
This is page 19
Printer: Opaque this

Chapter 2
Data Modeling with a Single Subspace

“Principal component analysis is probably the oldest and best
known of the techniques of multivariate analysis.”

– I. T. Jolliffe

In this chapter, we give a brief review of principal component analysis (PCA),
i.e., the method for finding an optimal (affine) subspace to fit a set of data points.
The solution to PCA has been well established in the literature and it has become
one of the most useful tools for data modeling, compression, and visualization.
We introduce both the statistical and geometric formulation of PCA and establish
their equivalence. Specifically, we show that the singular value decomposition
(SVD) provides an optimal solution to PCA. We also establish the similarities
and differences between PCA and two generative subspace models, namely Fac-
tor Analysis (FA) and Probabilistic PCA (PPCA). When the dimension of the
subspace is unknown, we introduce some conventional model selection methods
to determine the number of principal components. When the data points are in-
complete or contain outliers, we review some robust statistical techniques that
help resolve these difficulties. Finally, some nonlinear extensions to PCA such as
nonlinear PCA and kernel PCA are also reviewed.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S to a set of points X = {x1, x2, . . . , xN} in a
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high-dimensional space RD, the ambient space. Mathematically, this problem can
be formulated as either a statistical problem or a geometric one, and they both lead
to the same solution, as we will show in this section.

2.1.1 A Statistical View of PCA
Historically, PCA was first formulated in a statistical setting to estimate the prin-
cipal components of a multivariate random variable x [Pearson, 1901, Hotelling,
1933]. Specifically, given a multivariate random variable x ∈ RD and any integer
d < D, the d “principal components” of x are defined as the d uncorrelated linear
components of x:

yi = u!
i x ∈ R, ui ∈ R

D, i = 1, 2, . . . , d, (2.1)

such that the variance of yi is maximized subject to

u!
i ui = 1 and Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd). (2.2)

For example, to find the first principal component, y1, we seek a vector u∗
1 ∈ RD

such that

u∗
1 = arg max

u1∈RD
Var(u!

1 x), s.t. u!
1 u1 = 1. (2.3)

Without loss of generality, in what follows, we will assume x has zero-mean.

Theorem 2.1 (Principal Components of a Random Variable). The first d principal
components of a multivariate random variable x are given by yi = u!

i x, where
{ui}d

i=1 are the d leading eigenvectors of its covariance matrix Σx
.
= E[xx!].

Proof. Notice that for any u ∈ RD,

Var(u!x) = E[(u!x)2] = E[uT xx!u] = u!Σxu. (2.4)

Therefore, the optimization in problem in (2.3) for finding the first principal
component is equivalent to

max
u1∈RD

u!
1 Σxu1, s.t. u!

1 u1 = 1. (2.5)

In order to solve the above constrained minimization problem, we use the
Lagrange multiplier method. The Lagrangian is given by

L = u!
1 Σxu1 + λ(1 − u!

1 u1) (2.6)

for some Lagrange multiplier λ ∈ R. The necessary condition for u1 to be an
extrema is

Σxu1 = λu1, (2.7)

and the associated extremum value is u!
1 Σxu1 = λ. It follows that the optimal

solution u∗
1 is exactly the eigenvector ofΣx associated with the largest eigenvalue.
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To find the remaining principal components, since u!
1 x and u!

i x (i > 1) need
to be uncorrelated, we have

E[(u!
1 x)(u!

i x)] = E[u!
1 xx!ui] = u!

1 Σxui = λ1u
!
1 ui = 0. (2.8)

That is, u2, . . . , ud are all orthogonal to u1. More generally, u!
i uj = 0 for all

i $= j = 1, . . . d. To find u2 we define the Lagrangian

L = u!
2 Σxu2 + λ2(1 − u!

2 u2) + γu!
1 u2. (2.9)

The necessary condition for u2 to be an extrema is

Σxu2 + γu1 = λ2u2, (2.10)

from which it follows that u!
1 Σxu2 + γu!

1 u1 = λ1u!
1 u2 + γ = λ2u!

1 u2, and so
γ = 0. Since the associated extremum value is u!

2 Σxu2 = λ2, u∗
2 is the leading

eigenvector of Σx restricted to the orthogonal complement of u1.1 Assuming that
Σx does not have repeated eigenvalues, u∗

2 is the eigenvector of Σx associated
with the second largest eigenvalue. Inductively, one can show that u3, u4, . . . , ud

are the top third, fourth, . . . , d-th eigenvectors of Σx and that the corresponding
eigenvalues give the variance of the principal components, i.e., λi = Var(yi).

The solution to PCA provided by Theorem 2.1 suggests that we may find the
d principal components of x simultaneously, rather than one by one. Specifically,
we can define a matrix a random vector y = [y1, y2, . . . , yd]! ∈ Rd and a matrix
Ud = [u1, u2, · · · , ud] ∈ RD×d. Since y = U!

d x, we have that

Σy = E(yy!) = U!
d E(xx!)Ud = U!

d ΣxUd. (2.11)

Since were are looking for uncorrelated random variables, the matrix Σy must be
diagonal and the matrix Ud must be orthonormal, i.e., U!

d Ud = Id.
Recall that any real, symmetric and positive semi-definite matrix A can be

transformed into a diagonal matrix Λ = V −1AV , where the columns of V are
the eigenvectors of A and the diagonal entries of Λ are the corresponding eigen-
values. Recall also that the eigenvalues are real and nonnegative, i.e., λi ≥ 0,
and that the eigenvectors can be chosen to be orthonormal, so that V −1 = V !.
Since the matrix Σx is real, symmetric and positive semi-definite, the equation
Σy = U!

d ΣxUd suggests that the columns of Ud can be chosen as d eigenvectors
of Σx and that the diagonal entries of Σy can be chosen as the corresponding d
eigenvalues. Moreover, since our goal is to maximize the variance of each yi and
λi = Var(yi), we conclude that the columns of Ud are the top d eigenvectors of
Σx and the entries of Σy are the corresponding top d eigenvalues.

This alternative derivation of PCA allows us to understand what happens when
Σx has repeated eigenvalues. When the eigenvalues are different, each eigenvec-
tor ui is unique (up to sign), thus the principal components are unique (up to sign).

1The reason for this is that both u1 and its orthogonal complement u⊥
1 are invariant subspaces of

Σx.
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When an eigenvalue is repeated, Σx still admits a basis of orthonormal eigenvec-
tors. However, the eigenvectors corresponding to the repeated eigenvalue form an
eigensubspace and any orthonormal basis for this eigensubspace gives valid prin-
cipal components. As a consequence, the principal components are not always
uniquely defined.

