Exam 2: Unsupervised Learning (600.692)

Instructor: René Vidal

May 12, 2017

- 1. **Manifold Learning.** Let $\{x_j \in \mathbb{R}^D\}_{j=1}^N$ be a set of points that lie approximately in a manifold of dimension d embedded in \mathbb{R}^D . Imagine you have applied KPCA with kernel κ and LLE with K-NN to the data. Assume now you are given a new point $x \in \mathbb{R}^D$ and you wish to find its corresponding point $y \in \mathbb{R}^d$ according to KPCA and LLE. How would you compute $y \in \mathbb{R}^d$ without applying KPCA or LLE from scratch to the N + 1 points? Under what conditions the solution you propose is equivalent to applying KPCA or LLE to the N + 1 points?
- 2. K-Subspaces. Consider the objective function of the K-subspaces algorithm:

$$f(\{\boldsymbol{\mu}_i\}_{i=1}^n, \{U_i\}_{i=1}^n) = \min_{\substack{\{\boldsymbol{\mu}_i\}_{i=1}^n\\\{U_i:U_i^\top U_i=I\}_{i=1}^n\}_{i=1}^n} \sum_{j=1}^N \min_{i=1,\dots,n} \|(I - U_i U_i^\top)(\boldsymbol{x}_j - \boldsymbol{\mu}_i)\|^2.$$
(1)

Let $\{\mu_i^{(k)}\}_{i=1}^n, \{U_i^{(k)}\}_{i=1}^n$ be the estimates of the subspace parameters at the kth iteration of the K-subspaces algorithm. Show that the iterations of K-subspaces are such that

$$f(\{\boldsymbol{\mu}_{i}^{(k+1)}\}_{i=1}^{n}, \{U_{i}^{(k+1)}\}_{i=1}^{n}) \leq f(\{\boldsymbol{\mu}_{i}^{(k)}\}_{i=1}^{n}, \{U_{i}^{(k)}\}_{i=1}^{n}).$$

$$(2)$$

3. Low-Rank Subspace Clustering. Let X = [x₁,..., x_N] ∈ ℝ^{D×N} be a data matrix whose columns are drawn from a union of n subspaces. Let X = UΣV[⊤] and X = U₁Σ₁V₁[⊤] be, respectively, the full and compact SVDs of X, with V partitioned as [V₁, V₂], where V₁ ∈ ℝ^{N×r}, V₂ ∈ ℝ^{N×(N-r)} and rank(X) = r. Let us express each data point as a linear combination of all data points, i.e., for all j, x_j = ∑_{i=1}^N x_ic_{ij}, or equivalently x_j = Xc_j, where c_j ∈ ℝ^N. Let us now search for a matrix of coefficients C = [c₁,...,c_N] ∈ ℝ^{N×N} that solves the following optimization problem:

$$\min_{C} \|C\|_{*} + \frac{\lambda}{2} \|C\|_{F}^{2} \text{ s.t. } X = XC \text{ and } C = C^{\top},$$
(3)

where $\lambda > 0$ is a parameter. Prove that $C^* = V_1 V_1^{\top}$.

Hint: We showed in class that the solutions to X = XC are of the form $C = V_1 V_1^\top + V_2 A$, for $A \in \mathbb{R}^{(N-r) \times N}$.