more thorough exposition and complete proof of the convergence of the
EM algorithm, one may refer to the book of [McLanchlan and Krishnan, 1997].
However, for the EM algorithm to converge to the maximum-likelihood estimate
(usually the global maximum) of L(θ,X), a good initialization is crucial.

A.3 Estimation of Mixture Models

A.3.1 Maximum-Likelihood Estimates

The EM algorithm is often used for estimating a mixture model. By that, we mean
the data x is sampled from a distribution which is a superposition of multiple
distributions:

p(x, θ) = π1p1(x, θ) + π2p2(x, θ) + · · ·+ πnpn(x, θ). (A.31)

Such a distribution can be easily interpreted as the marginal distribution of a
model with a latent random variable z that takes discrete values in {1, 2, . . . , n}:

p(x, θ) =
∑
z

p(x, z, θ) =
∑
z

p(x|z, θ)p(z, θ)

= p(x|z = 1, θ)p(z = 1, θ) + · · ·+ p(x|z = n, θ)p(z = n, θ)

with p(z = j, θ) = πj > 0, j = 1, 2, . . . , n. Obviously, one can use the EM
algorithm to estimate the mixture model, with the mixing weights πj as part of
the unknown model parameters.

Once the model parameters are estimated from the EM algorithm, for a given
sample point xi, its “membership” c(i) ∈ {1, 2, . . . , n}, i.e., the component dis-
tribution from which xi is most likely drawn, can be determined by the Bayesian
rule from its a posterior probability:

c(i) = arg max
j
p(z = j | xi) =

pj(xi)
π1p1(xi) + · · ·+ πnpn(xi)

. (A.32)

3Here the “derivative” with respect tow is formal asw is in general a function if z is a continuous
random variable. To make the proof here rigorous, one needs to resort to the calculus of variation. For
a more careful proof of the convergence of the EM algorithm, one should refer to [McLanchlan and
Krishnan, 1997].

A.4. Model Selection Criteria 235

A.3.2 Minimax Estimates

Obviously, for the mixture model (A.31), we need to estimate both the distribution
parameters θ and the unknown mixing weights πj . This increases the dimension
of the optimization problem that needs to be solved. In practice, we often seek
for alternative estimates of the mixture model which do not depend on the mix-
ing weights. Such estimates may no longer be optimal with respect to the above
mixture model (A.31) but can be much easier to compute than the ML estimate.

If the mixing weights are not known or not of any interest, the membership of
a given sample xi can be directly determined by the component distribution that
returns the highest likelihood: c(i) = arg maxj pj(xi) = arg minj − log pj(xi).

Therefore, the parameters of the distributions pj can be estimated by solving
the following optimization problem:

min
θ

N∑
i=1

(
min
j
− log pj(xi, θ)

)
. (A.33)

One may interpret the above objective as the follows: For each sample, we find
the component distribution for which xi achieves the highest likelihood; once we
have decided to “assign” xi to the distribution pj(x, θ), it takes − log pj(xi, θ)
bits to encode xi. Thus, the above objective function is equivalent to minimize
the sum of coding length given the membership of all the samples.

A straightforward way to solve the above optimization problem is to iterate
between the following two steps:

Step 1: For fixed θk and every i = 1, 2, . . . , N ,

ck+1(i) = arg max
j

log pj(xi, θ). (A.34)

Step 2: With all ck+1(i) known,

θk+1 = arg min
θ

N∑
i=1

(
− log pck+1(i)(xi, θ)

)
. (A.35)

Notice that the two steps resemble the two steps of the EM algorithm introduced
earlier. The difference is that here each sample xi is assigned to only one of the
n groups while in the EM algorithm the hidden variable zi gives a probabilistic
assignment of xi to the n groups. In fact, the well-known K-means algorithm for
clustering (see Chapter 2) is essentially based upon the above iteration.

A.4 Model Selection Criteria

So far, we have studied how to solve the following problem: GivenN independent
samples X = {xi}Ni=1 drawn from a distribution p(x, θ), where p(x, θ) belongs
to a family of distributions indexed by the parameter θ, how to obtain the (approx-

236 Appendix A. Basic Facts from Mathematical Statistics

imate) optimal estimate θ∗ of the model parameter. In doing so, we have assumed
that the function p(x, θ) depends smoothly on the parameter θ.

In practice, however, we may not know exactly to which family of distribu-
tions the model belongs to. We might only know it belongs to several possible
families, p(x, θ(m)), where m is a (discrete) index for the model families. For
instance, in the context of GPCA, we try to fit multiple subspaces to a given set
of data. However, the number of subspaces and their exact dimensions are some-
times not known or given a priori. Thus, determining the number of subspaces
and their dimensions is now part of the model estimation problem. Notice that the
number of subspaces and their dimensions are discrete variables as opposed to the
continuous parameters (e.g., the subspace bases) needed to specify each subspace.

The problem of determining both the model type m and its parameter θ(m) is
conventionally referred to as a model selection problem (as opposed to parame-
ter estimation). Many important model-selection criteria have been developed in
the statistics community and the algorithmic complexity community for general
classes of models. These criteria include

• Akaike Information Criterion (AIC) [Akaike, 1977] (also known as the Cp
statistics [Mallows, 1973]) and Geometric AIC (G-AIC) [Kanatani, 2003],

• Bayesian Information Criterion (BIC) (also known as the Schwartz
criterion),

• Minimum Description Length (MDL) [Rissanen, 1978] and Minimum
Message Length (MML) [Wallace and Boulton, 1968].

Although these criteria are originally motivated and derived from different view-
points (or in different contexts), they all share a common characteristic: The
optimal model should be the one that strikes a good balance between the model
complexity (typically depends on the dimension of the parameter space) and the
data fidelity to the chosen model (typically measured as the sum of squared er-
rors). In fact, some of the criteria are essentially equivalent to each other despite
their different origins: To a large extent, the BIC is equivalent to MDL; and the
AIC is equivalent to the Cp statistics. Even so, it is impossible to give a detailed
review here of all the model selection criteria.

In what follows, we give a brief review of the AIC and the BIC to illustrate the
key ideas behind model selection. In Chapter 5, we will further discuss how to
modify the AIC in the context of GPCA.

A.4.1 Akaike Information Criterion

Given N independent sample points X = {xi}Ni=1 drawn from a distribution
p(x, θ0), recall that the maximum-likelihood estimate θ̂N of the parameter θ is the
one that maximizes the log-likelihood function L(θ,X) =

∑N
i=1 log p(xi, θ).

The Akaike information criterion (AIC) for model selection is motivated from
an information-theoretic viewpoint. In this approach, the quality of the obtained

A.4. Model Selection Criteria 237

model is measured by the average code length used by the optimal coding scheme
of p(x, θ̂N) for a random variable with actual distribution p(x, θ0), i.e.,

E[− log p(x, θ̂N)] =
∫ (
− log p(x, θ̂N)

)
p(x, θ0) dx. (A.36)

The AIC relies on an approximation to the above expected log-likelihood loss that
holds asymptotically as N →∞:

2E[− log p(x, θ̂N)] ≈ − 2
N
L(θ̂N ,X) + 2

d

N

.= AIC, (A.37)

where d is the number of free parameters for the class of models of interest.
For Gaussian noise models with variance σ2, we have

L(θ̂N ,X) = − 1
2σ2

N∑
i=1

‖xi − x̂i‖2,

where x̂i is the best estimate of xi given the model p(x, θ̂N). Thus, if σ2 is
known (or approximated by the empirical sample variance), minimizing the AIC
is equivalent to minimizing the so-called Cp statistic:

Cp =
1
N

N∑
i=1

‖xi − x̂i‖2 + 2
d

N
σ2, (A.38)

where the first term is obviously the mean squared error (a measure of data fi-
delity) and the second term depends linearly on the dimension of the parameter
space (a measure of the complexity of the model).

Now consider multiple classes of models whose parameter spaces are of differ-
ent dimensions. Let us denote the dimension of model class m as d(m). Then the
AIC selects the model class m∗ that minimizes the following objective function:

AIC(m) =
1
N

N∑
i=1

‖xi − x̂i‖2 + 2
d(m)
N

σ2. (A.39)

A.4.2 Bayesian Information Criterion

The Bayesian information criterion (BIC) for model selection is motivated from
a Bayesian inference viewpoint. In this approach, we assume a prior distribution
of the model p(θ|m) and wish to choose the model class m∗ that maximizes the
posterior probability p(m|X). Using Bayes rule, this is equivalent to maximizing

p(m|X) ∝ p(m) · p(X|m) = p(m) ·
∫
p(X|θ,m)p(θ|m) dθ. (A.40)

If we assume that each model class is equally probable, this further reduces
to maximizing the likelihood p(X|m) among all the model classes. This is
equivalent to minimizing the negative log-likelihood −2 log p(X|m). With cer-
tain approximations, one can show that for general distributions the following

238 Appendix A. Basic Facts from Mathematical Statistics

relationship holds asymptotically as N →∞:

BIC(m) .= −2 log p(X|m) = −2L(X, θ̂N) + (logN)d(m) (A.41)

=
N

σ2

[1
N

N∑
i=1

‖xi − x̂i‖2 + (logN)
d(m)
N

σ2
]
. (A.42)

As before, θ̂N is the maximum-likelihood estimate of θ given m, d(m) is the
number of parameters for class m and σ2 is the variance of a Gaussian noise
model.

Notice that whenN and σ are known, the BIC is very similar to the AIC except
that the factor 2 in front of the second term in the AIC is replaced by logN in
the BIC. Because we normally have N � e2, the BIC penalizes complex models
much more than the AIC does. Thus, the BIC tends to choose simpler models.
In general, no model selection criterion is always better than others under all
circumstances and the best criterion depends on the purpose of the model. From
our experience, the AIC tends to provide more satisfactory results for estimation
of subspaces. That makes it more favorable in the context of GPCA.

A.5 Robust Statistical Methods

For all the model estimation and selection techniques discussed above, we have
always assumed that the given data samples {xi}Ni=1 are independent samples
drawn from the same distribution p(x, θ0). By an appeal to the law of large num-
bers (or the central limit theorems), the asymptotic optimality of the estimate
normally does not depends the particular set of samples given.4

However, in many practical situations, the validity of the given data as inde-
pendent samples of the model becomes questionable. Sometimes, the given data
can be corrupted by or mixed with samples of different (probabilistic) nature; or
it can simply be the case that the given data are not a typical set of i.i.d. samples
from the distribution in question.

For the purpose of model estimation, these seemingly different interpretations
are actually equivalent: We need to somehow infer the correct model while accom-
modating an atypical set of samples of the distribution (or the model). Obviously,
this is an impossible task unless we impose some restrictions on how “atypical”
the samples are. It is customary to assume that only a portion of the samples are
somehow different from or inconsistent with the rest of the data. Those samples
are often referred to as “outliers” and they may have significant effect on the
model inferred from the data.

4The fact that almost all sets of i.i.d sample are “typical” or “representative” of the given
distribution has been at the heart of the development of Shannon’s information theory.

A.5. Robust Statistical Methods 239

Unfortunately, despite centuries of interest and study5, there is no univer-
sally agreed definition of what an outlier is, especially for multivariate data.
Roughly speaking, most definitions (or tests) for an outlier are based on one of
the following guidelines:

1. The outliers are a set of samples that have relatively large influence on
the estimated model parameters. A measure of influence is normally the
difference between the model estimated with or without the sample in
question.

2. The outliers are a set of small-probability samples with respect to the dis-
tribution in question. The given data set is therefore an atypical set if such
small-probability samples constitute a significant portion of the data.

3. The outliers are a set of samples that are not consistent with (the model
inferred from) the remainder of the data. A measure of inconsistency is
normally the error residual of the sample in question with respect to the
model.

Nevertheless, as we will soon see, for popular distributions such as Gaussian,
they all lead to more or less equivalent ways of detecting or accommodating out-
liers. However, under different conditions, different approaches that follow each
of the above guidelines may give rise to solutions that can be more convenient
and efficient than others.

A.5.1 Influence-Based Outlier Detection

When we try to estimate the parameter of the distribution p(x, θ) from a set of
samples {xi}Ni=1, every sample xi might have uneven effect on the estimated
parameter θ̂N . The samples that have relatively large effect are called influential
samples and they can be regarded as outliers.

To measure the influence of a particular sample xi, we may compare the dif-
ference between the parameter θ̂N estimated from all the N samples and the
parameter θ̂(i)

N estimated from all but the ith sample. Without loss of generality,
we here consider the maximum-likelihood estimate of the model:

θ̂N = arg max
θ

N∑
j=1

log p(xi, θ), (A.43)

θ̂
(i)
N = arg max

θ

∑
j 6=i

log p(xi, θ), (A.44)

5Earliest documented discussions among astronomers about outliers or “erroneous observations”
date back to mid 18th century. See [Barnett and Lewis, 1983, Huber, 1981, Bickel, 1976] for a more
thorough exposition of the studies of outliers in statistics.