In practice, we may not know the population covariance matrix, Σx. Instead,
we may be given N i.i.d. samples of x, {xi}N

i=1. Let X = [x1, x2, · · · , xN ]
be the sample data matrix. It is well known from statistics that an asymptotically
unbiased estimate of Σx is given by

Σ̂x
.
=

1

N − 1

N∑

i=1

xix
!
i =

1

N − 1
XX!. (2.12)

We define the d “sample principal components” of x as

ŷi = û!
i x, i = 1, . . . , d, (2.13)

where {ûi}d
i=1 are the top d eigenvectors of Σ̂x, or equivalently those of XX!.

Notice also that, even though the principal components of x and the sample prin-
cipal components of x are different notions, under certain assumptions on the
distribution of x they can be related to each other. Specifically, one can show that,
if x is Gaussian, then every eigenvector û of Σ̂x is an asymptotically unbiased
estimate for the corresponding eigenvector u of Σx [Jollife, 1986].

2.1.2 A Geometric View of PCA
An alternative geometric view of PCA, which is very much related to the SVD
[?,?], seeks to find an (affine) subspace S that fits the given data points {xi}N

i=1.
Let us assume for now that the dimension of the subspace d is known. Then

every point xi on a d-dimensional affine subspace in RD can be represented as

xi = x0 + Udyi, i = 1, 2, . . . , N (2.14)

where x0 ∈ RD is a(ny) fixed point in the subspace, Ud is a D × d matrix whose
columns form a basis for the subspace, and yi ∈ Rd is simply the vector of new
coordinates of xi in the subspace.

Notice that there is some redundancy in the above representation due to the
arbitrariness in the choice of x0 and Ud. More precisely, for any y0 ∈ Rd, we
can re-represent xi as xi = (x0 + Udy0) + Ud(yi − y0). We call this ambiguity
the translational ambiguity. Also, for any A ∈ Rd×d we can re-represent xi as
xi = x0 +(UdA)(A−1yi). We call this ambiguity the change of basis ambiguity.
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace to for the data.
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A common constraint used to resolve the translational ambiguity is to impose
that the mean of yi is zero:2

ȳ
.
=

1

N

N∑

i=1

yi = 0, (2.15)

while a common constraint used to resolve the change of basis ambiguity is to
impose that the columns of Ud be orthonormal. This last constraint eliminates
the change of basis ambiguity only up to a rotation, because we can still re-
represent xi as xi = x0 + (UdR)(R!yi) for some rotation R in Rd. However,
this rotational ambiguity can be easily deal with during optimization, as we shall
see.

In general the given points are imperfect and have noise. We define the “opti-
mal” affine subspace to be the one that minimizes the sum of squared distances
between xi and its projection onto the subspace x0 + Udyi, i.e.,

min
x0,Ud,{yi}

N∑

i=1

∥∥xi − x0 − Udyi

∥∥2
, s.t. U!

d Ud = Id and ȳ = 0. (2.16)

In order to solve this optimization problem, we define the Lagrangian

L =
N∑

i=1

∥∥xi − x0 − Udyi

∥∥2
+ γ!

N∑

i=1

yi + tr(Λ(Id − U!
d Ud)), (2.17)

where γ ∈ Rd and Λ = Λ! ∈ Rd×d are, respectively, a vector and a matrix of
Lagrange multipliers.

The necessary condition for x0 to be an extrema is

− 2
N∑

i=1

(xi − x0 − Udyi) = 0 =⇒ x̂0 = x̄
.
=

1

N

N∑

i=1

xi. (2.18)

The necessary condition for yi to be an extrema is

− 2U!
d (xi − x0 − Udyi) + γ = 0. (2.19)

Summing over i yields γ = 0, from which we obtain

ŷi = U!
d (xi − x̄). (2.20)

The vector ŷi ∈ Rd is simply the coordinates of the projection of xi ∈ RD onto
the subspace S. We may call such ŷ the “geometric principal components” of x.3

2In the statistical setting, xi and yi will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to be zero.

3As we will soon see in the next section, the geometric principal components coincide with the
sample principal components defined in a statistical sense.
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Before optimizing over Ud, we can replace the optimal values for x0 and yi

into the objective function. This leads to the following optimization problem

min
Ud

N∑

i=1

∥∥(xi − x̄) − UdU
!
d (xi − x̄)

∥∥2 s.t. U!
d Ud = Id. (2.21)

Note that this is a restatement of the original problem with the mean x̄ sub-
tracted from each of the sample points. Therefore, from now on, we will consider
only the case in which the data points have zero mean. If not, simply subtract the
mean from each point before computing Ud.

The following theorem gives a constructive solution for finding an optimal Ûd.

Theorem 2.2 (PCA via SVD). LetX = [x1, x2, . . . , xN ] ∈ RD×N be the matrix
formed by stacking the (zero-mean) data points as its column vectors. Let X =
UΣV ! be the SVD of the matrix X . Then for any given d < D, an optimal
solution for Ud is given by the first d columns of U , and an optimal solution for
yi is given by the ith column of the top d × N submatrix ΣdV !

d of ΣV !.

Proof. Recalling that x!Ax = tr(Axx!), we can rewrite the objective function
as tr((ID − UdU!

d )XX!) and transform the optimization problem to

max
Ud

tr(UdU
!
d XX!) s.t. U!

d Ud = Id. (2.22)

Since tr(AB) = tr(BA), the Lagrangian can be written as

L = tr(U!
d XX!Ud) + tr((Id − U!

d Ud)Λ). (2.23)

The condition for an extrema are given by

XX!Ud = UdΛ. (2.24)

This means that Λ = U!
d XX!Ud, hence the objective function is tr(Λ).

Now, recall that Ud is defined only up to a rotation, i.e., U ′
d = UdR. Therefore,

Λ′ = RΛR! is also a valid solution. Since Λ is symmetric, it has an orthogonal
matrix of eigenvectors. Thus, we can choose R to be such a matrix, so that Λ′

is diagonal. As a consequence, we can choose Λ to be diagonal without loss of
generality. It follows from (2.24) that the columns of Ud must be eigenvectors
of XX! with the corresponding eigenvalues in the diagonal entries of Λ. Since
the goal is to maximize tr(Λ), an optimal solution is given by the top d eigen-
vectors of XX! or the top d singular vectors of X = UΣV !, i.e., the first d
columns of U . Finally, it follows from (2.20) that Y = [y1, · · · , yN ] = U!

d X =
U!

d UΣV ! = ΣdV !
d .

