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High-Dimensional Data
• In many areas, we deal with high-dimensional data 

– Computer vision 
– Medical imaging 
– Medical robotics 
– Signal processing 
– Bioinformatics



High-Dimensional Data in Computer Vision

http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-shoebox

http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-shoebox


• Body Level One 
– Body Level Two 

• Body Level Three 
– Body Level Four 

» Body Level Five

High-Dimensional Data in Computer Vision

– 140 billion images 
– 350 million new photos/day
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– 3.8 trillion of photographs 
– 10% in the past 12 months

– 120 million videos 
– 100 hours of video/minute

– 90% of the internet traffic will 
be video by the end of 2017

http://www.buzzfeed.com/hunterschwarz/how-many-photos-have-been-taken-ever-6zgv

http://blog.1000memories.com/94-number-of-photos-ever-taken-digital-and-analog-in-shoebox


High-Dimensional Data in Computer Vision
• ImageNet: 14M images (1M with bounding box annotations), 22K categories

http://image-net.org 

http://image-net.org


Big Data in Biomedical Imaging
• 400 million procedures/year involve at 

least 1 medical image 

• Medical image archives are increasing by 
20-40 percent each year 

• 1 billion medical images stored in the US  

• 1/3 of global storage is medical image 
information 

• One individual’s online medical record 
could equate to 12 billion novels

http://www.corp.att.com/healthcare/docs/medical_imaging_cloud.pdf

http://www.corp.att.com/healthcare/docs/medical_imaging_cloud.pdf


Big Data in Biomedical Imaging
• High throughput neuroinformatics:  

bits of neuroscience at 1mm scale 
– 3000 brains 
– 1000x1000x500x100 dimensions 
– 1000-2000 relevant variables
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Big Data in Biomedical Imaging

L. Tao, E. Elhamifar, S. Khudanpur, G. Hager, and R. Vidal. Sparse Hidden Markov Models for Surgical 
Gesture Classification and Skill Evaluation, IPCAI, 2012 
L. Zapella, B. Bejar, R. Vidal. Surgical Gesture Classification from Video Data, MICCAI 2012 (Best 
paper Award).



How Do We Make Sense of Big Data?
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such as f = ma or e = mc2. Meanwhile, sciences that 
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over 
their inability to neatly model human behavior. 
An informal, incomplete grammar of the English 
language runs over 1,700 pages.2 Perhaps when it 
comes to natural language processing and related 
fi elds, we’re doomed to complex theories that will 
never have the elegance of physics equations. But 
if that’s so, we should stop acting as if our goal is 
to author extremely elegant theories, and instead 
embrace complexity and make use of the best ally 
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to 
the Brown Corpus, containing one million English 
words.3 Since then, our fi eld has seen several notable 
corpora that are about 100 times larger, and in 2006, 
Google released a trillion-word corpus with frequency 
counts for all sequences up to fi ve words long.4 In 
some ways this corpus is a step backwards from the 
Brown Corpus: it’s taken from unfi ltered Web pages 
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected 
part-of-speech tags. But the fact that it’s a million 
times larger than the Brown Corpus outweighs these 
drawbacks. A trillion-word corpus—along with other 
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human 

behavior. So, this corpus could serve as the basis of 
a complete model for certain tasks—if only we knew 
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related 
machine learning have been statistical speech rec-
ognition and statistical machine translation. The 
reason for these successes is not that these tasks are 
easier than other tasks; they are in fact much harder 
than tasks such as document classifi cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural 
task routinely done every day for a real human need 
(think of the operations of the European Union or 
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In 
other words, a large training set of the input-output 
behavior that we seek to automate is available to us 
in the wild. In contrast, traditional natural language 
processing problems such as document classifi ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have 
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also diffi cult for experts to agree 
on, being bedeviled by many of the diffi culties we 
discuss later in relation to the Semantic Web. The 
fi rst lesson of Web-scale learning is to use available 
large-scale data rather than hoping for annotated 
data that isn’t available. For instance, we fi nd that 
useful semantic relationships can be automatically 
learned from the statistics of search queries and the 
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually 
annotated data.

Eugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

ences”1 examines why so much of physics can be 

neatly explained with simple mathematical formulas

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

The Unreasonable 
Effectiveness of Data

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on February 5, 2010 at 22:51 from IEEE Xplore.  Restrictions apply. 

COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, VOL. XIII, 001-14 (1960) 

The Unreasonable Effectiveness of Mat hematics 
in the Natural Sciences 

Richard Courant Lecture in Mathematical Sciences delivered at New York University, 
May 11,  1959 

E U G E N E  P. WIGNER 
Princeton University 

“and it i s  probable that there i s  some secret here 
which remains to be discovered.” (C. S .  Peirce) 

There is a story about two friends, who were classmates in high school, 
talking about their jobs. One of them became a statistician and was working 
on population trends. He showed a reprint to his former classmate, The 
reprint started, as usual, with the Gaussian distribution and the statistician 
explained to  his former classmate the meaning of the symbols for the actual 
population, for the average population, and so on. His classmate was a 
bit incredulous and was not quite sure whether the statistician was pulling 
his leg. “How can you know that?” was his query. “And what is this 
symbol iere?” “Oh,” said the statistician, “this is n.” “What is that?” 
“The ratio of the circumference of the circle to its diameter.” “Well, now 
you are pushing your joke too far,” said the classmate, “surely the pop- 
ulation has nothing to do with the circumference of the circle.” 

Naturally, we are inclined to smile about the simplicity of the classmate’s 
approach. Nevertheless, when I heard this story, I had to admit to an 
eerie feeling because, surely, the reaction of the classmate betrayed only 
plain common sense. I was even more confused when, not many days later, 
someone came to me and expressed his bewilderment1 with the fact that 
we make a rather narrow selection when choosing the data on which we 
test our theories. “How do we know that, if we made a theory which focusses 
its attention on phenomena we disregard and disregards some of the phe- 
nomena now commanding our attention, that we could not build another 
theory which has little in common with the present one but which, never- 
theless, explains just as many phenomena as the present theory.” It has 
to be admitted that we have not definite evidence that there is no such theory. 

The preceding two stories illustrate the two main points which are the 

‘The remark to be quoted was made by F. Werner when he was a student in Princeton. 
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What is This Class About?
• Unsupervised learning methods for discovering structure in 

big, corrupted, high-dimensional data.
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Course Information: Syllabus
• Introduction (Chapter 1) 
• Part I: Single Subspace 

– Principal Component Analysis (Chapter 2) 
– Robust Principal Component Analysis (Chapter 3) 
– Kernel PCA and Manifold Learning (Chapter 4) 

• Part II: Multiple Subspaces 
– Algebraic Methods (Chapter 5) 
– Statistical Methods (Chapter 6) 
– Spectral Methods (Chapter 7) 
– Sparse and Low-Rank Methods (Chapter 8) 

• Part III: Applications 
– Image Representation (Chapter 8) 
– Image Segmentation (Chapter 9) 
– Motion Segmentation (Chapter 10)
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http://link.springer.com.proxy1.library.jhu.edu 
 
http://www.springer.com/us/book/
9780387878102 
 
https://www.amazon.com/dp/0387878106/

Interdisciplinary Applied Mathematics 40

Generalized 
Principal 
Component 
Analysis

René Vidal
Yi Ma
S. Shankar Sastry

http://link.springer.com.proxy1.library.jhu.edu
http://www.springer.com/us/book/9780387878102
https://www.amazon.com/dp/0387878106/


Principal Component Analysis (PCA)
• Given a set of points lying in one subspace, identify 

– Geometric PCA: find a subspace S passing through them 
– Statistical PCA: find projection directions that maximize the variance 

• Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36) 

• Applications: 
– Signal/image processing, computer vision (eigenfaces), machine 

learning, genomics, neuroscience (multi-channel neural recordings)
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Application to Face Classification
• Problem: 

– Given face images with labels, use them to classify new face images 

• Challenges: 
– Corruptions: occlussions, disguise  
– Face detection 
– Pose variations 
– Light variations 

• Subspace-based approaches: 
– Face images live in a subspace

 ?