240 Appendix A. Basic Facts from Mathematical Statistics

and measure the influence of xi on the estimation of θ by the difference

I(xi; θ)
.= θ̂N − θ̂(i)

N . (A.45)

Assume that p(x, θ) is analytical in θ. Then we have

f(θ) .=
N∑
j=1

1
p(xi, θ)

∂p(xi, θ)
∂θ

∣∣∣
θ=θ̂N

= 0, (A.46)

f(θ)(i) .=
∑
j 6=i

1
p(xi, θ)

∂p(xi, θ)
∂θ

∣∣∣
θ=θ̂

(i)
N

= 0. (A.47)

If we now evaluate the function f(θ) at θ = θ̂
(i)
N using the Taylor series of f(θ)

θ = θ̂N we obtain:

f(θ̂(i)
N) = f(θ̂N) + f ′(θ̂N)(θ̂(i)

N − θ̂N) + o(‖θ̂N − θ̂(i)
N ‖). (A.48)

Since we have f(θ̂N) = 0 and f (i)(θ̂(i)
N) = 0, the difference in the estimate

caused by the ith sample is

θ̂
(i)
N − θ̂N ≈

(
f ′(θ̂N)

)†[1

p(xi, θ̂
(i)
N)

∂p(xi, θ̂
(i)
N)

∂θ

]
. (A.49)

Notice that in the expression on the right hand side, the factor
(
f ′(θ̂N)

)†
is

common for all samples.

Proposition A.11 (Approximate Sample Influence). The difference between the
ML estimate θ̂N from N samples and the ML estimate θ̂(i)

N without the ith sample
xi depends approximately linearly on the quantity:

d(xi; θ)
.=

1

p(xi, θ̂
(i)
N)

∂p(xi, θ̂
(i)
N)

∂θ
. (A.50)

In the special case when p(x, θ) is the Gaussian distribution N (µ, σ2) with σ2

known, the above equation gives the influence of the ith sample on the estimate
of µ:

µ̂
(i)
N − µ̂N ≈ α(xi − µ̂(i)

N), (A.51)

where α is some constant depending on σ. That is, the sample influence is very
much proportional to the distance between the sample and the mean estimated
without the sample; or equivalently, the smaller the probability of a sample is
with respect to the estimated (Gaussian) distribution, the larger is its influence on
the estimated mean. Therefore, the three guidelines for defining outliers become
very much equivalent for a Gaussian distribution.

In general, to evaluate the influence of all the samples, one needs to compute
the estimate of the model for N + 1 times. That is reasonable to do only if each
estimate is not so costly to compute. In light of this drawback, some first order

A.5. Robust Statistical Methods 241

approximations of the influence values were developed at roughly the same pe-
riod as the sample influence function was proposed [Campbell, 1978, Critchley,
1985], when the computational resources were scarcer than they are today. In ro-
bust statistics, formulae that approximate an influence function are referred to as
theoretical influence functions. One such formula for the influence function of
PCA can be found in [Jolliffe, 2002].

A.5.2 Probability-Based Outlier Detection

In general, we assume that the data are drawn from a zero-mean6 multivariate
Gaussian distribution N (0,Σx). Ideally, the principal d-dimensional subspace is
spanned by the first d eigenvectors of the covariance matrix Σx. Thus, in order to
improve the robustness of PCA in the presence of outliers, we essentially seek for
a robust estimate of Σx.

If there were no outliers, the maximum likelihood estimate of Σx would be
given by Σ̂N = 1

N

∑N
i=1 xix

>
i ∈ RD×D. Therefore, we could approximate the

probability that a sample xi comes from this Gaussian model by

p(xi; Σ̂N) =
1

(2π)D/2 det(Σ̂N)1/2
exp

(
− 1

2
x>i Σ̂−1

N xi
)
. (A.52)

If we adopt the guideline that outliers are samples that have a small probability
with respect to the estimated model, then the outliers are exactly those samples
that have a relatively large residual:

εi = x>i Σ̂−1
N xi, i = 1, 2, . . . , N, (A.53)

also known as the Mahalanobis distance.7 In terms of the principal components
y = U>d x, the Mahalanobis distance can also be written as

εi = y>i Σ−1
d yi =

d∑
j=1

y2
ij

σ2
j

, (A.54)

where Σd ∈ Rd×d is a diagonal matrix whose jth diagonal entry, σ2
j , is the jth

eigenvalue of Σ̂x, or equivalently σj is the jth singular value of 1√
N
X .

In principle, we could use p(xi, Σ̂N) or εi to determine if xi is an outlier.
However, the above estimate of the covariance matrix Σx is obtained using all the
samples, including the outliers themselves. Therefore, if Σ̂N is very different from

6We here are only interested in how to robustly estimate the covariance, or “scale,” of the distribu-
tion. In case the mean, or “location,” of the distribution is not known, a separate robust procedure can
be employed to determine the mean before the covariance, see [Barnett and Lewis, 1983].

7 In fact, it can be shown that [Ferguson, 1961], if the outliers have a Gaussian distribution of a dif-
ferent covariance matrix aΣ, then εi is a sufficient statistic for the test that maximizes the probability
of correct decision about the outlier (in the class of tests that are invariant under linear transforma-
tions). Interested reader may want to find out how this distance is equivalent (or related) to the sample
influence bΣ(i)

N − bΣN or the approximate sample influence given in (A.50).

242 Appendix A. Basic Facts from Mathematical Statistics

Σx, the outliers could be incorrectly detected. In order to improve the estimate
of Σx, one can recompute Σ̂N by discarding or down-weighting samples that
have low probability or large Mahalanobis distance. Let wi ∈ [0, 1] be a weight
assigned to the ith point such that wi ≈ 1 if xi is an inlier and wi ≈ 0 if xi is an
outlier. Then a new estimate of Σx can be obtained as:

Σ̂N =
w2

1x1x
>
1 + w2

2x2x
>
2 + · · ·+ w2

NxNx
>
N

w2
1 + w2

2 + · · ·+ w2
N − 1

. (A.55)

Maximum Likelihood Type Estimators (M-Estimators).

If w(ε) ≡ ε, the above expression gives the original estimate (??) of the covari-
ance matrix. Or, if we want to simply discard all samples with a Mahalanobis
distance larger than certain threshold ε0 > 0, we can choose the following weight
function:

w(ε) =
{
ε, for ε ≤ ε0,
0, for ε > ε0.

(A.56)

Nevertheless, under the assumption that the distribution is elliptically symmetric
and is contaminated by an associated normal distribution, the following weight
function gives a more robust estimate of the covariance matrix [Hampel, 1974,
Campbell, 1980]:

w(ε) =
{

ε, for ε ≤ ε0,
ε0 exp[− 1

2a (ε− ε0)2] for ε > ε0,
(A.57)

with ε0 =
√
p+ b for some suitable choice of positive values for a and b and p

denotes the dimension of the space.
Notice that calculating the robust estimate Σ̂N in term of (A.55) is not easy

because the weights wi also depend on the resulting Σ̂N . There is no surprise that
many known algorithms are based on Monte Carlo [Maronna, 1976, Campbell,
1980].

Many other weight functions have also been proposed in the statistics lit-
erature. They serve as the basis for a class of robust estimators, known as
M-estimators (maximum-likelihood type estimators) [Huber, 1981, Barnett and
Lewis, 1983]. Nevertheless, most M-estimators differ only in how the samples
are down-weighted but no one seems to dominate others in terms of performance
in all circumstances.

Multivariate Trimming (MVT).

One drawback of the M-estimators is that its “breakdown point” is inversely pro-
portional to the dimension of the space. The breakdown point is an important
measure of robustness of any estimator: Roughly speaking, it is the smallest
proportion of contamination that the estimator can tolerate (or does not di-
verge). Thus, the M-estimators become much less robust when the dimension
is high. This makes M-estimators of limited use in the context of GPCA since the
dimension of the space is typically very high (≥ 70).

A.5. Robust Statistical Methods 243

One way to resolve this problem is to modify the M-estimators by simply trim-
ming out a percentage of the samples with relatively large Mahalanobis distance
and then use the remaining samples to re-estimate the covariance matrix. Then
each time we have a new estimate of the covariance matrix, we can recalculate
the Mahalanobis distance of every sample and reselect samples that need to be
trimmed. We can repeat the above process until a stable estimate of the covari-
ance matrix is obtained. This iterative scheme is known as multivariate trimming
(MVT) – another popular robust estimator. By construction, the breakdown point
of MVT does not depend on the dimension of the problem and only depends on
the chosen trimming percentage.

When the percentage of outliers is somehow known, it is relatively easy to
determine how many samples need to be trimmed. It usually takes only a few
iterations for the iteration to converge. However, if the percentage is wrongfully
specified, the MVT is known to have trouble to converge or it may converge to
a wrong estimate of the covariance matrix. In Chapter ??, we will discuss in the
context of GPCA, how MVT can be modified when the percentage is not known.

A.5.3 Random Sampling-Based Outlier Detection

When the outliers constitute of a large portion (up to 50% or even more than 50%)
of the data set, the (ML) estimate θ̂N obtained from all the samples can be so
severely corrupted that the sample influence and the Mahalanobis distance com-
puted based on it become useless in discriminating outliers from valid samples.8

This motivates estimating the model parameter θ using only a (randomly sam-
pled) small subset of the samples to begin with. Least median of squares (LMS)
and random sample consensus (RANSAC) are two such methods and we now
give a brief discussion below.

Least Median Estimation

If we know that only less than half of the samples are potential outliers, it is then
reasonable to use only half of the samples to estimate the model parameter. But
which half of the samples? We know the maximum-likelihood estimate minimizes
the sum of negative log-likelihoods:

θ̂N = arg min
θ

N∑
i=1

− log p(xi, θ). (A.58)

As outliers are the ones of small probability hence large negative log-likelihood,
we can order the values of the negative log-likelihood and eliminate from the

8Thus, the iterative process is likely to converge to a local minimum other than the true model
parameter. Sometimes, it can even be the case that the role of inliers and outliers are exchanged with
respect to the converged estimate.

244 Appendix A. Basic Facts from Mathematical Statistics

above objective half of the samples that have relatively larger values:

θ̂N/2 = arg min
θ

∑
j

− log p(xj , θ), where

− log p(xj , θ) ≤ medianxi∈X − log p(xi, θ). (A.59)

A popular approximation to the above objective is to simply minimize the median
value of the negative log-likelihood:

θ̂M
.= arg min

θ
medianxi∈X − log p(xi, θ). (A.60)

We call θ̂M the least median estimate. In the case of Gaussian noise model,
− log p(xi, θ) is proportional to the squared error:

− log p(xi, θ) ∝ ‖xi − x̂i‖2.

For this reason, the estimate θ̂M is more often known as the least median of
squares (LMS) estimate9.

However, without knowing θ, it is impossible to order the log-likelihoods or
the squared errors, let alone to compute the median. A typical method to resolve
this difficulty is to randomly sample a number of small subsets of the data:

X1,X2, . . . ,Xm ⊂ X, (A.61)

where each subset Xj is independently drawn and contains k � N samples.
So, if p is the fraction of valid samples (the “inliers”), then with probability q =
1− (1− pk)m, one of the above subsets will contain only valid samples. In other
words, if we want to be of probability q that one of the selected subsets contains
only valid samples, we need to randomly sample at least

m ≥ log(1− q)
log(1− pk)

(A.62)

subsets of k samples.
Using each subset Xj , we can compute an estimate θ̂j of the model and use

the estimate to compute the median for the remaining N − k samples inX \Xj :

M̂j
.= medianxi∈X\Xj

− log p(xi, θ̂j). (A.63)

Then the least median estimate θ̂M is approximated by the θ̂j∗ that gives the
smallest median M̂j∗ = minj M̂j .

In the case of Gaussian noise model, based on the order statistics of squared
errors, we can use the median statistic to obtain an (asymptotically unbiased)
estimate of the variance, or scale, of the error as follows:

σ̂ =
N + 5

NΦ−1(0.5 + p/2)

√
medianxi∈X‖xi − x̂i‖2, (A.64)

9The importance of median for robust estimation were pointed out first in the article of [Hampel,
1974].

A.5. Robust Statistical Methods 245

where p = 0.5 for the median statistic. One then can use σ̂ to find “good” samples
in X whose squared errors are less than λσ2 for some chosen constant λ (nor-
mally less than 5). Using such good samples, we can recompute a more efficient
(ML) estimate θ̂ of the model.

Random Sample Consensus (RANSAC)

In theory, the breakdown point of the least median estimate is up to 50% outliers.
In many practical situations however, there might be more than half outlying sam-
ples in the data. Random Sample Consensus (RANSAC) [Fischler and Bolles,
1981] is a method that is designed to work for such highly contaminated data.

In many aspects, RANSAC is actually very much similar to LMS. The main
difference is that instead of looking at the median statistic,10 RANSAC try to
find, among all the estimates {θ̂j} obtained from the subsets {Xj}, the one that
maximizes the number of samples that have error residual (measured either by
the negative log-likelihood or the squared error) smaller than a pre-specified error
tolerance:

θ̂j∗
.= arg max

θ̂j

#{xi ∈X : − log(xi, θ̂j) ≤ τ}. (A.65)

In other words, θ̂j∗ achieves the highest “consensus” among all the sample esti-
mates {θ̂j}, hence the name “random sample consensus” (RANSAC). To improve
the efficiency of the estimate, we can recompute an ML estimate θ̂ of the model
from all the samples that are consistent with θ̂j∗ .

Notice that for RANSAC, one needs to specify the error tolerance τ a priori.
In other words, RANSAC requires to know the variance σ2 of the error a priori,
while LMS normally does not. There have been a few variations of RANSAC in
the literature that relax this requirement. We here do not elaborate on them and
interested readers may refer to [Steward, 1999] and references therein.

However, in the context of GPCA, the random sampling techniques have not
been so effective. The reason is largely because the number of subsets needed
grows prohibitively high when the dimension of the model is large or the model
is a mixture model such as an arrangement of subspaces. Other complications
may also arise when dealing with a mixture model. We will give a more detailed
account of these complications in Chapter 5.