According to the theorem, the SVD gives an optimal solution to the PCA
problem. The resulting matrix Ûd (together with the mean x̄ if the data is not zero-
mean) provides a geometric description of the dominant subspace structure for all
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the points4; and the columns of the matrix ΣdV !
d = [ŷ1, ŷ2, . . . , ŷN ] ∈ Rd×N ,

i.e., the principal components, give a more compact representation for the points
X = [x1, x2, . . . , xN ] ∈ RD×N , as d is typically much smaller than D.

Theorem 2.3 (Equivalence of Geometric and Sample Principal Components). Let
X = [x1, x2, . . . , xN ] ∈ RD×N be the data matrix (with x̄ = 0). The vectors
û1, û2, . . . , ûd ∈ RD associated with the d sample principal components for X
are exactly the columns of the matrix Ûd ∈ RD×d that minimizes the least-squares
error (??).

Proof. The proof is simple. Notice that if X has the singular value decomposition
X = UΣV T , then XXT = UΣ2UT is the eigenvalue decomposition of XXT .
If Σ is ordered, then the first d columns of U are exactly the leading d eigenvectors
of XXT , which give the d sample principal components.

Therefore, both the geometric and statistical formulation of PCA lead to exactly
the same solutions/estimates of the principal components. The geometric formu-
lation allows us to apply PCA to data even if the statistical nature of the data is
unclear; the statistical formulation allows to quantitatively evaluate the quality of
the estimates. For instance, for Gaussian random variables, one can derive explicit
formulae for the mean and covariance of the estimated principal components. For
a more thorough analysis of the statistical properties of PCA, we refer the reader
to the classical book [Jollife, 1986].

2.2 Factor Analysis and Probabilistic PCA

The PCA model described so far allows us to find a low-dimensional representa-
tion {yi ∈ Rd} of a set of points {xi ∈ RD}, with d ' D. However, the PCA
model is not a proper generative model, because the low-dimensional representa-
tion y and the error ε are treated as parameters, rather than as random variables.
As a consequence, the PCA model cannot be used to generate new samples x.

To address this issue, assume that the low-dimensional representation y and the
error ε are independent random variables with pdfs p(y) and p(ε), respectively.
This allows us to generate a new sample of x from samples of y and ε as

x = x0 + Udy + ε. (2.25)

In this model, the entries of y are called factors, while the entries of Ud are called
factor loadings. Assume that mean and covariance of y are denoted as µy and
Σy, respectively. Assume also that ε is zero mean with covariance Σε. The mean
and covariance of the observations are then given by

µx = x0 + Udµy and Σx = UdΣyU!
d + Σε. (2.26)

4From a statistical standpoint, the column vectors of Ud give the directions in which the data X

has the largest variance, hence the name “principal components.” See the next section for detail.
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The remainder of the section discusses three different methods for estimat-
ing the parameters of this model, x0, Ud, µy , Σy and Σε, from the mean and
covariance of the population, µx and Σx, or from i.i.d. samples {xi}N

i=1.

2.2.1 Estimation by Linear Algebra
Observe that, in general, we cannot recover model parameters from µx and Σx.
For instance, notice that x0 and µy cannot be uniquely recovered from µx. As in
the case of PCA, this issue can be easily resolved by assuming that µy = 0. This
leads to the following estimate of x0

x̂0 = µx, (2.27)

which is the same estimate as that of PCA.
Another ambiguity, which cannot be resolved in a straightforward manner, is

that Σy and Σε cannot be uniquely recovered from Σx. For instance, Σy = 0 and
Σε = Σx is a valid solution. However, this solution is not meaningful, because it
assigns all the information in Σx to the error, rather than to the low-dimensional
representation. Intuitively we would like Σy to capture as much information about
Σx as possible. Thus it makes sense for Σy to be full rank and for Σε to be as
close to zero as possible. In what follows, we discuss two ways of achieving this,
which lead to two well known methods: Factor Analysis and Probabilistic PCA.

Factor Analysis

Factor Analysis (FA) resolves the aforementioned ambiguity by assuming that

1. the low-dimensional representation has unit covariance Σy = Id ∈ Rd×d

and

2. the noise covariance matrix Σε ∈ RD×D is diagonal.

These assumptions lead to the following relationship

Σx = UdU
!
d + Σε, (2.28)

from which it follows that the off-diagonal entries of Σx are equal to the off-
diagonal entries of UdU!

d . As a consequence, even though both FA and PCA try
to capture as much information from Σx into Σy , the information they attempt to
capture is not the same. On the one hand, FA tries to find a matrix Ud such that the
covariances are preserved, i.e., the off-diagonal entries of Σx. On the other hand,
PCA tries to preserve the variances, i.e., the diagonal entries of Σx.

The analysis above implies that, in general, the solutions to PCA and FA need
not be the same. To see this, simply multiply (2.28) on the right by Ud to obtain

(Σx − Σε)Ud = UdΛ, (2.29)

where Λ = U!
d Ud ( 0. Notice that Λ is, without loss of generality, a diagonal

matrix. This is because Ud is defined only up to a rotation Rd, thus if Λ is not
diagonal, we can replace it by R!

d U!
d UdRd, which is diagonal if Rd is chosen as
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the matrix of eigenvectors of U!
d Ud. As a consequence the columns of Ud must be

eigenvectors of Σx−Σε. Such eigenvectors do not generally coincide with the top
d eigenvectors of Σx, which give the solution to PCA. Moreover, the eigenvectors
of Σx −Σε cannot be directly computed without knowing Σε. As a consequence,
the solution to FA is often found via the following iterative procedure:

1. Initialize Σε = 0.

2. Given Σε, set Ud = U1Σ
1/2
1 , where the columns of U1 are the top d eigen-

vectors of Σx −Σε and Σ1 is a diagonal matrix whose diagonal entries are
the corresponding eigenvalues.

3. Given Ud, set Σε = diag(Σx − UdU!
d ).

4. Go to 2. until convergence.

Notice that the solutions to PCA and FA are initially the same, except for the
linear transformation Σ1/2

1 . However, as the iterations proceed, the solutions are
generally different.