W Zhao, R Chellappa, PJ Phillips, A Rosenfeld. Face recognition: A literature survey. ACM computing surveys, 2003. 
M. Turk and A. Pentland. "Eigenfaces for recognition". Journal of Cognitive Neuroscience 3 (1): 71–86, 1991. 
PN Belhumeur, JP Hespanha, DJ Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. PAMI 1997. 
PJ Phillips, H Moon, S Rizvi, PJ Rauss, The FERET evaluation methodology for face-recognition algorithms. TPAMI, 2000.



Robust Principal Component Analysis
• Missing Entries 

• Corrupted Entries 

• Outliers
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Low-Rank Matrix Recovery and Completion via Convex Optimization

Welcome!

Credits People

This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
engineering problems where our techniques have been used to achieve state-of-the-art performance. 

Credits

This website is maintained by the research group of Prof. Yi Ma at the University of Illinois at Urbana-Champaign. This
work was partially supported by the grants: NSF IIS 08-49292, NSF ECCS 07-01676, ONR N00014-09-1-0230, ONR
N00014-09-1-0230, NSF CCF 09-64215, NSF ECCS 07-01676, and NSF IIS 11-16012. Any opinions, findings, and
conclusions or recommendations expressed in our publications are those of the respective authors and do not necessarily
reflect the views of the National Science Foundation or Office of Naval Research.

Please direct your comments and questions to the webmaster - Kerui Min.
Top of Page

People



NonLinear PCA and Manifold Learning
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Generalized Principal Component Analysis
• Given a set of points lying in multiple subspaces, identify 

– The number of subspaces and their dimensions 
– A basis for each subspace 
– The segmentation of the data points 

• “Chicken-and-egg” problem 
– Given segmentation, estimate subspaces 
– Given subspaces, segment the data 

• Challenges 
– Noise 
– Missing entries 
– Outliers



• Lossy image representation

Applications of GPCA
• Face clustering and classification
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Hybrid Linear Models 0 Versus Linear Models
A single linear model

stack
Linear

Hybrid linear

Hybrid linear models

stack

• Motion segmentation • DT segmentation • Video segmentation



Generalized Principal Component Analysis
• Iterative methods 

– K-subspaces (Bradley-Mangasarian ’00, Kambhatla-Leen ’94,  
Tseng’00, Agarwal-Mustafa ’04, Zhang et al. ’09, Aldroubi et al. ’09) 

• Probabilistic methods 
– Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04,  

Kanatani ’04, Archambeau et al. ’08, Chen ’11) 
– Agglomerative Lossy Compression  

(Ma et al. ’07, Rao et al. ’08) 
– RANSAC (Leonardis et al.’02, Yang et al. ’06, Haralik-Harpaz ’07) 

• Algebraic methods 
– Factorization (Boult-Brown’91, Costeira-Kanade’98, Gear’98, Kanatani et al.’01, Wu et al.’01)  

– Generalized PCA: (Shizawa-Maze ’91, Vidal et al. ’03 ’04 ’05, Huang et al. ’05, Yang et al. 
’05, Derksen ’07, Ma et al. ’08, Ozay et al. ‘10) 

• Spectral clustering-based methods (Zelnik-Manor ’03, Yan-Pollefeys ’06, 
Govindu ’05, Agarwal et al. ’05, Fan-Wu ’06, Goh-Vidal ’07, Chen-Lerman ’08, Elhamifar-Vidal ’09 ’10, 
Lauer-Schnorr ’09, Zhang et al. ’10, Liu et al. ’10, Favaro et al. ’11, Candes ’12)