10which becomes meaningless when the fraction of outliers is over 50%.

This is page 246
Printer: Opaque this

Appendix B
Basic Facts from Algebraic Geometry

“Algebra is but written geometry; geometry is but drawn algebra.”
– Sophie Germain

As a centuries-old practice in science and engineering, people often fit poly-
nomials to a given set of data points. In this book, we often use the set of zeros
of (multivariate) polynomials to model a given data set. In mathematics, poly-
nomials and their zero sets are studied in Algebraic Geometry, with Hilbert’s
Nullstellensatz establishing the basic link between Algebra (polynomials) and
Geometry (the zero set of polynomials, a geometric object). In order to make
this book self-contained, in this appendix, we review some of the basic notions
and facts that are frequently used in this book. For a more systematic introduction
to this topic, the reader may refer to the classic texts of Lang [Lang, 1993] and
Eisenbud [Eisenbud, 1996].

B.1 Polynomial Ring

Consider a D-dimensional vector space over a field R (of characteristic 0), de-
noted by RD, where R is usually the field of real numbers R or the field of
complex numbers C.

Let R[x] = [x1, x2, . . . , xD] be the set of all polynomials of D variables
x1, x2, . . . , xD. Then R[x] is a commutative ring with two basic operations:
“summation” and “multiplication” of polynomials. The elements of R are called
scalars or constants. A monomial is a product of the variables; its degree is the

B.1. Polynomial Ring 247

number of the variables (counting repeats). A monomial of degree n is of the form
xn = xn1

1 xn2
2 · · ·x

nD

D with 0 ≤ nj ≤ n and n1 + n2 + · · ·+ nD = n. There are
a total of

Mn(D) .= (D+n−1
n) =

(
D+n−1
D−1

)
different degree-n monomials.

Definition B.1 (Veronese Map). For given n and D, the Veronese map of degree
n, denoted as νn : RD → RMn(D), is defined as:

νn : [x1, . . . , xD]T 7→ [. . . ,xn, . . .]T , (B.1)

where xn are degree-n monomials of the form xn1
1 xn2

2 · · ·x
nD

D with n =
(n1, n2, . . . , nD) chosen in the degree-lexicographic order.

Example B.2 (The Veronese Map of Degree 2 in 3 Variables). If x = [x1, x2, x3]T ∈
R3, the Veronese map of degree 2 is given by:

ν2(x) = [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3]T ∈ R6.

In the context of Kernel methods (Chapter 2), the Veronese map is usually
referred to as the polynomial embedding and the ambient space RMn(D) is called
the feature space.

A term is a scalar multiplying a monomial. A polynomial p(x) is said to be
homogeneous if all its terms have the same degree. Sometimes, the word form is
used to mean a homogeneous polynomial. Every homogeneous polynomial p(x)
of degree n can be written as:

p(x) = cTnνn(x) =
∑

cn1,...,nD
xn1

1 · · ·x
nD

D , (B.2)

where cn1,...,nD
∈ R are the coefficients associated with the monomials xn =

xn1
1 · · ·x

nD

D .
In this book, we are primarily interested in the algebra of homogeneous

polynomials with D variables.1 Because of that, we view RD as a projective
space – the set of one-dimensional subspaces (meaning lines through the ori-
gin). Any one-dimensional subspace, say a line L, can be represented by a point
[a1, a2, . . . , aD]T 6= [0, 0, . . . , 0]T on the line. The result is a projective (D−1)-
space overRwhich can be regarded as theD-tuples [a1, a2, . . . , aD]T of elements
of R, modulo the equivalence relation [a1, a2, . . . , aD]T ∼ [ba1, ba2, . . . , baD]T

for all b 6= 0 in R.
If p(x1, x2, . . . , xD) is a homogeneous polynomial of degree n, then for b ∈ R

we have

p(ba1, ba2, . . . , baD) = bnp(a1, a2, . . . , aD). (B.3)

1For algebra of polynomials defined on RD as an affine space, the reader may refer to [Lang,
1993].

248 Appendix B. Basic Facts from Algebraic Geometry

Therefore, whether p(a1, a2, . . . , aD) = 0 or not on a line L does not depend on
the representative point chosen on the line L.

We may view R[x] as a graded ring which can be decomposed as

R[x] =
∞⊕
i=0

Ri = R0 ⊕R1 ⊕ · · · ⊕Rn ⊕ · · · , (B.4)

where Ri consists of all polynomials of degree i. In particular, R0 = R is the
set of nonzero scalars (or constants). It is convention (and convenient) to define
the degree of the zero element, 0, in R to be infinite or −1. R1 is the set of all
homogeneous polynomials of degree one, i.e., the set of 1-forms,

R1
.=
{
b1x1 + b2x2 + · · ·+ bDxD : [b1, b2, . . . , bD]T ∈ RD

}
. (B.5)

Obviously, the dimension ofR1 as a vector space is alsoD.R1 can also be viewed
as the dual space (RD)∗ of RD. For convenience, we also define the following
two sets

R≤m
.=

m⊕
i=0

Ri = R0 ⊕R1 ⊕ · · · ⊕Rm,

R≥m
.=

∞⊕
i=m

Ri = Rm ⊕Rm+1 ⊕ · · · ,

which are the set of polynomials of degree up to degree m and those of degree
higher and equal to m, respectively.

B.2 Ideals and Algebraic Sets

Definition B.3 (Ideal). An ideal in the (commutative) polynomial ring R[x] is an
additive subgroup I (with respect to the summation of polynomials) such that if
p(x) ∈ I and q(x) ∈ R[x], then p(x)q(x) ∈ I .

From the definition, it is easy to verify that if I, J are two ideals of R[x], their
intersection K = I ∩ J is also an ideal. The previously defined set R≥m is an
ideal for every m. In particular, R≥1 is the so-called irrelevant ideal, sometimes
denoted by R+.

An ideal is said to be generated by a subset G ⊂ I if every element p(x) ∈ I
can be written in the form

p(x) =
k∑
i=1

qi(x)gi(x), with qi(x) ∈ R[x] and gi(x) ∈ G. (B.6)

We write (G) for the ideal generated by a subset G ⊂ R[x]; if G contains only
a finite number of elements {g1, . . . , gk}, we usually write (g1, . . . , gk) in place
of (G). An ideal I is principal if it can be generated by one element (i.e., I =

B.2. Ideals and Algebraic Sets 249

p(x)R[x] for some polynomial p(x)). Given two ideals I and J , the ideal that is
generated by the product of elements in I and J

{f(x)g(x), f(x) ∈ I, g(x) ∈ J}

is called the product ideal, denoted as IJ .
An ideal I of the polynomial ringR[x] is prime if I 6= R[x] and if p(x), q(x) ∈

R[x] and p(x)q(x) ∈ I implies that p(x) ∈ I or q(x) ∈ I . If I is prime, then for
any ideals J,K with JK ⊆ I we have J ⊆ I or K ⊆ I .

A polynomial p(x) is said to be prime or irreducible if p(x) generates a prime
ideal. Equivalently, if p(x) is irreducible if p(x) is not a nonzero scalar and
whenever p(x) = f(x)g(x), then one of f(x) and g(x) is a nonzero scalar.

Definition B.4 (Homogeneous Ideal). A homogeneous ideal of R[x] is an ideal
that is generated by homogeneous polynomials.

Note that the sum of two homogeneous polynomials of different degrees
is no longer a homogeneous polynomial. Thus, a homogeneous ideal contains
nonhomogeneous polynomials too.

Definition B.5 (Algebraic Set). Given a set of homogeneous polynomials J ⊂
R[x], we may define a corresponding (projective) algebraic set Z(J) as a subset
of RD to be

Z(J) .= {[a1, a2, . . . , aD]T ∈ RD|f(a1, a2, . . . , aD) = 0,∀f ∈ J}. (B.7)

If we view algebraic sets as the closed sets of RD, this assigns a topology to
the space RD, which is called the Zariski topology.2

IfX = Z(J) is an algebraic set, an algebraic subset Y ⊂ X is a set of the form
Y = Z(K) (where K is a set of homogeneous polynomials) that happens to be
contained in X . A nonempty algebraic set is said to be irreducible if it is not the
union of two nonempty smaller algebraic subsets. We call irreducible algebraic
sets as algebraic varieties. For instance, any subspace of RD is an irreducible
algebraic variety.

There is an inverse construction of algebraic sets. Given any subset X ⊆ RD,
we define the vanishing ideal of X to be the set of all polynomials that vanish on
X:

I(X) .= {f(x) ∈ R[x]|f(a1, a2, . . . , an) = 0,∀[a1, a2, . . . , an]T ∈ X}. (B.8)

One can easily verify that I(X) is an ideal. Treating two polynomials as equiva-
lent if they agree at all the points of X , we get the coordinate ring A(X) of X as
the quotient R[x]/I(X).

Now, consider a set of homogeneous polynomials J ⊂ R[x] (which is not
necessarily an ideal) and a subset X ⊂ RD (which is not necessarily an algebraic
set.)

2This is because the intersection of any algebraic sets is an algebraic set; and the union of finitely
many algebraic sets is also an algebraic set.

250 Appendix B. Basic Facts from Algebraic Geometry

Proposition B.6. The following facts are true:

1. I(Z(J)) is an ideal that contains J;

2. Z(I(X)) is an algebraic set that contains X .

Proposition B.7. If X is an algebraic set and I(X) is the ideal of X , then X is
irreducible if and only if I is a prime ideal.

Proof. IfX is irreducible and f(x)g(x) ∈ I , sinceZ({I, f(x)})∪Z({I, g(x)}) =
X , then either X = Z({I, f(x)}) or X = Z({I, g(x)}). That is, either f(x) or
g(x) vanishes on X and is in I . Conversely, suppose X = X1 ∪X2. If both X1

and X2 are algebraic sets strictly smaller than X , then there exist polynomials
f1(x) and f2(x) that vanish on X1 and X2 respectively, but not on X . Since the
product f1(x)f2(x) vanishes on X , we have f1(x)f2(x) ∈ I but neither f1(x)
or f2(x) is in I . So I is not prime.

B.3 Algebra and Geometry: Hilbert’s Nullstellensatz

In practice, we often use an algebraic set to model a given set of data points
and the (ideal of) polynomials that vanish on the set provide a natural parametric
model for the data. One question that is of particular importance in this context is:
Is there an one-to-one correspondence between ideals and algebraic sets? This is
in general not true as the ideals I = (f2(x)) and J = (f(x)) both vanish on the
same algebraic set as the zero-set of the polynomial f(x). Fortunately, this turns
out to be essentially the only case that prevents the one-to-one correspondence
between ideals and algebraic sets.

Definition B.8 (Radical Ideal). Given a (homogeneous) ideal I of R[x], the
(homogeneous) radical ideal of I is defined to be

rad(I) .= {f(x) ∈ R[x]|f(x)m ∈ I for some integer m}. (B.9)

We leave it to the reader to verify that rad(I) is indeed an ideal and furthermore,
if I is homogeneous, so is rad(I).

Hilbert proved in 1893 the following important theorem that establishes one of
the fundamental results in algebraic geometry:

Theorem B.9 (Nullstellensatz). Let R be an algebraically closed field (e.g., R =
C). If I ⊂ R[x] is an (homogeneous) ideal, then

I(Z(I)) = rad(I). (B.10)

Thus, the correspondences I 7→ Z(I) and X 7→ I(X) induce a one-to-one
correspondence between the collection of (projective) algebraic sets of RD and
(homogeneous) radical ideals of R[x].

B.4. Algebraic Sampling Theory 251

One may find up to five different proofs for this theorem in [Eisenbud, 1996].3

The importance of the Nullstellensatz cannot be exaggerated. It is a natural ex-
tension of Gauss’ fundamental theorem of algebra4 to multivariate polynomials.
One of the remarkable consequences of the Nullstellensatz is that it identifies a
geometric object (algebraic sets) with an algebraic object (radical ideals).

In our context, we often assume our data points are drawn from an algebraic
set and use the set of vanishing polynomials as a parametric model for the data.
Hilbert’s Nullstellensatz guarantees such a model for the data is well-defined and
unique. To some extent, when we fit vanishing polynomials to the data, we are
essentially inferring the underlying algebraic set. In the next section, we will dis-
cuss how to extend Hilbert’s Nullstellensatz to the practical situation in which we
only have finitely many sample points from an algebraic set.

B.4 Algebraic Sampling Theory

We often face a common mathematical problem: How to identify a (projective)
algebraic set Z ⊆ RD from a finite, though maybe very large, number of sample
points in Z? In general, the algebraic set Z is not necessarily irreducible5 and the
ideal I(Z) is not necessarily prime.

From an algebraic viewpoint, it is impossible to recover a continuous algebraic
set Z from a finite number of discrete sample points. To see this, note that the set
of all polynomials that vanish on one (projective) point z is a submaximal ideal6

m in the (homogeneous) polynomial ringR[z]. The set of polynomials that vanish
on a set of sample points {z1, z2, . . . ,zi} ⊆ Z is the intersection

ai
.= m1 ∩m2 ∩ · · · ∩mi, (B.11)

which is a radical ideal that is typically much larger than I(Z).
Thus, some additional assumptions must be imposed on the algebraic set in

order to make the problem of inferring I(Z) from the samples well-defined. Typi-
cally, we assume that the ideal I(Z) of the algebraic set Z in question is generated
by a set of (homogeneous) polynomials whose degrees are bounded by a relatively
small n. That is,

I(Z) .=
(
f1, f2, . . . , fs

)
s.t. deg(fj) ≤ n,

Z(I) .=
{
z ∈ RD | fi(z) = 0, i = 1, 2, . . . , s

}
.