Probabilistic Principal Component Analysis

Probabilistic Principal Component Analysis (PPCA) provides a non iterative so-
lution to FA by further assuming that the errors are isotropic, i.e., Σε = σ2ID for
some σ > 0. In this case, we have that

(Σx − σ2ID)Ud = UdΛ. (2.30)

Therefore, the columns of Ud must be eigenvectors of Σx − σ2ID, which are the
same as the eigenvectors of Σx. Since we want σ to be as small as possible, it
makes sense to choose the top d eigenvectors of Σx. So see this, let Ud = U1Γ,
where the columns of U1 ∈ RD×d are any d orthonormal eigenvectors of Σx and
Γ ∈ Rd×d is a diagonal matrix, which scales these eigenvectors so that they satisfy
U!

d Ud = Λ. Since U!
1 U1 = Id, we obtain Γ2 = Λ = Σ1 − σ2Id, where Σ1 is a

diagonal matrix with the d eigenvalues of Σx corresponding to the d eigenvectors
in U1. Now, recalling that Σx = UdU!

d + σ2ID we have that

tr(Σx) = tr(UdU
!
d ) + tr(σ2ID) = tr(U!

d Ud) + Dσ2 (2.31)
= tr(Λ) + Dσ2 = tr(Σ1) + (D − d)σ2. (2.32)

Therefore, the smallest possible σ is obtained when tr(Σ1) is maximized, which
happens if we choose the diagonal entries of Σ1 to be the top d eigenvalues.

In summary, we have shown that the optimal solution to PPCA is given by

Ûd = U1(Σ1 − σ̂2I)1/2 and σ̂2 =
1

D − d

D∑

i=d+1

λi, (2.33)

where U1 is the matrix with the top d eigenvectors of Σx, Σ1 is the matrix with
the corresponding d top eigenvalues, and λi is the i-th eigenvalue of Σx.
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2.2.2 Estimation by Maximum Likelihood
In general, we may not know the true covariance matrix Σx. Instead, we are given
samples {xi}N

i=1 from which we can estimate the sample covariance matrix Σ̂x.
The question is whether the model parameters can be estimated as in the previous
section after replacing Σx by Σ̂x. As it turns out, the maximum likelihood esti-
mates of the model parameters can be computed as before when x, y and ε are
assumed to be Gaussian random variables.

More specifically, assume that both y and ε are Gaussian random variables
y ∼ G(µy,Σy) and ε ∼ G(0,Σε). This implies that x is also Gaussian, because
it is a linear combination of Gaussians. Specifically, x ∼ G(µx,Σx), where µx

and Σx are given in (2.26). Assume also that Σy = Id and that Σε = σ2I . The
maximum likelihood estimate for µx is 1

N

∑N
i=1 xi. The maximum likelihood

estimates for Ud and Σε are obtained by maximizing

L(Ud,Σε) = −ND

2
log(2π) − N

2
log det(Σx) − N

2
tr(Σ−1

x Σ̂x) (2.34)

subject to Σx = UdU!
d + Σε.

After taking derivatives with respect to Ud, we obtain

∂L
∂Ud

= −NΣ−1
x Ud + NΣ−1

x Σ̂xΣ
−1
x Ud = 0 =⇒ Σ̂xΣ

−1
x Ud = Ud. (2.35)

One possible solution is Ud = 0, which leads to a minimum of the log-likelihood
and violates our assumption that Ud should be full rank. Another possible solution
is Σx = Σ̂x, where the covariance model is exact. This corresponds to the case
discussed in the previous section, after replacing Σx by Σ̂x. Thus, the model
parameters can be computed as before. A third solution is obtained when Ud $= 0
and Σx $= Σ̂x. In this case, we have,

ΣxUd = Ud(Λ + σ2Ud) =⇒ Ud = Σ−1
x Ud(Λ + σ2Id) (2.36)

=⇒ Σ̂xUd = Ud(Λ + σ2Id) (2.37)

Notice that the last equation is the same as that in (2.30) with Σx replaced by Σ̂x.
Therefore, the optimal solution is of the form Ud = U1(Σ1 − σ2I)1/2, where U1

is a matrix with d eigenvectors of Σ̂x with the corresponding eigenvalues in Σ1.
Before replacing this solution into (2.34), recall two well known identities,

the matrix determinant lemma det(A + UV !) = det(I + V !A−1U) det(A)
and the matrix inversion lemma (A + UCV )−1 = A−1 − A−1U(C−1 +
V A−1U)−1V A−1. Applying the matrix determinant lemma to det(Σx) leads to

|UdU
!
d + σ2ID| = |Id + σ−2U!

d Ud)||σ2ID| = |(Σ1/σ
2)|σ2D = |Σ1|σ2(D−d),

(2.38)
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while applying the matrix inversion lemma to Σx leads to

(UdU
!
d + σ2ID)−1 =

ID

σ2
− Ud

σ2
(Id +

1

σ2
U!

d Ud)
−1 U!

d

σ2
(2.39)

=
1

σ2
(ID − UdΛ

−1U!
d ) =

1

σ2
(ID − U1U

!
1 ) (2.40)

Therefore, the log-likelihood can be rewritten as

L = −ND

2
log(2π) − N

2

(
(D − d) log σ2 + log det(Σ1)

)
(2.41)

− N

2σ2
tr(Σ̂x − U1U

!
1 Σ̂x) (2.42)

The condition for an extrema in σ2 is given by
∂L
∂σ2

= −N

2

D − d

σ2
+

N

2σ4

(
tr(Σ̂x) − tr(U!

1 Σ̂xU1)
)

= 0. (2.43)

Since tr(U!
1 Σ̂xU1) = tr(Σ1), we conclude that

σ2 =
1

D − d

(
tr(Σ̂x) − tr(Σ1)

)
. (2.44)

This expression is minimized when tr(Σ1) is maximized, which happens when
Σ1 is chosen as the matrix with the top d eigenvalues of Σ̂x.

In summary, we have shown that the optimal solution to PPCA is given by

Ûd = U1(Σ1 − σ̂2I)1/2 and σ̂2 =
1

D − d

D∑

i=d+1

λi, (2.45)

where U1 is the matrix with the top d eigenvectors of Σ̂x, Σ1 is the matrix with
the corresponding d top eigenvalues, and λi is the i-th eigenvalue of Σ̂x.

2.3 Model Selection and Robustness Issues for PCA

In the above discussions, we have assumed that all the sample points can be fit
with the same geometric or statistical model. In this section, we discuss vari-
ous robustness issues for PCA. More specifically, we study how to resolve the
difficulties with outliers and incomplete data points.

