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1. Manifold Learning. Let {xj ∈ RD}Nj=1 be a set of points that lie approximately in a manifold of dimension
d embedded in RD. Imagine you have applied KPCA with kernel κ and LLE with K-NN to the data. Assume
now you are given a new point x ∈ RD and you wish to find its corresponding point y ∈ Rd according to KPCA
and LLE. How would you compute y ∈ Rd without applying KPCA or LLE from scratch to the N + 1 points?
Under what conditions the solution you propose is equivalent to applying KPCA or LLE to the N + 1 points?

2. K-Subspaces. Consider the objective function of the K-subspaces algorithm:
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3. Low-Rank Subspace Clustering. Let X = [x1, . . . ,xN ] ∈ RD×N be a data matrix whose columns are drawn
from a union of n subspaces. Let X = UΣV > and X = U1Σ1V

>
1 be, respectively, the full and compact SVDs

of X , with V partitioned as [V1, V2], where V1 ∈ RN×r, V2 ∈ RN×(N−r) and rank(X) = r. Let us express
each data point as a linear combination of all data points, i.e., for all j, xj =

∑N
i=1 xicij , or equivalently

xj = Xcj , where cj ∈ RN . Let us now search for a matrix of coefficients C = [c1, . . . , cN ] ∈ RN×N that
solves the following optimization problem:
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where λ > 0 is a parameter. Prove that C∗ = V1V
>
1 .

Hint: We showed in class that the solutions toX = XC are of the formC = V1V
>
1 +V2A, forA ∈ R(N−r)×N .
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