3Strictly speaking, for homogeneous ideals, for the one-to-one correspondence to be exact, one
should only consider proper radical ideals.

4Every degree-n polynomial in one variable has exactly n roots in an algebraically closed field
such as C (counting repeats).

5For instance, it is often the case that Z is the union of many subspaces or algebraic surfaces.
6The ideal of a point in the affine space is a maximal ideal; and the ideal of a point in the projective

space is called a submaximal ideal. They both are “maximal” in the sense that they cannot be a subideal
of any other homogeneous ideal of the polynomial ring.

252 Appendix B. Basic Facts from Algebraic Geometry

We are interested in retrieving I(Z) uniquely from a set of sample points
{z1, z2, . . . ,zi} ⊆ Z. In general, I(Z) is always a proper subideal of ai, regard-
less of how large i is. However, the information about I(Z) can still be retrieved
from ai in the following sense.

Theorem B.10 (Sampling of an Algebraic Set). Consider a nonempty set Z ⊆
RD whose vanishing ideal I(Z) is generated by polynomials in R≤n. Then there
is a finite sequence FN = {z1, . . . ,zN} such that the subspace I(FN) ∩ R≤n
generates I(Z).

Proof. Let I≤n = I(Z) ∩ R≤n. This vector space generates I(Z). Let a0 =
R[x] = I(∅). Let b0 = a0 ∩ R≤n and let A0 = (b0), the ideal generated by
polynomials in a0 of degree less than or equal to n. Since 1 ∈ R[x] ∩ R≤n is
the generator of this ideal, we have A0 = R[x]. Since Z 6= ∅, then A0 6= I(Z).
Set N = 1 and pick a point z1 ∈ Z. Then 1(z1) 6= 0 (1 is the function that
assigns 1 to every point of Z.). Let a1 be the ideal that vanishes on {z1} and
define b1 = a1 ∩ R≤n. Further let A1 = (b1).7 Since I(Z) ⊆ a1, it follows that
I≤n ⊆ b1. If A1 = I(Z), then we are done. Suppose then that I(Z) ⊂ A1.

Let us do the induction at this point. Suppose we have found a finite sequence
FN = {z1, z2, . . . ,zN} ⊂ Z with

I(FN) = aN (B.12)
bN = aN ∩R≤n (B.13)
AN = (bN) (B.14)

b0 ⊃ b1 ⊃ · · · ⊃ bN ⊇ I≤n. (B.15)

It follows that I≤n ⊆ bN and that I(Z) ⊆ AN . If equality holds here, then we
are done. If not, then there is a function g ∈ bN not in I(Z) and an element
zN+1 ∈ Z for which g(zN+1) 6= 0. Set FN+1 = {z1, . . . ,zN , zN+1}. Then
one gets aN+1, bN+1, AN+1 as before with

b0 ⊃ b1 ⊃ · · · ⊃ bN ⊃ bN+1 ⊇ I≤n. (B.16)

We obtain a descending chain of subspaces of the vector space R≤n. This chain
must stabilize, since the vector space is finite dimensional. Hence there is an N
for which bN = I≤n and we are done.

We point out that in the above proof, no clear bound on the total number N of
points needed is given.8 Nevertheless, from the proof of the theorem, the set of
finite sequences of samples that satisfy the theorem is an open set. This is of great

7Here we are using the convention that (S) is the ideal generated by the set S. Recall also that
the ring R[x] is noetherian by the Hilbert basis theorem and so all ideals in the ring are finitely
generated [Lang, 1993].

8However, loose bounds can be easily obtained from the dimension of R≤n as a vector space. In
fact, in the algorithm, we implicitly used the dimension of R≤n as a bound for N .

B.5. Decomposition of Ideals and Algebraic Sets 253

practical importance: With probability one, the vanishing ideal of an algebraic set
can be correctly determined from a randomly chosen sequence of samples.

Example B.11 (A Hyperplane in R3). Consider a plane P = {z ∈ R3 : f(z) = az1 +
bz2 + cz3 = 0}. Given any two points in general position in the plane P , f(x) = ax1 +
bx2 + cx3 will be the only (homogeneous) polynomial of degree 1 that fits the two points.
In terms of the notation introduced earlier, we have I(P) =

`
a2 ∩R≤1

´
.

Example B.12 (Zero Polynomial). When Z = RD , the only polynomial that vanishes on
Z is the zero polynomial, i.e., I(Z) = (0). Since the zero polynomial is regarded to be of
degree −1, we have (aN ∩R≤n) = ∅ for any given n (and large enough N).

The above theorem can be viewed as a first step towards an algebraic analogy
to the well-known Nyquist-Shannon sampling theory in signal processing, which
stipulates that a continuous signal with a limited frequency bandwidth Ω can be
uniquely determined from a sequence of discrete samples with a sampling rate
higher than 2Ω. Here a signal is replaced by an algebraic set and the frequency
bandwidth is replaced by the bound on the degree of polynomials. It has been
widely practiced in engineering that a curve or surface described by polynomial
equations can be recovered from a sufficient number of sample points in general
configuration, a procedure often loosely referred to as “polynomial fitting.” How-
ever, the algebraic basis for this is often not clarified and the conditions for the
uniqueness of the solution are usually not well characterized or specified. This
problem certainly merits further investigation.

B.5 Decomposition of Ideals and Algebraic Sets

Modeling a data set as an algebraic set does not stop at obtaining its vanishing
ideal (and polynomials). The ultimate goal is to extract all the internal geometric
or algebraic structures of the algebraic set. For instance, if an algebraic set consists
of multiple subspaces, called a subspace arrangement, we need to know how to
derive from its vanishing ideal the number of subspaces, their dimensions, and a
basis of each subspace.

Thus, given an algebraic set X or equivalently its vanishing ideal I(X), we
want to decompose or segment it into a union of subsets each of which can no
longer be further decomposed. As we have mentioned earlier, an algebraic set
that cannot be decomposed into smaller algebraic sets is called irreducible. As
one of the fundamental finiteness theorem of algebraic geometry, we have:

Theorem B.13. An algebraic set can have only finitely many irreducible
components. That is, for some n,

X = X1 ∪X2 ∪ · · · ∪Xn, (B.17)

where X1, X2, . . . , Xn are irreducible algebraic varieties.

254 Appendix B. Basic Facts from Algebraic Geometry

Proof. The proof is essentially based on the fact that the polynomial ring R[x]
is Noetherian (i.e., finitely generated), and there are only finitely many prime
ideals containing I(X) that are minimal with respect to inclusion (See [Eisenbud,
1996]).

The vanishing ideal I(Xi) of each irreducible algebraic variety Xi must be a
prime ideal that is minimal over the radical ideal I(X) – there is no prime subideal
of I(Xi) that includes I(X). The ideal I(X) is precisely the intersection of all
the minimal prime ideals:

I(X) = I(X1) ∩ I(X2) ∩ · · · ∩ I(Xn). (B.18)

This intersection is called a minimal primary decomposition of the radical ideal
I(X). Thus the primary decomposition of a radical ideal is closely related to
the notion of “segmenting” or “decomposing” an algebraic set into multiple irre-
ducible algebraic varieties: If we know how to decompose the ideal, we can easily
find the irreducible algebraic variety corresponding to each primary component.

We are particularly interested in a special class of algebraic sets known as sub-
space arrangements. One of the goals of generalized principal component analysis
(GPCA) is to decompose a subspace arrangement into individual (irreducible)
subspaces (see Chapter 3). In Appendix C, we will further study the algebraic
properties of subspace arrangements.

B.6 Hilbert Function, Polynomial, and Series

Finally, we introduce an important invariant of algebraic sets, given by the Hilbert
function. Knowing the values of Hilbert function can be very useful in the identi-
fication of subspace arrangements, especially the number of subspaces and their
dimensions.

Given a (projective) algebraic set Z and its vanishing ideal I(Z), We can grade
the ideal by degree as

I(Z) = I0(Z)⊕ I1(Z)⊕ · · · ⊕ Ii(Z)⊕ · · · . (B.19)

The Hilbert function of Z is defined to be

hI(i)
.= dim(Ii(Z)). (B.20)

Notice that hI(i) is exactly the number of linearly independent polynomials of
degree i that vanish on Z. In this book, we also refer to hI as the Hilbert function
of the algebraic set Z.9

9In the literature, however, the Hilbert function of an algebraic set Z is sometimes defined to be
the dimension of the homogeneous components of the coordinate ring A(Z)

.
= R[x]/I(Z) of Z,

which is the codimension of Ii(Z) as a subspace in Ri.

B.6. Hilbert Function, Polynomial, and Series 255

The Hilbert series, also known as the Poincaré series, of the ideal I is defined
to be the power series10

H(I, t) .=
∞∑
i=0

hI(i)ti = hI(0) + hI(1)t+ hI(2)t2 + · · · . (B.21)

Thus, given H(I, t), we know all the values of the Hilbert function hI from its
coefficients.

Example B.14 (Hilbert Series of the Polynomial Ring). The Hilbert series of the
polynomial ring R[x] = R[x1, x2, . . . , xD] is

H(R[x], t) =

∞X
i=0

dim(Ri)t
i =

∞X
i=0

`
D+i−1

i

´
ti =

1

(1− t)D . (B.22)

One can easily verify the correctness of the formula with the special case D = 1. Obvi-
ously, the coefficients of the Hilbert series of any ideal (as a subset of R[x]) are bounded
by those ofH(R[x], t) and hence the Hilbert series converges.

Example B.15 (Hilbert Series of a Subspace). The above formula can be easily general-
ized to the vanishing ideal of a subspace S of dimension d in RD . Let the co-dimension of
the subspace be c = D − d. We have

H(I(S), t) =

„
1

(1− t)c − 1

«
·
„

1

(1− t)D−c
«

=
1− (1− t)c

(1− t)D . (B.23)

The following theorem, also due to Hilbert, reveals that the values of the Hilbert
function of an ideal have some remarkable properties:

Theorem B.16 (Hilbert Polynomial). Let I(Z) be the vanishing ideal of an al-
gebraic set Z over R[x1, . . . , xD], then the values of its Hilbert function hI(i)
agree, for large i, with those of a polynomial of degree ≤ D. This polynomial,
denoted as HI(i), is called the Hilbert polynomial of I(Z).

Then in the above example, for the polynomial ring, the Hilbert function itself
is obviously a polynomial in i

HR(i) = hR(i) =
(
D+i−1

i

)
=

1
(D − 1)!

(D + i− 1)(D + i− 2) · · · (i+ 1).

However, for a general ideal I (of an algebraic set), it is not necessarily true
that all values of its Hilbert function hI agree with those of its Hilbert polynomial
HI . They might agree only when i is large enough. Thus, for a given algebraic set
(or ideal), it would be interesting to know how large i needs to be in order for the
Hilbert function to coincide with a polynomial. As we will see in Appendix B, for
subspace arrangements, there is a very elegant answer to this question. One can

10In general, the Hilbert series can be defined for any finitely-generated graded module E =L∞
i=1 Ei using any Euler-Poincaré Z-valued function hE(·) as H(E, t)

.
=
P∞
i=0 hE(i)ti [Lang,

1993]. Here, for E = I , we choose hI(i) = dim(Ii).

256 Appendix B. Basic Facts from Algebraic Geometry

even derive closed-form formulae for the Hilbert polynomials. These results are
very important and useful for Generalized Principal Component Analysis, both
conceptually and computationally.

This is page 257
Printer: Opaque this

Appendix C
Algebraic Properties of Subspace
Arrangements

“He who seeks for methods without having a definite problem in mind
seeks in the most part in vain.”

– David Hilbert

In this book, the main problem that we study is how to segment a collection of
data points drawn from a subspace arrangement A = {S1, S2, . . . , Sn}, formally
introduced in Chapter 4.1 ZA = S1∪S2∪· · ·∪Sn is the union of all the subspaces.
ZA can be naturally described as the zero set of a set of polynomials, which makes
it an algebraic set. The solution to the above problem typically relies on inferring
the subspace arrangement ZA from the data points. Thus, knowing the algebraic
properties of ZA may significantly facilitate this task.

Although subspace arrangements seem to be a very simple class of algebraic
sets, a full characterization of their algebraic properties is a surprisingly difficult,
if not impossible, task. Subspace arrangements have been a centuries-old subject
that still actively interweaves many mathematical fields: algebraic geometry and
topology, combinatorics and complexity theory, graph and lattice theory, etc. Al-
though the results are extremely rich and deep, in fact only a few special classes
of subspace arrangements have been well characterized.

In this appendix, we examine some important concepts and properties of
subspace arrangements that are closely related to the subspace-segmentation
problem. The purpose of this appendix is two-fold: 1. to provide a rigorous jus-

1Unless stated otherwise, the subspace arrangement considered will always be a central
arrangement, as in Definition 3.4.

258 Appendix C. Algebraic Properties of Subspace Arrangements

tification for the GPCA algorithms derived in the book, especially Chapter 3; 2.
to introduce important properties of subspace arrangements, which may suggest
potential improvements of the algorithms. For readers who are interested only in
the basic GPCA algorithms and their applications, this appendix can be skipped
at first read.

C.1 Ideals of Subspace Arrangements

Vanishing Ideal of a Subspace.