2.3.1 Determining the Number of Principal Components
Notice that SVD of the noisy data matrix X does not only give a solution to
PCA for a particular d, but also the solutions to all d = 1, 2, . . . , D. This has
an important side-benefit: If the dimension d of the subspace S, or equivalently
the rank of the matrix X , is not known or specified a priori, one may have to
look at the entire spectrum of solutions to decide on the “best” estimate d̂ for the
dimension and hence the subspace S for the given data.
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The problem of determining the optimal dimension d is in fact a “model se-
lection” problem. As we have discussed in the introduction of the book, the
conventional wisdom is to strike a good balance between the complexity of the
chosen model and the data fidelity (to the model). In Appendix A, we have given
a brief review of some general model-selection criteria. One can certainly directly
employ any of those for PCA (see Appendix A.4.2 for detail). We here discuss a
few heuristic criteria that are especially designed for PCA and are easy to use in
practice.

In PCA, the dimension d of the subspace S can be viewed as a natural measure
of model complexity; and the sum of squares of the remaining singular values∑D

i=d+1 σ
2
i is exactly the modeling error

∑N
i=1 ‖xi − x̂i‖2 (see the proof of

Theorem 2.2). Normally, the leading term σ2
d+1 of

∑D
i=d+1 σ

2
i is already a good

index of the magnitude of the remaining ones. Thus, one can simply seek for a
balance between d and σ2

d+1 by minimizing an objective function of the form:

JPCA(d)
.
= α · σ2

d+1 + β · d (2.46)

for some proper weightsα, β > 0. Another somewhat similar criterion that people
often use to determine the rank d of a noisy matrix X is:

Jrank(d)
.
=

σ2
d+1∑d

i=1 σ
2
i

+ κd, (2.47)

where κ > 0 is a proper weight (see [Kanatani and Matsunaga, 2002a]). In this
book, unless stated otherwise, this will be the criterion of choice when we try to
determine the rank of a (data) matrix corrupted by noise.

In general, the ordered singular values of the data matrix X versus the dimen-
sion d of the subspace resemble a plot as in Figure 2.1. In the statistics literature,
this is known as the “Scree graph.” We will see a significant drop in the singular
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Figure 2.1. Singular value as a function of the dimension of the subspace.
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value right after the “correct” dimension d̂, which is sometimes called the “knee”
or “elbow” point of the plot. Obviously, such a point is a stable minimum as it
optimizes the above objective function (2.46) for a range of values for α and β,
or (2.47) for a range of κ.

A model can also be selected from the Scree graph in another way. If, instead of
the dimension d, a tolerance τ for the modeling error is specified, one can easily
use the plot to identify the model that has the lowest dimension and satisfies the
given tolerance, as indicated in the figure.

There are many other methods for determining the dimension for PCA.
Interested readers may find more references in [Jollife, 1986].

2.3.2 Outliers
In practice, it is often the case that a small portion of the data points do not fit well
the same model as the rest of the data. Such points are called outliers. The true
nature of outliers can be very elusive. There is really no unanimous definition for
what an outlier is.5 Outliers can be perfectly valid samples from the same distri-
bution as the rest of the data and it just happens so that they are small-probability
instances; or they are not samples drawn from the same model at all and there-
fore they will likely not be consistent with the model derived from the rest of the
data; or they are atypical samples that have an unusually large influence on the
estimated model parameters. In principle however, there is no way that one can
tell which case is really true for a particular “outlying” sample point. In fact, for
many common noise models, all these cases lead to more or less equivalent criteria
for detecting or accommodating outliers. However, these different interpretations
may lead to different approaches to detect (and subsequently eliminate or accom-
modate) outliers. We here discuss a few approaches that are particularly related to
PCA. In Chapter ??, we will further explore the possibility of generalizing these
approaches to GPCA.

Probability-Based Outlier Detection

The first approach is to first fit a model to all the sample points, including po-
tential outliers, and then detect the outliers as the ones that, with respect to the
identified model, correspond to small-probability events or have large model-
ing errors. In PCA, if we assume the samples are all drawn from a (zero-mean)
Gaussian distribution, the covariance of the distribution can be estimated as
Σ̂ = 1

N−1

∑N
i=1 xix

T
i . The probability distribution is approximately p(x) ∝

exp(− 1
2xT Σ̂−1x). If the probability of a sample xi is small if and only if the

following quantity

di = xT
i Σ̂

−1xi (2.48)

5For a more thorough exposition of outliers in statistics, we recommend the books of [Barnett and
Lewis, 1983, Huber, 1981].
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is large. The quantity di is also known as the Mahalanobis distance. In terms of
the principal components y = UT x, the Mahalanobis distance can also be written
as

di =
D∑

i=1

y2
i

σ2
i

, (2.49)

where σi are the singular values of X (or equivalently, σ2
i are the eigenvalues of

Σ̂).
Thus, one can remove a certain percentage (say 10 percent) of samples that have

relatively large Mahalanobis distance, as outliers. Once the outliers are trimmed
out, one can use the remaining samples to re-estimate the covariance matrix Σ̂ as
well as their principal components. One can repeat the above trimming process
until the estimate of the covariance matrix stabilizes. The resulting estimate will
in general be more robust. This is essentially the basic idea of a very popular
robust covariance estimator, known as multivariate trimming (MVT). The reader
may refer to Appendix A.5 for more details. As we will see in Chapter ??, this
scheme will also be very useful in the context of GPCA.

Consensus-Based Outlier Detection

The second approach assumes that the outliers are not drawn from the same model
as the rest of the data. Hence it makes sense to try to avoid the outliers when we
infer the model in the first place. However, without knowing which points are
outliers beforehand, how can we avoid them? One idea is to fit a model, instead of
to all the data points at the same time, only to a subset of the data. This is possible
when the number of data points required for a unique solution for the estimate is
much smaller than that of the given data set. Of course, one should not expect that
a randomly chosen subset will have no outliers and always lead to a good estimate
of the model. Thus, one should try on many different subsets:

X1, X2, . . . , Xn ⊂ X. (2.50)

The rationale is that if the number of subsets are large enough,6 one of the trial
subsets, say Xi, likely contains few or no outliers and hence the resulting model
would be the most consistent with the rest of the data points. For instance, for PCA
we may claim a subset Xi gives a consistent estimate Ûd(X i) of the subspace if
the following criterion is maximized (among all the chosen subsets):

max
i

#
{
x ∈ X :

∥∥x − Ûd(Xi)
∥∥ ≤ τ

}
, (2.51)

where τ > 0 is a chosen error threshold. This scheme is typically called Random
Sample Consensus (RANSAC) [Fischler and Bolles, 1981], and it normally im-
proves the robustness of the estimate. As a word of caution, in practice, in order
to design a successful RANSAC algorithm, one needs to carefully choose a few

6See Appendix A.5 for details on how large this number needs to be.



