
HW 4: Advanced Topics in Machine Learning

Instructor: René Vidal, E-mail: rvidal@cis.jhu.edu

Due 5/7/10 in class

1. Affine motion segmentation.

(a) Use the function gpca from Homework 3 to segment the point correspondences of the following five
video sequences in the course webpage: i) Kanatani1, ii) Kanatani2, iii) Kanatani3, iv) three-cars, v) can-
book. You can use the provided function loadSequence.m to load the sequences and form the matrix
of trajectories. Recall that you will need to project the data in R2F onto a subspace of dimension d. What
is the value for d? Assume the number of groups is known. Plot the three principal components of the data
with different colors for the different groups. Report the percentage of misclassified point trajectories.

(b) Repeat part (b) using the function ksubspaces that you implemented in Homework 4. Use the result of
GPCA from part (b) to initialize K-subspaces. Use both the data without projection, i.e., the data in R2F ,
and the projected data in Rd as the input to K-subspaces. Which one is better, projecting or not, and why?

2. Face Clustering with varying illumination: A simple model for the images of n Lambertian faces taken under
several illumination conditions is that they live in n 3-dimensional subspaces of RP , where P is the number
of pixels. It follows that clustering a set of images of multiple faces according to which individuals the image
belongs to is a subspace clustering problem. Load the set of images given in the course web-page. You will
need to use the provided function loadImage.m to load all the images of individuals from 1 to 3 under the
illumination conditions 1 to 8. Next, reduce the dimension using PCA to the first four principal components.
Now, assume the number of groups is known, i.e. n = 3, and segment the faces using the functions gpca and
ksubspaces that you implemented in Homework 3. Use also ksubspaces initialized by GPCA. Plot the
first three components of the low-dimensional representation and report the percentage of incorrectly classified
images.

3. SVD-based subspace clustering: Let {xj ∈ RD}Nj=1 be a set of points drawn from a union of n independent
subspaces {Si}ni=1, i.e.,

r = dim(∪n
i=1Si) =

n∑
i=1

dim(Si) =
n∑

i=1

di. (1)

Let Ui ∈ RD×di be a basis for subspace Si, so that the Ni points in subspace Si can be written as Xi = UiYi,
where Yi ∈ Rdi×Ni is the low-dimensional representation of the data points in subspace Si. Show that the data
matrix X = [x1,x2, . . . ,xN ] ∈ RD×N can be factorized as

X =
[
U1, U2, · · · , Un

]

Y1 0 · · · 0
0 Y2

. . . 0
0 · · · 0 Yn

Γ. (2)

where Γ ∈ RN×N is a permutation matrix sorting the data points according to the subspaces they belong to,
i.e., X = [X1, X2, · · ·Xn]Γ. Let X = UΣV > be the rank r SVD of the data matrix X , where V ∈ Rr×N . Let
Q = V V > ∈ RN×N . Show that Qij = 0 if points i and j are in different subspaces. Suggest an algorithm for
clustering independent subspaces based on the SVD of the data matrix.

4. GPCA for 2 hyperplanes: Consider the problem of segmenting n data points {xj}Nj=1 lying in two hyperplanes
in RD with normal vectors b1 and b2. Show that the data points satisfy the equation x>Bx = 0, where
B = b1b

>
2 + b2b

>
1 ∈ RD×D. Write down a linear system for estimating B from data points. Show that if

b1 6= αb2, for any α 6= 0, then B has two nonzero eigenvalues λ1 and λ2 and D − 2 zero eigenvalues. Show
that λ1λ2 < 0. Show that one can estimate the normal vectors from B as[

b1 b2

]
=
[
U1 U2

] [√|λ1| sign(λ1)
√
|λ1|√

|λ2| sign(λ2)
√
|λ2|

]
(3)

where U1 ∈ RD and U2 ∈ RD are the eigenvectors of B corresponding to the nonzero eigenvalues λ1 and λ2.
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5. Clustering linear from bilinear varieties: Let S = {(x,y) ∈ RD × RD : u>x = 0 ∨ y>Ax = 0}, where
u 6= 0 and e>DA = e>D =

[
0 0 · · · 0 1

]
.

(a) Find a polynomial p(x,y) that vanishes on S. How many independent monomials are there in p?

(b) Show that p can be written as p(x,y) = y>Mν2(x). How isM related to A and u?

(c) If D = 3, write theM explicitly, and show how one can compute u and A from the entries ofM.

(d) Let X = {(xi,yi) ∈ S}Ni=1 be a given data set. Derive an algorithm to computeM from X . Then, derive
an algorithm to compute A and u from the derivatives of p with respect to x and y.
Hint: Explicitly write down the derivatives of the polynomial p(x,y) and inspect the values of these
derivatives when u>x = 0 and when y>Ax = 0. Also, making clever canonical choices for x and y can
make the solution easier.

6. Kernel GPCA: Recall that Kernel PCA allows one to compute the principal components of the embedded data
matrix Φ = [φ(x1), φ(x2), · · · , φ(xN )] from the kernel k(x,y) = φ(x)>φ(y). In the case of the polynomial
embedding, this reduces the calculations of the SVD of the covariance matrix, which isMn(D)×Mn(D), to the
SVD of the kernel matrix, which isN×N . This is much more economic whenD is large so thatMn(D)� N .
This observation is usually referred to as the kernel trick.

Recall also that the GPCA algorithm finds polynomials of the form pn(x) = c>νn(x), whose coefficients c are
in the null space of the embedded data matrix Φ = [νn(x1), νn(x2), · · · , νn(xN )].

Recall now that the scaled Veronese map induces the polynomial kernel k(x,y) = (x>y)n = νn(x)>νn(y).

These three facts suggest that one may be able to solve the GPCA problem using the kernel trick. Specifically,
find a way of computing a basis for each of the subspaces from the kernel matrix

K =


(x>1 x1)n (x>1 x2)n · · · (x>1 xN )n

(x>2 x1)n (x>2 x2)n · · · (x>2 xN )n

...
...

(x>Nx1)n (x>Nx2)n · · · (x>NxN )n

 (4)

without having to explicitly compute vectors in Mn(D). You may assume that the subspaces are independent.
You may also assume n = 2 if you like.
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