A d-dimensional subspace S can be defined by k = D − d linearly independent
linear forms {l1, l2, . . . , lk}:

S
.= {x ∈ RD : li(x) = 0, i = 1, 2, . . . , k = D − d}, (C.1)

where li is of the form li(x) = ai1x1 + ai2x2 + · · · aiDxD with aij ∈ R. Let S∗

denote the space of all linear forms that vanish on S, then dim(S∗) .= k = D−d.
The subspace S is also called the zero set of S∗, i.e., points in the ambient space
that vanish on all polynomials in S∗, which is denoted as Z(S∗). We define

I(S) .= {p ∈ R[x] : p(x) = 0,∀x ∈ S}. (C.2)

Clearly, I(S) is an ideal generated by linear forms in S∗, and it contains poly-
nomials of all degrees that vanish on the subspace S. Every polynomial p(x) in
I(S) can be written as a superposition:

p = l1h1 + l2h2 + · · ·+ lkhk (C.3)

for some polynomials h1, h2, . . . , hk ∈ R[x]. Furthermore, I(S) is a prime
ideal.2

Vanishing Ideal of a Subspace Arrangement.

Given a subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn, its vanishing ideal is

I(ZA) = I(S1) ∩ I(S2) ∩ · · · ∩ I(Sn). (C.4)

The ideal I(ZA) can be graded by the degree of the polynomial

I(ZA) = Im(ZA)⊕ Im+1(ZA)⊕ · · · ⊕ Ii(ZA)⊕ · · · . (C.5)

Each Ii(ZA) is a vector space that consists of forms of degree i in I(ZA), and
m ≥ 1 is the least degree of the polynomials in I(ZA). Notice that forms that
vanish on ZA may have degrees strictly less than n. One example is an arrange-
ment of two lines and one plane in R3. Since any two lines lie on a plane, the
arrangement can be embedded into a hyperplane arrangement of two planes, and

2It is a prime ideal because for any product p1p2 ∈ I(S), either p1 ∈ I(S) or p2 ∈ I(S).

C.1. Ideals of Subspace Arrangements 259

there exist forms of second degree that vanish on the union of the three subspaces.
The dimension of Ii(ZA) is known as the Hilbert function hI(i) of ZA.

Example C.1 (Boolean Arrangement). The Boolean arrangement is the collection of co-
ordinate hyperplanesHj

.
= {x : xj = 0}, 1 ≤ j ≤ D. The vanishing ideal of the Boolean

arrangement is generated by a single polynomial p(x) = x1x2 · · ·xD of degree D.

Example C.2 (Braid Arrangement). The Braid arrangement is the collection of hyper-
planes Hjk

.
= {x : xj − xk = 0}, 1 ≤ j 6= k ≤ D. Similarly, the vanishing ideal the

Braid arrangement is generated by a single polynomial p(x) =
Q

1≤j<k≤D(xj − xk).

Theorem C.3 (Regularity of Subspace Arrangements). The vanishing ideal
I(ZA) of a subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn is n-regular. This
implies that I(Z) has a set of generators with degree ≤ n.

Proof. For the concept of n-regularity and the proof of the above statement,
please refer to [Derksen, 2005] and references therein.

Due to the above theorem, the subspace arrangement ZA is uniquely deter-
mined as the zero set of all polynomials of degree up to n in its vanishing ideal,
i.e., as the zero set of polynomials in

ZA = Z(I(n)),

where I(n)
.= I0 ⊕ I1 ⊕ · · · ⊕ In.

Product Ideal of a Subspace Arrangement

Let J(ZA) be the ideal generated by the products of linear forms

{l1 · l2 · · · ln, ∀lj ∈ S∗j , j = 1, . . . , n}.

Or equivalently, we can define J(ZA) to be the product of the n ideals
I(S1), I(S2), . . . , I(Sn):

J(ZA) .= I(S1) · I(S2) · · · I(Sn).

Then, the product ideal J(ZA) is a subideal of I(ZA). Nevertheless, the two
ideals share the same zero set:

ZA = Z(J) = Z(I). (C.6)

By definition I is the largest ideal that vanishes on ZA. I is in fact the radical
ideal of the product ideal J , i.e., I = rad(J). We may also grade the ideal J(ZA)
by the degree

J(ZA) = Jn(ZA)⊕ Jn+1(ZA)⊕ · · · ⊕ Ji(ZA)⊕ · · · . (C.7)

Notice that, unlike I , the lowest degree of polynomials in J always starts from
n, the number of subspaces. The Hilbert function of J is denoted as hJ(i) =
dim(Ji(ZA)). As we will soon see, the Hilbert functions (or polynomials, or se-
ries) of the product ideal J and the vanishing ideal I have very interesting and
important relationships.

260 Appendix C. Algebraic Properties of Subspace Arrangements

C.2 Subspace Embedding and PL-Generated Ideals

Let ZA be a central subspace arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn. Let ZA′ =
S′1 ∪ S′2 ∪ · · · ∪ S′n′ be another (central) subspace arrangement. If we have ZA ⊆
ZA′ , then it is necessary that for all Sj ⊂ ZA there exists S′j′ ⊂ ZA′ such that
Sj ⊆ S′j′ . If so, we call

ZA ⊆ ZA′

a subspace embedding. Beware that it is possible n′ < n for a subspace embed-
ding as more than one subspace Sj of ZA may belong to the same subspace Sj′ of
ZA′ . The subspace arrangements in Theorem 3.13 are examples of subspace em-
bedding. If ZA′ happens to be a hyperplane arrangement, we call the embedding
a hyperplane embedding.

Is the zero-set of each homogeneous component of I(ZA), in particular
Im(ZA), a subspace embedding of ZA? Unfortunately, this is not true as counter
examples can be easily constructed.

Example C.4 (Five Lines in R3). Consider five points in P2 (or equivalently, five lines
in R3) The Veronese embedding of order two of a point x = [x1, x2, x3] ∈ R3

is [x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3] ∈ R6. For five points in general position, the matrix

V 2 = [ν2(x1), ν2(x2), . . . ν2(x5)] is of rank 5. Let cT be the only vector in the left null
space of V 2: cTV 2 = 0. Then p(x) = cT ν2(x) is in general an irreducible quadratic
polynomial. Thus, the zero-set of I2(ZA) = p(x) is not a subspace arrangement but an
(irreducible) cone in R3.

Nevertheless, the following statement allows us to retrieve a subspace embed-
ding from any polynomials in the vanishing ideal I(ZA).

Theorem C.5 (Hyperplane Embedding via Differentiation). For every polyno-
mial p in the vanishing ideal I(ZA) of a subspace arrangement ZA = S1 ∪ S2 ∪
· · · ∪ Sn and n points {xj ∈ Sj}nj=1 in general position, the union of the hy-
perplanes ∪nj=1Hj = {x : Dp(xj)Tx = 0} is a hyperplane embedding of the
subspace arrangement.

Proof. The proof is based on the simple fact that the derivative (gradient)∇f(x)
of any smooth function f(x) is orthogonal to (the tangent space of) its level set
f(x) = c.

In the above statement, if we replace p with a collection of polynomials in the
vanishing ideal, their derivatives give a subspace embedding in a similar fashion
as the hyperplane embedding. When the collection contains all the generators of
the vanishing ideal, the subspace embedding becomes tight – the resulting sub-
space arrangement coincides with the original one. This property has been used
in the development of GPCA algorithms in Chapter 3.

Another concept that is closely related to subspace embedding is a pl-generated
ideal.

Definition C.6 (pl-Generated Ideals). An ideal is said to be pl-generated if it is
generated by products of linear forms.

C.2. Subspace Embedding and PL-Generated Ideals 261

If the ideal of a subspace arrangement ZA is pl-generated, then the zero-set of
every generator gives a hyperplane embedding of ZA.

Example C.7 (Hyperplane Arrangements). If ZA is a hyperplane arrangement, I(ZA)
is always pl-generated as it is generated by a single polynomial of the form:3

p(x) = (bT1 x)(bT2 x) · · · (bTnx), (C.8)

where bi ∈ RD are the normal vectors to the hyperplanes.

Obviously, the vanishing ideal I(S) of a single subspace S is always pl-
generated. The following example shows that this is also true for an arrangement
of two subspaces.

Example C.8 (Two Subspaces). Let us show that for an arrangementZA of two subspaces,
I(ZA) is always pl-generated. Let ZA = S1 ∪ S2 and define U∗ .

= S∗1 ∩ S∗2 and V ∗ .
=

S∗1 \ U∗,W ∗ .= S∗2 \ U∗. Let (u1, u2, . . . , uk) be a basis for U∗, (v1, v2, . . . , vl) a basis
for V ∗, and (w1, w2, . . . , wm) a basis for W ∗. Then obviously I(ZA) = I(S1) ∩ I(S2)
is generated by (u1, . . . , uk, v1w1, v1w2, . . . , vlwm).

Now consider an arrangement of n subspaces: ZA = S1∪S2∪ · · ·∪Sn. By its
definition, the product ideal J(ZA) is always pl-generated. Now, is the vanishing
ideal I(ZA) always pl-generated? Unfortunately, this is not true. Below are some
counterexamples.

Example C.9 (Lines in R3 [?]). For a central arrangementZA of r lines in general position
in R3, I(ZA) is not pl-generated when r = 5 or r > 6. Example C.4 gives a proof for the
case with r = 5.

Example C.10 (Planes in R4 [?]). For a central arrangement ZA of r planes in general
position in R4, I(ZA) is not pl-generated for all r > 2.

However, can each homogeneous component Ii(ZA) be “pl-generated” when i
is large enough? For instance, can it be that In = Jn = S∗1 · S∗2 · · ·S∗n? This is in
general not true for an arbitrary arrangement and below is a counterexample.

Example C.11 (Three Subspaces in R5 – due to R. Fossum). Consider R[x] =
R[x1, . . . , x5] and an arrangement ZA of three three-dimensional subspaces in R5 whose
vanishing ideals are given by, respectively:

I(S1) = (x1, x2), I(S2) = (x3, x4), I(S3) = ((x1 + x3), (x2 + x4)).

Denote their intersection as I = I(S1) ∩ I(S2) ∩ I(S3). The intersection contains the
element

x1x4 − x2x3 = (x1 + x3)x4 − (x2 + x4)x3 = x1(x2 + x4)− x2(x1 + x3).

Then any element (x1x4 − x2x3)l(x1, . . . , x5) with l a linear form is in I3(ZA), the
homogeneous component of elements of degree three. In particular, (x1x4 − x2x3)x5 is
in I3(ZA). However, it is easy to check that this element cannot be written in the formX

i

(aix1 + bix2)(cix2 + dix4)(ei(x1 + x3) + fi(x2 + x4))

3In algebra, an ideal which is generated by a single generator is called a principal ideal.

262 Appendix C. Algebraic Properties of Subspace Arrangements

for any ai, bi, ci, di, ei, fi ∈ R. Thus, I3(ZA) is not spanned by S∗1 · S∗2 · S∗3 .

However, notice that the subspaces in the above example are not in “general
position” – their intersections are not of the minimum possible dimension. Could
In = Jn = S∗1 · S∗2 · · ·S∗n be instead true for n subspaces if they are in general
position? The answer is yes. In fact, we can say more than that. As we will see in
the next section, from the Hilbert functions of I and J , we actually have

Ii = Ji, ∀i ≥ n

if S1, S2, . . . , Sn are “transversal” (i.e., all intersections are of minimum possible
dimension). In other words, Ji could differ from Ii only for i < n.

C.3 Hilbert Functions of Subspace Arrangements

In this section, we study the Hilbert functions of subspace arrangements defined
in Section B.6. We first discuss a few reasons why in the context of general-
ized principal component analysis, it is very important to know the values of the
Hilbert function for the vanishing ideal I or the product ideal J of a subspace
arrangement. We then examine the values of the Hilbert function for a few special
examples. Finally, we give a complete characterization of the Hilbert function,
the Hilbert polynomial, and the Hilbert series of a general subspace arrangement.
In particular, we give a closed-form formula for the Hilbert polynomial of the
vanishing ideal and the product ideal of the subspace arrangement.

C.3.1 Relationships between the Hilbert Function and GPCA

In general, for a subspace arrangementZA = S1∪S2∪· · ·∪Sn in general position,
the values of the Hilbert function hI(i) of its vanishing ideal I(ZA) are invariant
under a continuous change of the positions of the subspaces. They depend only
on the dimensions of the subspaces d1, d2, . . . , dn or their co-dimensions ci =
D − di, i = 1, 2, . . . , n. Thus, the Hilbert function gives a rich set of invariants
of subspace arrangements. In the context of GPCA, such invariants can help to
determine the type of the subspace arrangement, such as the number of subspaces
and their individual dimensions from a given set of (possibly noisy) sample points.

To see this, consider a sufficiently large number of sample points in general
position are drawn from the subspaces X = {x1,x2, . . . ,xN} ⊂ ZA, let the
embedded data matrix (via the Veronese map of degree i) to be

V i
.= [νi(x1), νi(x2), . . . , νi(xN)]T . (C.9)

According to the Algebraic Sampling Theorem of Appendix B, the dimension of
Null(V i) is exactly the number of linearly independent polynomials of degree i
that vanish on ZA. That is, the following relation holds

dim(Null(V i)) = hI(i) (C.10)

C.3. Hilbert Functions of Subspace Arrangements 263

or equivalently,

rank(V i) = dim(Ri)− hI(i). (C.11)

Thus, if we know the Hilbert function for different subspace arrangements in ad-
vance, we can determine from the rank of the data matrix from which subspace
arrangement the sample data points are drawn. The following example illustrates
the basic idea.