2.3. Model Selection and Robustness Issues for PCA 33

key parameters: the size of every subset, the number of subsets, and the consen-
sus criterion.7 There is a vast amount of literature on RANSAC-type algorithms,
especially in computer vision. For more details on RANSAC and other related
random sampling techniques, the reader is referred to Appendix A.5. In Chapter
??, we will discuss some limitations of RANSAC in the context of estimating
multiple subspaces simultaneously.

Influence-Based Outlier Detection

The third approach relies on the assumption that an outlier is an atypical sample
which has an unusually large influence on the estimated model parameters. This
leads to an outlier detection scheme which to some extent combines the character-
istics of the previous two approaches: it determines the influence of a sample by
comparing the difference between the model estimated with and without this sam-
ple. For instance, for PCA one may use a sample influence function to measure
the difference:

I(xi, Ud)
.
= 〈Ûd, Ûd(i)〉, (2.52)

where 〈·, ·〉 is the largest subspace angle (see Exercise 2.2) between the subspace
span(Ûd) estimated with the ith sample and the subspace span(Ûd(i)) without the
ith sample. The larger the difference, the larger the influence of xi on the estimate,
and the more likely that xi is an outlier. Thus, we may eliminate a sample xi as
an outlier if

I(xi, Ud) ≥ τ (2.53)

for some threshold τ > 0 or I(xi, Ud) is relatively large among all the samples.
However, this method does not come without an extra cost. We need to compute
the principal components (and hence perform SVD) N times: one time with all
the samples together and another N − 1 times with one sample eliminated from
each time. There have been many studies that aim to give a formula that can accu-
rately approximate the sample influence without performing SVD N times. Such
a formula is called a theoretical influence function. For more detailed discussion
of the sample influence (as well the other robust statistical techniques) for PCA,
we refer the interested readers to [Jollife, 2002].

2.3.3 Incomplete Data Points
Another issue that we often encounter in practice is that some of the given data
points are “incomplete.” For an incomplete data point x = [x1, x2, . . . , xD]T ,
we mean that some of its entries are missing or unspecified. For instance, if the
xi-entry is missing from x, it means that we know x only up to a line in RD:

x ∈ L
.
=

{
[x1, . . . , xi−1, t, xi+1, . . . , xD]T , t ∈ R

}
. (2.54)

7That is, the criterion that verifies whether each sample is consistent with the model derived from
the subset.
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One should be aware that an incomplete data point is in nature rather different
from a noisy data point or an outlier.8 In general, such incomplete data points can
contain useful information about the model, and in the case of PCA, the principal
subspace. For instance, if the principal subspace happens to contain the line L, the
principal subspace can be determined from a sufficiently large number of such
lines. In general, the line L may or may not lie in the principal subspace. We
therefore should handle incomplete data points with more care.

A useful observation here is that an incomplete data point x is just as good
as any point on the line L. Hence it is natural to choose a representative x̂ ∈ L
that is the closest to the principal subspace. If we denote Bd

.
= I − UdUT

d , then
the closest point x∗ = [x1, . . . , xi−1, t∗, xi+1, . . . , xD]T on L to the principal
subspace can be found by minimizing the following quadratic function in t:

t∗ = arg min
t

(
xT BT

d Bdx
)
. (2.55)

This problem has a unique solution as long as the line L is not parallel to the
principal subspace, i.e., ei $∈ span(Ud).

In essence, the above process of finding x∗ on the principal subspace is to give
a rank-d approximation of the entire data set containing both complete and in-
complete data points. Mathematically, PCA with incomplete data is equivalent to
finding a rank-d approximation/factorization of the data matrix X with incom-
plete data entries (in a least-squares sense). In numerical linear algebra, power
factorization is especially designed to solve this problem. We refer the interested
readers to [Vidal and Hartley, 2004] and references therein.

2.4 Extensions to PCA

Although PCA offers a rather useful tool to model the linear structure of a given
data set, it however becomes less effective when the data actually has some sig-
nificant nonlinearity, e.g., belonging to some nonlinear manifold. In this section,
we introduce some basic extensions to PCA which can, to some extent, handle the
difficulty with nonlinearity.

2.4.1 Nonlinear PCA
For nonlinear data, the basic rationale is not to apply PCA directly to the given
data, but rather to a transformed version of the data. More precisely, we seek a
nonlinear transformation (more precisely, usually an embedding):

φ(·) : R
D → R

M ,

x 1→ φ(x),

8One can view incomplete data points as a very special type of noisy data points which have infinite
uncertainty only in certain directions.
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such that the structure of the resulting data {φ(xi)} becomes (significantly more)
linear. In machine learning, φ(x) is called the “feature” of the data point x, and
RM is called the “feature space.”

Define the matrix Φ
.
= [φ(x1), φ(x2), . . . , φ(xN )] ∈ RM×N . The principal

components in the feature space are given by the eigenvectors of the sample
covariance matrix9

Σφ(x)
.
=

1

N − 1

N∑

i=1

φ(xi)φ(xi)
T =

1

N − 1
ΦΦT ∈ R

M×M .

Let vi ∈ RM be the eigenvectors:

Σφ(x)vi = λivi, i = 1, 2, . . . , M. (2.56)

Then the d “nonlinear principal components” of every data point x are given by

yi
.
= vT

i φ(x) ∈ R, i = 1, 2, . . . , d. (2.57)

In general, we do not expect that the map φ(·) is given together with the data.
In many cases, searching for the proper map is a difficult task, and the use of
nonlinear PCA is therefore limited. However, in some practical applications, good
candidates for the map φ(·) can be found from the nature of the problem. In such
cases, the map, together with PCA, can be very effective in extracting the overall
geometric structure of the data.
Example 2.4 (Veronese Map for an Arrangement of Subspaces). As we will see later in
this book, if the data points belong to a union of multiple subspaces, then a natural choice
of the transformation φ(·) is the Veronese map:

νn(·) : x !→ νn(x),

(x1, . . . , xD) !→ (xn
1 , xn−1

1 x2, . . . , x
n
D),

where the monomials are ordered in the degree-lexicographic order. Under such a mapping,
the multiple low-dimensional subspaces are mapped into a single subspace in the feature
space, which can then be identified via PCA for the features.

NLPCA in a High-dimensional Feature Space.

