
Midterm: Learning Theory II (580.692)

Instructor: René Vidal, Office: 308B Clark Hall, E-mail:rvidal@cis.jhu.edu

November 7, 2006

HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions,
etc., with other fellow students. Furthermore, you are not allowed to use the book or your class notes. You may
only ask questions to the class instructor. Any violation ofthe honor system, or any of the ethic regulations, will be
immediately reported according to JHU regulations.
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1. (20 points) Dimensionality Reduction

Let ψ : R
d → R

D, whered ≪ D, be a differentiable function fromRd to R
D, andk : R

D × R
D → R be a

positive dedinite kernel onRD. Let X = {xi ∈ R
D}N

i=1
be a set of points drawn according to the model

x = ψ(z) + w, (1)

wherew ∈ R
D is a small amount of noise. Assume that the mapψ, the points{zi ∈ R

d}N
i=1

and the noise are
unknown, but the dimensionsd andD, and the kernelk are known. You would like to find a low-dimensional
representationY = {yi ∈ R

d}i=1,N for the dataX , and you consider either PCA, KPCA or LLE.

(a) Givend, under what conditions inX would you use PCA?

(b) Givend andk, under what conditions inX would you use KPCA?

(c) Givend, under what conditions inX would you use LLE ?

(d) Imagine you would like to use model selection to decide whether to use PCA or LLE. Write down the cost
functions that each one of the two methods minimizes for fitting the data. Are these functions comparable?
Use these functions to obtain a model selection criterion for choosing which of the two methods to use.
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2. (20 Points) Manifold Clustering

Locally Linear Embedding (LLE) is an algorithm for obtaining a low-dimensional representation{yi ∈ R
d} of

a given set of points{xi ∈ R
D}N

i=1
lying in a d-dimensional manifoldM ⊂ R

D. Given a dimensiond and a
number of nearest neighborsk, the algorithm proceeds as follows

• Find a set of weightsWij that minimize the cost function
N∑

i=1

||xi−
N∑

j=1

Wijxj ||
2 subject to the constraints

N∑

j=1

Wij = 1 andWij = 0 if xj is not one of thek-nearest neighbors ofxi.

• Find a low-dimensional representation{yi}
N
i=1

that minimizes the cost function
N∑

i=1

||yi−
∑N

j=1
Wijyj ||

2

subject to the constraints
N∑

i=1

yi = 0 and 1

N

N∑

i=1

yiy
T
i = I.

Notice that both steps involve solving a linear system.

In this problem, you will generalize LLE to data{xi ∈ R
D}N

i=1
drawn from a union ofn d-dimensional

manifolds inR
D, {Mm ⊂ R

D}n
m=1

. More specifically,

(a) Write down a cost function similar to that of K-means for clustering the data according to thenmanifolds.

(b) Write down a set of constraints that need to be satisfied inorder to make the problem well-posed.

(c) Derive an algorithm for minimizing the cost function in (a) subject to the constraints in (b). Your method
should alternate between the computation of an LLE model foreach group, and the segmentation of the
data according to then models.

(d) Does the algorithm converge? Why? Doest is converge to the global optimum? Why? Does it converge in
a finite number of iterations? Why?
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3. (30 points) Segmentation of Subspaces of Different Dimensions.

Consider now a collection of points{xi ∈ R
3}P

i=1
lying in 3 subspaces ofR3

S1 = {x : x3 = 0}

S2 = {x : x1 = 0 ∧ x2 + x3 = 0}

S3 = {x : x1 = 0 ∧ x2 − x3 = 0}

(a) (10 points) Show that the data can be fit with a set ofm homogeneous polynomials of degreen = 2 in
3 variables. Determine the value ofm. Write down them polynomials explicitly. What is the minimum
number of pointsP and how should such points be distributed inS1, S2 andS3 so that them polynomials
can be uniquely determined? Show how to determinem and the polynomials from data. Compute the
gradient of each one of them polynomials at a data pointy

1
∈ S1, y

2
∈ S2 andy

3
∈ S3. Is it possible

to segment the data into the three subspaces using these gradients? If yes, say how. If not, say what
segmentation can be obtained from the gradients.

(b) (10 points) Answer questions in (a) withn = 3.

(c) (10 points)Answer all questions in (a) withn = 4. If your answer to the last question in (a) is yes, then
explain why the data can be segmented correctly into the three subspaces, even though the degree of the
polynomials is greater than number of subspaces.

4