Example C.12 (Three Subspaces in R3). Suppose that we only know our data are drawn
from an arrangement of three subspaces in R3. There are in total four different types of such
arrangements, shown in Figure C.1. The values of their corresponding Hilbert function are
listed in Table C.1. Given a sufficiently large number N of sample points from one of the

��

(a) (1, 1, 1)

��

(b) (1, 1, 2)

��

(c) (1, 2, 2)

��

(d) (2, 2, 2)

Figure C.1. Four configurations of three subspaces in R3. The numbers are the
co-dimensions (c1, c2, c3) of the subspaces.

c1 c2 c3 hI(ZA)(1) hI(ZA)(2) hI(ZA)(3)
1 1 1 0 0 1
1 1 2 0 0 2
1 2 2 0 1 4
2 2 2 0 3 7

Table C.1. Values of the Hilbert function of the four arrangements (assuming the subspaces
are in general position).

above subspace arrangements, the rank of the embedded data matrix V 3 ∈ RN×10 can be,
instead of any value between 1 and 10, only 10 − hI(3) = 9, 8, 6, 3, which correspond
to the only four possible configurations of three subspaces in R3: three planes, two planes
and one line, one plane and two lines, or three lines, respectively, as shown in Figure C.1.

This suggests that, given the dimensions of individual subspaces, we may know the rank
of the embedded data matrix. Conversely, given the rank of the embedded data matrix,
we can determine to a large extent the possible dimensions of the individual subspaces.
Therefore, knowing the values of the Hilbert function will help us to at least rule out in
advance impossible rank values for the embedded data matrix or the impossible subspace
dimensions. This is particularly useful when the data is corrupted by noise so that there is
ambiguity in determining the rank of the embedded data matrix or the dimensions of the
subspaces.

The next example illustrates how the values of Hilbert function can help
determine the correct number of subspaces.

264 Appendix C. Algebraic Properties of Subspace Arrangements

Example C.13 (Over-Fit Hyperplane Arrangements in R5). Consider a dataset sampled
from a number of hyperplanes in general position in R5. Suppose we only know that the
number of the hyperplanes is at most 4, and we embed the data via the degree-4 Veronese
map anyway. Table C.2 gives the possible values of the Hilbert function for an arrangement
of 4, 3, 2, 1 hyperplanes in R5, respectively. Here we use the convention that an empty set
has co-dimension 5 in R5.

c1 c2 c3 c4 hI(ZA)(4) rank(V 4)
1 1 1 1 1 69
1 1 1 5 5 65
1 1 5 5 15 55
1 5 5 5 35 35

Table C.2. Values of the Hilbert function of (codimension-1) hyperplane arrangements in
R5.

The first row shows that if the number of hyperplanes is exactly equal to the degree of
the Veronese map, then hI(4) = 1, i.e., the data matrix V 4 has a rank-1 null space. The
following rows show the values of hI(4) when the number of hyperplanes is n = 3, 2, 1,
respectively. If the rank of the matrix V 4 matches any of these values, we know exactly
the number of hyperplanes in the arrangement. Figure C.2 shows a super-imposed plot of
the singular values of V 4 for samples points drawn from n = 1, 2, 3, 4 hyperplanes in R5,
respectively.

Figure C.2. A super-imposed semi-log plot of the singular values of the embedded data ma-
trix V 4 for n = 1, 2, 3, 4 hyperplanes in R5, respectively. The rank drops at 35, 55, 65, 69,
which confirm the theoretical values of the Hilbert function.

Thus, in general, knowing the values of hI(i) even for i > n may significantly help
determine the correct number of subspaces in case the degree i of the Veronese map used
for constructing the data matrix V i is strictly higher than the number n of non-trivial
subspaces in the arrangement.

The above examples show merely a few cases in which the values of Hilbert
function may facilitate solving the GPCA problem. In Chapter ??, we will see
how the Hilbert function can help to improve the performance of GPCA. It now
remains as a question how to compute the values of Hilbert function for arbitrary
subspace arrangements.

Mathematically, we are interested in finding closed-form formulae, if exist at
all, for the Hilbert function (or the Hilbert polynomial, or the Hilbert series) of
the subspace arrangements. As we will soon show, if the subspace arrangements
are transversal (i.e., any intersection of subset of the subspaces has the smallest

C.3. Hilbert Functions of Subspace Arrangements 265

possible dimension), we are able to show that the Hilbert function (of both I
and J) agrees with the Hilbert polynomial (of both I and J) with i ≥ n; and a
closed-form formula for the Hilbert polynomial is known (and will be given later).
However, no general formula is known for the Hilbert function (or series) of I ,
especially for the values hI(i) with i < n. For those values, one can still compute
them in advance numerically based on the identity

hI(i) = dim(Null(V i)) (C.12)

from a sufficient set of samples on the subspace arrangements. The values for
each type of arrangements need to be computed only once, and the results can
be stored in a table such as Table C.1 for each ambient space dimension D and
number of subspaces n. We may later query these tables to retrieve information
about the subspace arrangements and exploit relations among these values for
different practical purposes.

However, computing the values of hI numerically can be very expensive, es-
pecially when the dimension of the space (or the subspaces) is high. In order to
densely sample the high-dimensional subspaces, the number of samples grows
exponentially with the number of subspaces and their dimensions. Actually the
MATLAB package that we are using runs out of the memory limit of 2GB for
computing the table for the case D = 12 and n = 6.

Fortunately, for most applications in image processing, or computer vision, or
systems identification, it is typically sufficient to know the values of hI(i) up to
n = 10 and D = 12. For instance, for most images, the first D = 12 principal
components already keep up to 99% of the total energy of the image, which is
more than sufficient for any subsequent representation or compression purposes.
Furthermore, if one chooses to use two by two blocks to represent a color image,
then each block becomes one data point of dimension 2×2×3 = 12. The number
of segments sought for an image is typically less than ten. In system identification,
the dimensions of the subspaces correspond to the orders of the systems and they
are typically less than 10.

C.3.2 Special Cases of the Hilbert Function

Before we study the Hilbert function for general subspace arrangements in the
next section, we here give a few special cases for which we have computed certain
values of the Hilbert function.

Example C.14 (Hyperplane Arrangements). Consider ZA = S1 ∪S2 ∪ . . .∪Sn ⊂ RD
with each Si a hyperplane. The subspaces Si are of co-dimension 1, i.e., c1 = c2 = · · · =
cn = 1. Then we have hI(n) = 1, which is consistent with the fact there is exactly one
(factorable) polynomial of degree n that fits n hyperplanes. Furthermore, hI(i) = 0 for all
i < n and

hI(n+ i) =
`
D+i−1

i

´
, ∀i ≥ 1.

We can generalize the case of hyperplanes to the following example.

266 Appendix C. Algebraic Properties of Subspace Arrangements

Example C.15 (Subspaces Whose Duals Have No Intersection). Consider a subspace
arrangement ZA = S1 ∪ S2 ∪ . . . ∪ Sn ⊂ RD with S∗i ∩ S∗j = 0 for all i 6= j. In
other words, if the co-dimensions of S1, S2, . . . , Sn are c1, c2, . . . , cn, respectively, we
have c1 + c2 + · · · + cn ≤ D. Notice that hyperplane arrangements are a special case
here. Generalizing the result in Example B.15, one can easily show that the Hilbert series
of I(ZA) (and J(ZA)) is

H(I(ZA), t) = H(J(ZA), t) = f(t)
.
=

Qn
i=1

`
1− (1− t)ci

´
(1− t)D . (C.13)

The values of the Hilbert function hI(i) can be easily computed from the coefficients of
the function f(t) associated with ti.

However, if the dual subspaces S∗i do have non-trivial intersections, the com-
putation of Hilbert series and function becomes much more complicated. Below
we give some special examples and leave the general study to the next section.

Example C.16 (Hilbert Function of Two Subspaces). We here derive a closed-form
formula of hI(2) for an arrangement of n = 2 subspaces ZA = S1 ∪ S2 in general
position (see also Example C.8). Suppose their co-dimensions are c1 and c2, respectively.
In R1 ∼ RD , the intersection of their dual subspaces S∗1 and S∗2 has the dimension

c
.
= max{c1 + c2 −D, 0}. (C.14)

Then we have

hI(2) = c · (c+ 1)/2 + c · (c1 − c) + c · (c2 − c) + (c1 − c) · (c2 − c)
= c1 · c2 − c · (c− 1)/2. (C.15)

Example C.17 (Three Subspaces in R5). Consider an arrangement of three subspaces
ZA = S1 ∪ S2 ∪ S3 ⊂ R5 in general position. After a change of coordinates, we may
assume S∗1 = span{x1, x2, x3}, S∗2 = span{x1, x4, x5}, and S∗3 = span{x2, x3, x4, x5}.
The value of hI(3) in this case is equal to dim(S∗1 · S∗2 · S∗3). Firstly, we compute S∗1 · S∗2
and obtain a basis for it:

S∗1 · S∗2 = span{x2
1, x1x4, x1x5, x2x1, x2x4, x2x5, x3x1, x3x4, x3x5}.

From this, it is then easy to compute the basis for S∗1 · S∗2 · S∗3 :

S∗1 · S∗2 · S∗3 = span{x2
1x2, x1x2x4, x1x2x5, x1x

2
2, x

2
2x4, x

2
2x5, x1x2x3, x2x3x4,

x2x3x5, x
2
1x3, x1x3x4, x1x3x5, x1x

2
3, x

2
3x4, x

2
3x5, x

2
1x4, x1x

2
4,

x1x4x5, x2x
2
4, x2x4x5, x3x

2
4, x3x4x5, x

2
1x5, x1x

2
5, x2x

2
5, x3x

2
5}.

Thus, we have hI(3) = 26.

Example C.18 (Five Subspaces in R3). Consider an arrangement of five subspaces
S1, S2, . . . , S5 in R3 of co-dimensions c1, c2, . . . , c5, respectively. We want to compute
the value of hI(5), i.e., the dimension of homogeneous polynomials of degree five that
vanish on the five subspaces ZA = S1 ∪ S2 ∪ · · · ∪ S5. For all the possible values of
1 ≤ c1 ≤ c2 ≤ · · · ≤ c5 < 3, we have computed the values of D3

5 and listed them in
Table C.3. Notice that the values of hI(3) in the earlier Table C.1 is a subset of those of
hI(5) in Table C.3. In fact, many relationships like this one exist among the values of the

C.3. Hilbert Functions of Subspace Arrangements 267

c1 c2 c3 c4 c5 hI(5)
1 1 1 1 1 1
1 1 1 1 2 2
1 1 1 2 2 4
1 1 2 2 2 7
1 2 2 2 2 11
2 2 2 2 2 16

Table C.3. Values of the Hilbert function hI(5) for arrangements of five subspaces in R3.

Hilbert function. If properly harnessed, they can significantly reduce the amount of work
for computing the values of the Hilbert function.

Example C.19 (Five Subspaces in R4). Similar to the above example, we have computed
the values of hI(5) for arrangements of five linear subspaces in R4. The results are given in
Table C.4. In fact, using the numerical method described earlier, we have computed using
computer the values of hI(5) up to five subspaces in R12.

c1 c2 c3 c4 c5 hI(5)
1 1 1 1 1 1
1 1 1 1 2 2
1 1 1 1 3 3
1 1 1 2 2 4
1 1 1 2 3 6
1 1 1 3 3 8
1 1 2 2 2 8
1 1 2 2 3 11
1 1 2 3 3 14
1 1 3 3 3 17
1 2 2 2 2 15
1 2 2 2 3 19
1 2 2 3 3 23
1 2 3 3 3 27
1 3 3 3 3 31
2 2 2 2 2 26
2 2 2 2 3 31
2 2 2 3 3 36
2 2 3 3 3 41
2 3 3 3 3 46
3 3 3 3 3 51

Table C.4. Values of the Hilbert function hI(5) for arrangements of five subspaces in R4.

268 Appendix C. Algebraic Properties of Subspace Arrangements

C.3.3 Formulae for the Hilbert Function

In this section, we give a general formula for the Hilbert polynomial of the sub-
space arrangement ZA = S1 ∪ S2 ∪ · · · ∪ Sn. However, due to the limit of space,
we will not be able to give a detailed proof for all the results given here. Interested
readers may refer to [Derksen, 2005].

Let U be any subset of the set of indexes n .= {1, 2, . . . , n}, we define the
following ideals

IU
.=
⋂
u∈U

I(Su), JU
.=
∏
u∈U

I(Su). (C.16)

If U is empty, we use the convention I∅ = J∅ = R. We further define VU =⋂
u∈U Su, dU = dim(VU), and cU = D − dU .
Let us define polynomials pU (t) recursively as follows. First we define

p∅(t) = 1.

For U 6= ∅ and pW (t) is already defined for all proper subsetsW of U , then pU (t)
is uniquely determined by the following equation∑

W⊆U
(−t)|W |pW (t) ≡ 0 mod (1− t)cU , deg(pU (t)) < cU . (C.17)

Here |W | is the number of indexes in the set W .
With the above definitions, the Hilbert series of the product ideal J is given by

H(J, t) =
pn(t)tn

(1− t)D
. (C.18)

That is, the Hilbert series of the product ideal J depends only on the numbers
cU , U ⊆ n. Thus, the values of the Hilbert function hJ(i) are all combinatorial
invariants – invariants that depend only on the values {cU} but not the particular
position of the subspaces.