There is a potential difficulty associated with nonlinear PCA. The dimension of
the feature space, depending on the map φ(·), can be very high and it may be
computationally prohibitive to compute the principal components in the feature
space. For instance, if we try to search for a Veronese map of the proper degree
n, the dimension of the feature space M grows exponentially with the degree.
When M exceeds N , the eigenvalue decomposition of ΦΦT ∈ RM×M becomes
more costly than that of ΦTΦ ∈ RN×N , although the two matrices have the same
eigenvalues.

9In principle, we should use the notation Σ̂φ(x) to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use Σφ(x). The
same goes for the eigenvectors and the principal components.
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This motivates us to examine whether computation of PCA in the feature space
can be reduced to computation with the lower-dimensional matrix ΦTΦ. The an-
swer is actually yes. The key is to notice that, despite the dimension of the feature
space, every eigenvector v ∈ RM of ΦΦT associated with a non-zero eigenvalue
is always in the span of the matrix Φ:10

ΦΦT v = λv ⇔ v = Φ(λ−1ΦT v) ∈ range(Φ). (2.58)

We define the vector w
.
= λ−1ΦT v ∈ RN . Obviously ‖w‖2 = λ−1. It is straight-

forward to check that w is an eigenvector of ΦTΦ for the same eigenvalue λ.
Once such a w is computed from ΦTΦ, we can recover the corresponding v in the
feature space as:

v = Φw. (2.59)

Therefore the ith nonlinear principal component of x under the map φ(·) can be
computed as:

yi
.
= vT

i φ(x) = wT
i Φ

Tφ(x) ∈ R, (2.60)

where wi ∈ RM is the ith leading eigenvector of ΦTΦ.

2.4.2 Kernel PCA
One should notice a very interesting feature about the above NLPCA method.
Entries of both the matrix ΦTΦ and the vector ΦTφ(x) (in the expression for
yi) are all inner products of two features, i.e., of the form φ(x)Tφ(y). In other
words, computation of the principal components involves only inner products of
the features. In the machine learning literature, one defines the “kernel function”
of two vectors x, y ∈ RD to be the inner product of their features

k(x, y)
.
= φ(x)Tφ(y) ∈ R. (2.61)

The so-defined function k(·, ·) is a symmetric semi-positive definite function in x
and y.11 The entries of the matrix ΦTΦ are nothing but k(xi, xj).

As a consequence of our discussion above, one can perform nonlinear principal
component analysis as long as a (semi-positive definite) kernel function is given.
One does not have to explicitly define and evaluate the map φ(·). In fact, given any
(positive-definite) kernel function, according to a fundamental result in functional
analysis, one can in principle decompose the kernel and recover the associated
map φ(·) if one wishes to.

10The remaining M − N eigenvectors of ΦΦT are associated with the eigenvalue zero.
11A function k(x, y) is semi-positive definite if

R R

RD f(x)k(x, y)f(y) dxdy ≥ 0 for all smooth
functions f(·).
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Theorem 2.5 (Mercer’s Theorem). Given a symmetric function k(x, y) with
|k(·, ·)| ≤ K for some K , if the linear operator L : L2(RD) → L2(RD):

L(f)(x)
.
=

∫

RD

k(x, y)f(y)dy (2.62)

is semi-positive definite, then:

• The operatorL has an eigenvalue-eigenfunctiondecomposition
{
(λi, φi(·)

}

such that
∑

i |λi| < ∞ and |φi(·)| < Ki for some Ki.

• The kernel k(x, y) =
∑

i λiφi(x)φi(y) for almost all (x, y).12

The interested readers may refer to [Mercer, 1909] for a proof of the theorem.
One important reason for computing with the kernel function is because when the
dimension of the feature space is high (sometimes even infinite), the computation
of features and their inner products is expensive. But for many popular choices of
embedding, the evaluation of the kernel function can be much simpler.

Example 2.6 (Examples of Kernels). There are several popular choices for the nonlinear
kernel function:

k1(x, y) = (xT y)n, k2(x, y) = exp
`

−
‖x − y‖2

2

´

. (2.63)

Evaluation of such functions only involves the inner product or the difference between
two vectors in the original space R

D. This is much more efficient than evaluating the
inner product in the associated feature space, whose dimension for the first kernel grows
exponentially with the degree n and for the second kernel is infinite.

We summarize our discussion in this section as Algorithm 2.1.

Algorithm 2.1 (Nonlinear Kernel PCA).

For a given set of data points X = [x1, x2, . . . , xN ] ∈ RD×N , and a given map
φ(x) or a kernel function k(x, y):

1. Compute the inner product matrix

ΦTΦ =
(
φ(xi)

Tφ(xj)
)

or
(
k(xi, xj)

)
∈ R

N×N ; (2.64)

2. Compute the eigenvectors wi ∈ RN of ΦTΦ:

ΦTΦwi = λiwi, (2.65)

and normalize ‖wi‖2 = λ−1
i ;

3. For any data point x, its ith nonlinear principal component is given by

yi = wT
i Φ

Tφ(x) or wT
i [k(x1, x), . . . , k(xN , x)]T , (2.66)

for i = 1, 2, . . . , d.

12“Almost all” means except for a zero-measure set.



38 Chapter 2. Data Modeling with a Single Subspace

2.5 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from
PCA in the numerical linear algebra literature, also known as the Erkart and
Young decomposition [Eckart and Young, 1936, Hubert et al., 2000]. The re-
sult regarding the least-squares optimality of SVD given in Theorem 2.2 can
be traced back to [Householder and Young, 1938, Gabriel, 1978]. While prin-
cipal components were initially defined exclusively in a statistical sense [Pearson,
1901, Hotelling, 1933], one can show that the algebraic solution given by SVD
gives asymptotically unbiased estimates of the true parameters in the case of
Gaussian distributions. A more detailed analysis of the statistical properties of
PCA can be found in [Jollife, 2002].

Note that PCA only infers the principal subspace (or components), but not
a probabilistic distribution of the data in the subspace. Probabilistic PCA was
developed to infer an explicit probabilistic distribution from the data [Tipping
and Bishop, 1999b]. The data is assumed to be independent samples drawn
from an unknown distribution, and the problem becomes one of identifying the
subspace and the parameters of the distribution in a maximum-likelihood or a
maximum-a-posteriori sense. When the underlying noise distribution is Gaussian,
the geometric and probabilistic interpretations of PCA coincide [Collins et al.,
2001]. However, when the underlying distribution is non Gaussian, the optimal
solution to PPCA may no longer be linear. For example, in [Collins et al., 2001]
PCA is generalized to arbitrary distributions in the exponential family.

