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1. K-hyperplanes: Let {xj ∈ RD}Nj=1 be a set of points drawn from a collection of n hyperplanes {Si}ni=1, where
Si = {x : b>i x = 0}. Propose an iterative algorithm similar to k-means that alternates between assigning points
to hyperplanes and estimating the normal to each hyperplane bi ∈ RD. More specifically, write down the cost
function to be optimized, the constraints among the optimization variables, and find the optimal normal vectors
given the segmentation and the optimal segmentation given the normal vectors.

2. GPCA. Let {(xj , yj)}Nj=1 be a set of points in general position drawn from the union of the two surfaces

S1 = {(x, y) ∈ R2D : b>x = 0} and S2 = {(x, y) ∈ R2D : y>Ax = 0}, (1)

where b ∈ RD and A ∈ RD×D for D ≥ 3. Assume that b 6= 0 and that A is full rank.

(a) Find a polynomial p(x, y) that is satisfied by every data point in S1 ∪ S2. Write down a linear system
for computing the coefficients of the polynomial p(x, y). Find the minimum number of points needed to
obtain the coefficients uniquely (up to scale)?

(b) Show that the clustering of the data points can be obtained by looking at the rank of the following matrix

H(x, y) =
∂2p(x, y)

∂x∂y
∈ RD×D. (2)

(c) Derive an algorithm for computing b and A from the derivatives of p at the data points.

3. SVD-based subspace clustering: Let X = [x1, x2, . . . ,xN ] ∈ RD×N be a matrix whose columns are drawn
from a union of n independent linear subspaces{Si}ni=1, i.e.,

r = dim(∪n
i=1Si) =

n∑
i=1

dim(Si) =
n∑

i=1

di. (3)

Let Ui ∈ RD×di be a basis for subspace Si, so that the Ni points in subspace Si can be written as Xi = UiYi,
where Yi ∈ Rdi×Ni is the low-dimensional representation of the data points in subspace Si. Let Γ ∈ RN×N

be the unknown permutation matrix sorting the data points according to the subspaces they belong to, i.e.,
X = [X1, X2, · · ·Xn]Γ. Assume that the points within each subspace are in general position.

(a) Show that the data matrix X can be factorized as

X =
[
U1, U2, · · · , Un

]


Y1 0 · · · 0
0 Y2

. . . 0
0 · · · 0 Yn

Γ. (4)

(b) Let Mi ∈ RNi×(Ni−di) be a matrix whose columns form an orthonormal basis for the null space of Xi,
i.e., XiMi = 0 and M>i Mi = I , and consider the matrix

M = Γ>


M1 0 · · · 0

0 M2

...
...

. . . 0
0 · · · 0 Mn

 ∈ RN×(N−r). (5)

Show that the N − r columns of M are orthonormal and lie in the null space of X .
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(c) Let X = UΣV> be the SVD of the data matrix. Since X has rank r, the matrix V ∈ RN×N may then be
subdivided as V = [V1 V2], where V1 ∈ RN×r consists of the first r columns of V and V2 ∈ RN×(N−r)

consists of the remaining columns. Show that there exists an orthogonal matrix R such that V2 = MR.

(d) Recall that VV> = V1V>1 + V2V>2 = IN and let Q = V1V>1 ∈ RN×N . Show that

ΓQΓ> = I −MM> (6)

is block diagonal. Use this to show that Qjk = 0 if points j and k are in different subspaces.

(e) Suggest an algorithm for clustering independent subspaces based on the SVD of the data matrix X .