Definition C.20 (Transversal Subspaces). The subspaces S1, S2, . . . , Sn are
called transversal if cU = min

(
D,
∑
u∈U cu

)
for all U ⊆ n. In other words, the

intersection of any subset of the subspaces has the smallest possible dimension.

Notice that the notion of “transversality” defined here is less strong than the
typical notion of “general position.” For instance, according to the above defini-
tion, three coplanar lines (through the origin) in R3 are transversal. However, they
are not “in general position.”

Theorem C.21. Suppose that S1, S2, . . . , Sn are transversal, thenH(I, t)−f(t)

andH(J, t)− f(t) are polynomials in t, where f(t) =
Qn

i=1

(
1−(1−t)ci

)
(1−t)D .

Thus, the difference between H(I, t) and H(J, t) is also a polynomial. As a
corollary to the above theorem, we have

C.3. Hilbert Functions of Subspace Arrangements 269

Corollary C.22. If S1, S2, . . . , Sn are transversal, then hI(i) = HI(i) =
hJ(i) = HJ(i) for all i ≥ n. That is, the Hilbert polynomials of both the vanish-
ing ideal I and the product ideal J are the same, and the values of their Hilbert
functions agree with the polynomial with i ≥ n.

One of the consequences of this corollary is that for transversal subspace ar-
rangements, we must have Ii = Ji for all i ≥ n. This is a result that we have
mentioned earlier in Section C.2.

Example C.23 (Hilbert Series of Three Lines in R3). For example, suppose that ZA is
the union of three distinct lines (through the origin) in R3. Regardless whether the three
lines are coplanar or not, they are transversal. We have

H(J(ZA), t) =
7t3 − 9t4 + 3t5

(1− t)3 = 7t3 + 12t4 + 18t5 + · · · .

However, one has

H(I(ZA), t) =
t+ t3 − t4

(1− t)3 = t+ 3t2 + 7t3 + 12t4 + 18t5 + · · ·

if the lines are coplanar, and

H(I(ZA), t) =
3t2 − 2t3

(1− t)3 = 3t2 + 7t3 + 12t4 + 18t5 + · · ·

if the three lines are not coplanar. Notice that the coefficients of these Hilbert series become
the same starting from the term t3.

Then, using the recursive formula (C.18) of the Hilbert series H(J, t), we can
derive a closed-form formula for the values of the Hilbert function hI(i) with
i ≥ n:

Corollary C.24 (A Formula for the Hilbert Function). If S1, S2, . . . , Sn are
transversal, then

hI(i) = hJ(i) =
∑
U

(−1)|U |
(
D + i− 1− cU
D − 1− cU

)
, i ≥ n, (C.19)

where cU =
∑
m∈U cm and the sum is over all index subsets U of n for which

cU < D.

Example C.25 (Three Subspaces in R4). Suppose that ZA = S1 ∪ S2 ∪ S3 is a transver-
sal arrangement in R4. Let d1, d2, d3 (respectively c1, c2, c3) be the dimensions (resp.

270 Appendix C. Algebraic Properties of Subspace Arrangements

codimensions) of S1, S2, S3. We make a table of hI(n) for n = 3, 4, 5.

c1, c2, c3 d1, d2, d3 hI(3) hI(4) hI(5)

1, 1, 1 3, 3, 3 1 4 10
1, 1, 2 3, 3, 2 2 7 16
1, 1, 3 3, 3, 1 3 9 19
1, 2, 2 3, 3, 2 4 12 25
1, 2, 3 3, 2, 1 6 15 29
1, 3, 3 3, 1, 1 8 18 33
2, 2, 2 2, 2, 2 8 20 38
2, 2, 3 2, 2, 1 11 24 43
2, 3, 3 2, 1, 1 14 28 48
3, 3, 3 1, 1, 1 17 32 53

Note that the codimensions c1, c2, c3 are almost determined by hI(3). They are uniquely
determined by hI(3) and hI(4).

Corollary below is a general result that explains why the codimensions of the
subspaces c1, c2, c3 can be uniquely determined by hI(3), hI(4), hI(5) in the
above example. The corollary also reveals a strong theoretical connection between
the Hilbert function and the GPCA problem.

Corollary C.26 (Subspace Dimensions from the Hilbert Function). Consider a
transversal arrangements of n subspaces. The co-dimensions c1, c2, . . . , cn are
uniquely determined by the values of the Hilbert function hI(i) for i = n, n +
1, . . . , n+D − 1.

As we have alluded to earlier, in the context of GPCA, these values of the
Hilbert function are closely related to the ranks of the embedded data matrix V i

for i = n, n + 1, . . . , n + D − 1. Thus, knowing these ranks, in principle, we
should be able to uniquely determine the (co)dimensions of all the individual
subspaces. These results suggest that knowing the values of the Hilbert function,
one can potentially develop better algorithms for determining the correct subspace
arrangement from a given set of data.

C.4 Bibliographic Notes

Subspace arrangements constitute of a very special but important class of alge-
braic sets that have been studied in mathematics for centuries [?, ?, Orlik, 1989].
The importance as well as the difficulty of studying subspace arrangements can
hardly be exaggerated. Different aspects of their properties have been and are
still being investigated and exploited in many mathematical fields, including al-
gebraic geometry & topology, combinatorics and complexity theory, and graph
and lattice theory, etc. See [?] for a general review. Although the results about
subspace arrangements are extremely rich and deep, only a few special classes
of subspace arrangements have been fully characterized. Nevertheless, thanks
to the work of [Derksen, 2005], the Hilbert function, Hilbert polynomial, and

C.4. Bibliographic Notes 271

Hilbert series of the vanishing ideal (and the product ideal) of transversal sub-
space arrangements have been well understood recently. This appendix gives a
brief summary of these theoretical developments. These results have provided a
sound theoretical foundation for many of the methods developed in this book for
GPCA.

This is page 272
Printer: Opaque this

References

[Akaike, 1977] Akaike, H. (1977). A new look at the statistical model selection. IEEE
Transactions on Automatic Control, 16(6):716–723.

[Barnett and Lewis, 1983] Barnett, V. and Lewis, T. (1983). Outliers in Statistical Data.
John Wiley & Sons, second edition.

[Belhumeur et al., 1997] Belhumeur, P., Hespanda, J., and Kriegeman, D. (1997). Eigen-
faces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 19(7):711–720.

[Beltrami, 1873] Beltrami, E. (1873). Sulle funzioni bilineari. Giornale di Mathematiche
di Battaglini, 11:98–106.

[Bickel, 1976] Bickel, P. J. (1976). Another look at robustness: A review of reviews and
some new developments. Scand. J. Statist., 3(28):145–168.

[Bickel and Doksum, 2000] Bickel, P. J. and Doksum, K. A. (2000). Mathematical
Statistics: Basic Ideas and Selected Topics. Prentice Hall, second edition.

[Bochnak et al., 1998] Bochnak, J., Coste, M., and Roy, M. F. (1998). Real Algebraic
Geometry. Springer.

[Boult and Brown, 1991] Boult, T. and Brown, L. (1991). Factorization-based segmenta-
tion of motions. In IEEE Workshop on Motion Understanding, pages 179–186.

[Broomhead and Kirby, 2000] Broomhead, D. S. and Kirby, M. (2000). A new ap-
proach to dimensionality reduction theory and algorithms. SIAM Journal of Applied
Mathematics, 60(6):2114–2142.

[Campbell, 1978] Campbell, N. (1978). The influence function as an aid in outlier
detection in discriminant analysis. Applied Statistics, 27(3):251–258.

[Campbell, 1980] Campbell, R. J. (1980). Robust procedures in multivariate analysis i:
Robust covariance analysis. Applied Statistics, 29:231–237.

References 273

[Chen et al., 2003] Chen, J.-Q., Pappas, T. N., Mojsilovic, A., and Rogowitz, B. E. (2003).
Image segmentation by spatially adaptive color and texture features. In IEEE Int. Conf.
on Image Processing.

[Chen et al., 1998] Chen, S., Donoho, D., and Saunders, M. (1998). Atomic decomposi-
tion by basis pursuit. SIAM Journal of Scientific Computing, 20(1):33–61.

[Coifman and Wickerhauser, 1992] Coifman, R. and Wickerhauser, M. (1992). Entropy-
based algorithms for best bases selection. IEEE Transactions on Information Theory,
38(2):713–718.

[Collins et al., 2001] Collins, M., Dasgupta, S., and Schapire, R. (2001). A generaliza-
tion of principal component analysis to the exponential family. In Neural Information
Processing Systems, volume 14.

[Costeira and Kanade, 1998] Costeira, J. and Kanade, T. (1998). A multibody factor-
ization method for independently moving objects. Int. Journal of Computer Vision,
29(3).

[Cover and Thomas, 1991] Cover, T. and Thomas, J. (1991). Information Theory. John
Wiley & Sons, Inc.

[Critchley, 1985] Critchley, F. (1985). Influence in principal components analysis. Biometrika,
72(3):627–636.

[Delsarte et al., 1992] Delsarte, P., Macq, B., and Slock, D. (1992). Signal-adapted mul-
tiresolution transform for image coding. IEEE Transactions on Information Theory,
38:897–903.

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society B, 39:1–38.

[Derksen, 2005] Derksen, H. (2005). Hilbert series of subspace arrangements (preprint).

[DeVore, 1998] DeVore, R. (1998). Nonlinear approximation. Acta Numer., 7:51–150.

[DeVore et al., 1992] DeVore, R., Jawerth, B., and Lucier, B. (1992). Image compres-
sion through wavelet transform coding. IEEE Transactions on Information Theory,
38(2):719–746.

[Ding et al., 2004] Ding, C., Zha, H., He, X., Husbands, P., and Simon, H. D. (2004). Link
analysis: Hubs and authoraties on the world wide web. SIAM Review, 46(2):256–268.

[Do and Vetterli, 2002] Do, M. N. and Vetterli, M. (2002). Contourlets: A directional
multiresolution image representation. In IEEE Int. Conf. on Image Processing.

[Donoho, 1995] Donoho, D. (1995). Cart and best-ortho-basis: A connection. Manuscript.

[Donoho, 1998] Donoho, D. (1998). Sparse components analysis and optimal atomic
decomposition. Technical Report, Department of Statistics, Stanford University.

[Donoho and Elad, 2002] Donoho, D. and Elad, M. (2002). Optimally sparse representa-
tion in general (non-orthogonal) dictionaries via L1 minimization. Manuscript.

[Donoho and Elad, 2003] Donoho, D. and Elad, M. (2003). Optimally sparse represen-
tation in general (nonorthogonal dictionaries via L1 minimization. Proceedings of
National Academy of Sciences, 100(5):2197–2202.

[Donoho, 1999] Donoho, D. L. (1999). Wedgelets: nearly-minimax estimation of edges.
Ann. Statist., 27:859–897.

274 References

[Donoho et al., 1998] Donoho, D. L., Vetterli, M., DeVore, R., and Daubechies, I. (1998).
Data compression and harmonic analysis. IEEE Transactions on Information Theory,
44(6):2435–2476.

[Eckart and Young, 1936] Eckart, C. and Young, G. (1936). The approximation of one
matrix by another of lower rank. Psychometrika, 1:211–218.

[Effros and Chou, 1995] Effros, M. and Chou, P. (1995). Weighted universal transform
coding: Universal image compression with the Karhunen-Loéve transform. In IEEE
Int. Conf. on Image Processing, volume 2, pages 61–64.

[Eisenbud, 1996] Eisenbud, D. (1996). Commutative Algebra: with a view towards
algebraic geometry. GTM. Springer.

[Elad and Bruckstein, 2001] Elad, M. and Bruckstein, A. (2001). On sparse signal
representations. In IEEE Int. Conf. on Image Processing.

[Elad and Bruckstein, 2002] Elad, M. and Bruckstein, A. (2002). A generalized uncer-
tainty principle and sparse representation in pairs of bases. IEEE Transactions on
Information Theory, 48(9):2558–2567.

[Ferguson, 1961] Ferguson, T. (1961). On the rejection of outliers. In Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability.

[Feuer and Nemirovski, 2003] Feuer, A. and Nemirovski, A. (2003). On sparse represen-
tation in pairs of bases. IEEE Transactions on Information Theory, 49(6):1579–1581.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). RANSAC random
sample consensus: A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 26:381–395.

[Fisher, 1995] Fisher, Y. (1995). Fractal Image Compression: Theory and Application.
Springer-Verlag Telos.

[Forgy, 1965] Forgy, E. (1965). Cluster analysis of multivariate data: efficiency vs.
interpretability of classifications (abstract). Biometrics, 21:768–769.

[Gabriel, 1978] Gabriel, K. R. (1978). Least squares approximation of matrices by
additive and multiplicative models. J. R. Statist. Soc. B, 40:186–196.

[Geman and McClure, 1987] Geman, S. and McClure, D. (1987). Statistical methods for
tomographic image reconstruction. In Proceedings of the 46th Session of the ISI,
Bulletin of the ISI, volume 52, pages 5–21.

[Gersho and Gray, 1992] Gersho, A. and Gray, R. M. (1992). Vector Quantization and
Signal Compression. Kluwer Academic Publishers.

[Gnanadesikan and Kettenring, 1972] Gnanadesikan, R. and Kettenring, J. (1972). Ro-
bust estimates, residuals, and outlier detection with multiresponse data. Biometrics,
28(1):81–124.