PCA is obviously not applicable to data whose underlying structure is non-
linear. PCA was generalized to principal curves and surfaces by [Hastie, 1984]
and [Hastie and Stuetzle, 1989]. A more general approach however is to find a
nonlinear embedding map, or equivalently a kernel function, such that the embed-
ded data would lie on a linear subspace. Such methods are referred to as nonlinear
kernel PCA [Scholkopf et al., 1998]. Finding such nonlinear maps or kernels is
by no means a simple problem. Learning kernels is still an active research topic
in the statistical learning community.

2.6 Exercises
Exercise 2.1 (Some Properties of PCA). Let x be a random vector with covariance matrix
Σx. Consider a linear transformation of x:

y = W T x, (2.67)

where y ∈ R
d and W is a D×d orthogonal matrix. Let Σy = W T ΣxW be the covariance

matrix for y. Show that

1. The trace of Σy is maximized by W = Ud, where Ud consists of the first d
(normalized) eigenvectors of Σx.

2. The trace of Σy is minimized by W = Ũd, where Ũd consists of the last d
(normalized) eigenvectors of Σx.
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Exercise 2.2 (Subspace Angles). Given two d-dimensional subspaces S1 and S2 in R
D,

define the largest subspace angle θ1 between S1 and S2 to be the largest possible sharp
angle (< 90◦) formed by any two vectors u1, u2 ∈ (S1 ∩ S2)

⊥ with u1 ∈ S1 and
u2 ∈ S2 respectively. Let U1 ∈ R

D×d be an orthogonal matrix whose columns form a
basis for S1 and similarly U2 for S2. Then show that if σ1 is the smallest non-zero singular
value of the matrix W = UT

1 U2, then we have

cos(θ1) = σ1. (2.68)

Similarly, one can define the rest of the subspace angles as cos(θi) = σi, i = 2, . . . , d
from the rest of the singular values of W .

Exercise 2.3 (Fixed-Rank Approximation of a Matrix). Given an arbitrary full-rank ma-
trix A ∈ R

m×n, find the matrix B ∈ R
m×n with a fixed rank r < min{m, n} such that

the Frobenius norm ‖A−B‖F is minimized. The Frobenius norm of a matrix M is defined
to be ‖M‖2

F = trace(MT M). (Hint: Use the SVD of A to guess the matrix B and then
prove its optimality.)

Exercise 2.4 (Identification of Auto-Regressive Exogeneous (ARX) Systems). A pop-
ular model that people use to analyze a time series {yt}t∈Z is the linear auto-regressive
model:

yt = a1yt−1 + a2yt−2 + · · · + anyt−n + εt, ∀t, yt ∈ R, (2.69)

where εt ∈ R models the modeling error or noise and it is often assumed to be a white-
noise random process. Now suppose that you are given the values of yt for a sufficiently
long period of time.

1. Show that in the noise free case, i.e. εt ≡ 0, regardless of the initial conditions, the
vectors xt = [yt, yt−1, . . . , yt−n]T for all t lie on an n-dimensional hyperplane in
R

n+1. What is the normal vector to this hyperplane?

2. Now consider the case with noise. Describe how you may use PCA to identify the
unknown model parameters (a1, a2, . . . , an)?

Exercise 2.5 (Basis for an Image). Given a gray-level image I , consider all of its
b × b blocks, denoted as {Bi ∈ R

b×b}. We would like to approximate each block as a
superposition of d base blocks, say {B̂j ∈ R

b×b}d
j=1. That is,

Bi =
d

X

j=1

aijB̂j + Ei, (2.70)

where Ei ∈ R
b×b is the possible residual from the approximation. Describe how you can

use PCA to identify an optimal set of d base blocks so that the residual is minimized?
In Section 1.2.1, we have seen an example in which a similar process can be applied to

an ensemble of face images, where the first d = 3 principal components are computed for
further classification. In the computer vision literature, the corresponding base images are
called “eigen faces.”

Exercise 2.6 (Probability of Selecting a Subset of Inliers). Imagine we have 80 samples
from a four-dimensional subspace in R

5. However, the samples are contaminated with
another 20 samples that are far from the subspace. We want to estimate the subspace from
randomly drawn subsets of four samples. In order to be of probability 0.95 that one of the
subsets contains only inliers, what is the smallest number of subsets that we need to draw?
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Exercise 2.7 (Ranking of Webpages). PCA is actually used to rank webpages on the
Internet by many popular search engines. One way to see this is to view the Internet as
a directed graph G = (V, E), where every webpage, denoted as pi, is a node in V , and
every hyperlink from pi to pj , denoted as eij , are directed edges in E. We can assign each
webpage pi an “authority” score xi that indicates how many other webpages point to it
and a “hub” score yi that indicates how many other webpages it points out to. Then, the
authority score xi depends on how many hubs point to pi and the hub score yi depends
on how many authorities pi points to. Let L be the adjacent matrix of the graph G (i.e.
Lij = 1 if eij = E), x the vector of the authority scores and y of the hub scores.

1. Justify that the following relationships hold:

y′ = Lx, x′ = LT y; x = x′/‖x′‖, y = y′/‖y′‖. (2.71)

2. Show that x is the eigenvector of LT L and y is the eigenvector of LLT associ-
ated with the largest eigenvalue (why not the others). Explain how x and y can be
computed from the singular value decomposition of L.

In the literature, this is known as the Hybertext Induced Topic Selection (HITS) algorithm
[Kleinberg, 1999, Ding et al., 2004]. In fact, the same algorithm can also be used to rank
any competitive sports such as football teams and chess players.

Exercise 2.8 (Karhunen-Loève Transform). The Karhunen-Loève transform (KLT) can
be thought as a generalization of PCA from a (finite-dimensional) random vector x ∈ R

D

to an (infinite-dimensional) random process x(t), t ∈ R. When x(t) is a (zero-mean)
second-order stationary random process, its auto correlation function is defined to be
K(t, τ )

.
= E[x(t)x)(τ )] for all t, τ ∈ R.

1. Show that K(t, τ ) has a family of orthonormal eigen-functions {φi(t)}∞i=1 that are
defined as

Z

K(t, τ )φi(τ ) dτ = λiφi(t), i = 1, 2, . . . . (2.72)

(Hint: First show that K(t, τ ) is a positive definite function and then use Mercer’s
Theorem.)

2. Show that with respect to the eigen-functions, we original random process can be
decomposed as

x(t) =
n

X

i=1

xiφi(t), (2.73)

where {xi}
∞
i=1 are a set of uncorrelated random variables.