[Guo et al., 2003] Guo, C., Zhu, S., and Wu, Y. (2003). A mathematical theory of primal
sketch and sketchability. In IEEE Int. Conf. on Computer Vision.

[Hampel et al., 1986] Hampel, F., Ronchetti, E., Rousseeuw, P., and Stahel, W. (1986).
Robust statistics: the approach based on influence functions. John Wiley & Sons.

[Hampel, 1974] Hampel, F. R. (1974). The influence curve and its role in robust
estiamtion. J. Amer. Statist. Assn., 69:383–393.

[Hansen and Yu, 2001] Hansen, M. and Yu, B. (2001). Model selection and the principle
of minimum description length. Journal of American Statistical Association, 96:746–
774.

References 275

[Harris, 1992] Harris, J. (1992). Algebraic Geometry: A First Course. Springer-Verlag.

[Hastie, 1984] Hastie, T. (1984). Principal curves and surfaces. Technical Report, Stanford
University.

[Hastie and Stuetzle, 1989] Hastie, T. and Stuetzle, W. (1989). Principal curves. Journal
of the American Statistical Association, 84(406):502–516.

[Hirsch, 1976] Hirsch, M. (1976). Differential Topology. Springer.

[Ho et al., 2003] Ho, J., Yang, M.-H., Lim, J., Lee, K.-C., and Kriegman, D. (2003). Clus-
tering apperances of objects under varying illumination conditions. In IEEE Conf. on
Computer Vision and Pattern Recognition, volume 1, pages 11–18.

[Hotelling, 1933] Hotelling, H. (1933). Analysis of a complex of statistical variables into
principal components. Journal of Educational Psychology, 24:417–441.

[Householder and Young, 1938] Householder, A. S. and Young, G. (1938). Matrix ap-
proximation and latent roots. America Math. Mon., 45:165–171.

[Huang et al., 2004] Huang, K., Ma, Y., and Vidal, R. (2004). Minimum effective dimen-
sion for mixtures of subspaces: A robust GPCA algorithm and its applications. In IEEE
Conference on Computer Vision and Pattern Recognition, volume II, pages 631–638.

[Huber, 1981] Huber, P. (1981). Robust Statistics. John Wiley & Sons, New York.

[Hubert et al., 2000] Hubert, L., Meulman, J., and Heiser, W. (2000). Two purposes for
matrix factorization: A historical appraisal. SIAM Review, 42(1):68–82.

[Jancey, 1966] Jancey, R. (1966). Multidimensional group analysis. Austral. J. Botany,
14:127–130.

[Jolliffe, 1986] Jolliffe, I. (1986). Principal Component Analysis. Springer-Verlag, New
York.

[Jolliffe, 2002] Jolliffe, I. (2002). Principal Component Analysis. Springer-Verlag, 2nd
edition.

[Jordan, 1874] Jordan, M. (1874). Mémoire sur les formes bilinéaires. Journal de
Mathématiques Pures et Appliqués, 19:35–54.

[Kanatani, 2001] Kanatani, K. (2001). Motion segmentation by subspace separation and
model selection. In IEEE Int. Conf. on Computer Vision, volume 2, pages 586–591.

[Kanatani, 2002] Kanatani, K. (2002). Evaluation and selection of models for motion
segmentation. In Asian Conf. on Computer Vision, pages 7–12.

[Kanatani, 2003] Kanatani, K. (2003). How are statistical methods for geometric infer-
ence justified? In Workshop on Statistical and Computational Theories of Vision, IEEE
International Conference on Computer Vision.

[Kleinberg, 1999] Kleinberg, J. M. (1999). Authorative sources in a hyberlinked environ-
ment. J. ACM, 48:604–632.

[Lang, 1993] Lang, S. (1993). Algebra. Addison-Wesley Publishing Company, 3rd
edition.

[Leonardis et al., 2002] Leonardis, A., Bischof, H., and Maver, J. (2002). Multiple
eigenspaces. Pattern Recognition, 35(11):2613–2627.

[LePennec and Mallat, 2005] LePennec, E. and Mallat, S. (2005). Sparse geometric image
representation with bandelets. IEEE Trans. on Image Processing, 14(4):423–438.

[Lloyd, 1957] Lloyd, S. (1957). Least squares quantization in PCM. Technical Report,
Bell Laboratories, Published in 1982 in IEEE Trans. Inf. Theory 28: 128-137.

276 References

[Ma and Vidal, 2005] Ma, Y. and Vidal, R. (2005). Identification of deterministic switched
ARX systems via identification of algebraic varieties. In Hybrid Systems: Computation
and Control, pages 449–465. Springer Verlag.

[Ma et al., 2008] Ma, Y., Yang, A., Derksen, H., and Fossum, R. (2008). Estimation of
subspace arrangements with applications in modeling and segmenting mixed data.
SIAM Review.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297.

[Mallat, 1999] Mallat, S. (1999). A Wavelet Tour of Signal Processing. Academic Press,
2nd edition.

[Mallows, 1973] Mallows, C. (1973). Some comments on Cp. Technometrics, 15:661–
675.

[Maronna, 1976] Maronna, R. A. (1976). Robust M-estimators of multivariate location
and scatter. Ann. Statist., 4:51–67.

[McLanchlan and Krishnan, 1997] McLanchlan, G. J. and Krishnan, T. (1997). The EM
Algorithms and Extentions. Wiley Series in Probability and Statistics. John Wiley &
Sons, Inc.

[Mercer, 1909] Mercer, J. (1909). Functions of positive and negative types and their con-
nection with the theory of integral equations. Philosophical Transactions, Royal Society
London, A(209):415–446.

[Meyer, 2000] Meyer, F. (2000). Fast adaptive wavelet packet image compression. IEEE
Trans. on Image Processing, 9(5):792–800.

[Meyer, 2002] Meyer, F. (2002). Image compression with adaptive local cosines. IEEE
Trans. on Image Processing, 11(6):616–629.

[Muresan and Parks, 2003] Muresan, D. and Parks, T. (2003). Adaptive principal compo-
nents and image denoising. In IEEE Int. Conf. on Image Processing.

[Neal and Hinton, 1998] Neal, R. and Hinton, G. (1998). A view of the EM algorithm
that justifies incremental, sparse, and other variants. Learning in Graphical Models, M.
Jordan (ed.), Kluwer Academic Publishers, Boston, pages 355–368.

[Olshausen and D.J.Field, 1996] Olshausen, B. and D.J.Field (1996). Wavelet-like re-
ceptive fields emerge from a network that learns sparse codes for natural images.
Nature.

[Orlik, 1989] Orlik, P. (1989). Introduction to Arrangements, volume 72 of conference
board of the mathematical sciences regional conference series in math. American
Mathematics Society.

[Overschee and Moor, 1993] Overschee, P. V. and Moor, B. D. (1993). Subspace algo-
rithms for the stochastic identification problem. Automatica, 29(3):649–660.

[Pavlovic et al., 1998] Pavlovic, V., Moulin, P., and Ramchandran, K. (1998). An inte-
grated framework for adaptive subband image coding. IEEE Transactions on Signal
Processing.

[Pearson, 1901] Pearson, K. (1901). On lines and planes of closest fit to systems of points
in space. The London, Edinburgh and Dublin Philosphical Magazine and Journal of
Science, 2:559–572.

References 277

[Rabiee et al., 1996] Rabiee, H., Kashyap, R., and Safavian, S. (1996). Adaptive multires-
olution image coding with matching and basis pursuits. In IEEE Int. Conf. on Image
Processing.

[Ramchandran and Vetterli, 1993] Ramchandran, K. and Vetterli, M. (1993). Best wavelet
packets bases in a rate-distortion sense. IEEE Trans. on Image Processing, 2:160–175.

[Ramchandran et al., 1996] Ramchandran, K., Vetterli, M., and Herley, C. (1996). Wavelets,
subband coding, and best basis. Proceedings of the IEEE, 84(4):541–560.

[Rao et al., 2005] Rao, S., Yang, A. Y., Wagner, A., and Ma, Y. (2005). Segmentation of
hybrid motions via hybrid quadratic surface analysis. In IEEE Int. Conf. on Computer
Vision, pages 2–9.

[Rissanen, 1978] Rissanen, J. (1978). Modeling by shortest data description. Automatica,
14:465–471.

[Rousseeuw, 1984] Rousseeuw, P. (1984). Least median of squares regression. Journal of
American Statistics Association, 79:871–880.

[Schindler and Suter, 2005] Schindler, K. and Suter, D. (2005). Two-view multibody
structure-and-motion with outliers. In IEEE Conf. on Computer Vision and Pattern
Recognition.

[Scholkopf et al., 1998] Scholkopf, B., Smola, A., and Muller, K.-R. (1998). Nonlinear
component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–
1319.

[Shapiro, 1993] Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet
coefficients. IEEE Transactions on Signal Processing, 41(12):3445–3463.

[Shi and Malik, 1998] Shi, J. and Malik, J. (1998). Motion segmentation and tracking
using normalized cuts. In IEEE Int. Conf. on Computer Vision, pages 1154–1160.

[Shizawa and Mase, 1991] Shizawa, M. and Mase, K. (1991). A unified computational
theory for motion transparency and motion boundaries based on eigenenergy analysis.
In IEEE Conf. on Computer Vision and Pattern Recognition, pages 289–295.

[Sikora and Makai, 1995] Sikora, T. and Makai, B. (1995). Shape-adaptive DCT for
generic coding of video. IEEE Transactions on Circuits and Systems For Video
Technology, 5:59–62.

[Starck et al., 2003] Starck, J.-L., Elad, M., and Donoho, D. (2003). Image decomposi-
tion: Separation of texture from piecewise smooth content. In SPIE.

[Steward, 1999] Steward, C. V. (1999). Robust parameter estimation in computer vision.
SIAM Review, 41(3):513–537.

[Stewart, 1999] Stewart, C. (1999). Robust parameter estimation in computer vision.
SIAM Review, 41(3):513–537.

[Taubin, 1991] Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar
space curves defined by implicit equations with applications to edge and range im-
age segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(11):1115–1138.

[Tipping and Bishop, 1999a] Tipping, M. and Bishop, C. (1999a). Mixtures of probabilis-
tic principal component analyzers. Neural Computation, 11(2):443–482.

[Tipping and Bishop, 1999b] Tipping, M. and Bishop, C. (1999b). Probabilistic principal
component analysis. Journal of the Royal Statistical Society, 61(3):611–622.

278 References

[Torr and Davidson, 2003] Torr, P. and Davidson, C. (2003). IMPSAC: synthesis of im-
portance sampling and random sample consensus. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 25(3):354–364.

[Torr et al., 2001] Torr, P., Szeliski, R., and Anandan, P. (2001). An integrated Bayesian
approach to layer extraction from image sequences. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 23(3):297–303.

[Vapnik, 1995] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer,
N.Y.

[Vasilescu and Terzopoulos, 2002] Vasilescu, M. and Terzopoulos, D. (2002). Multilin-
ear analysis of image ensembles: Tensorfaces. In European Conference on Computer
Vision, pages 447–460.

[Vetterli and Kovacevic, 1995] Vetterli, M. and Kovacevic, J. (1995). Wavelets and
Subband Coding. Prentice-Hall.

[Vidal and Hartley, 2004] Vidal, R. and Hartley, R. (2004). Motion segmentation with
missing data by PowerFactorization and Generalized PCA. In IEEE Conference on
Computer Vision and Pattern Recognition, volume II, pages 310–316.

[Vidal and Ma, 2004] Vidal, R. and Ma, Y. (2004). A unified algebraic approach to 2-
D and 3-D motion segmentation. In European Conference on Computer Vision, pages
1–15.

[Vidal et al., 2004] Vidal, R., Ma, Y., and Piazzi, J. (2004). A new GPCA algorithm
for clustering subspaces by fitting, differentiating and dividing polynomials. In IEEE
Conference on Computer Vision and Pattern Recognition, volume I, pages 510–517.

[Vidal et al., 2003] Vidal, R., Ma, Y., and Sastry, S. (2003). Generalized Principal Com-
ponent Analysis (GPCA). In IEEE Conference on Computer Vision and Pattern
Recognition, volume I, pages 621–628.

[Wallace and Boulton, 1968] Wallace, C. and Boulton, D. (1968). An information mea-
sure for classification. The Computer Journal, 11:185–194.

[Wallace and Dowe, 1999] Wallace, C. and Dowe, D. (1999). Minimum message length
and Kolmogrov complexity. The Computer Journal, 42(4):270–283.

[Wallace, 1991] Wallace, G. K. (1991). The JPEG still picture compression standard.
Communications of the ACM. Special issue on digital multimedia systems, 34(4):30–44.

[Wilks, 1962] Wilks, S. S. (1962). Mathematical Staistics. John Wiley & Sons.

[Wu et al., 2001] Wu, Y., Zhang, Z., Huang, T., and Lin, J. (2001). Multibody grouping
via orthogonal subspace decomposition. In IEEE Conf. on Computer Vision and Pattern
Recognition, volume 2, pages 252–257.

[Wu et al., 2000] Wu, Y. N., Zhu, S. C., and Liu, X. W. (2000). Equivalence of Julesz
ensemble and FRAME models. Int. Journal of Computer Vision, 38(3):247–265.

[Zhu et al., 1998] Zhu, S. C., Wu, Y. N., and Mumford, D. (1998). FRAME: Filters, ran-
dom field and maximum entropy: — towards a unified theory for texture modeling. Int.
Journal of Computer Vision, 27(2):1–20.

