
Exam 1: Unsupervised Learning (600.692)

Instructor: René Vidal

April 3, 2017

1. Model Selection for PCA. Assume you are given a matrix X ∈ RD×N whose columns lie approximately in a
low-dimensional subspace of unknown dimension d < D. Let X = UXΣXV

>
X be the SVD of X . You would

like to approximate X by a low-rank matrix A ∈ RD×N and you consider the following optimization problem

min
A

‖X −A‖2F + τ‖A‖2∗, (1)

where τ > 0 is a fixed parameter.

(a) (15 points) Let A = UAΣAV
>
A be the SVD of A. Show that an optimal solution for UA and VA with ΣA

held constant is given by UA = UX and VA = VX .

Solution: If ΣA is constant, so is ‖A‖∗ = σ(A)>1, where σ(A) ∈ RD is the vector of singular values of
A. Thus the problem reduces to minimizing the first term of the objective with respect to UA and VA only,
i.e.,

min
UA,VA

‖X −A‖2F ≡ min
UA,VA

‖UXΣXV
>
X − UAΣAV

>
A ‖2F

≡ min
UA,VA

‖ΣX − U>XUAΣAV
>
A VX‖2F (Frobenius norm is invariant under rotation)

≡ min
U,V
‖ΣX − UΣAV

>‖2F (U>XUA = U, V >X VA = V )

≡ min
U,V
‖ΣX‖2F − 2〈ΣX , UΣAV

>〉+ ‖UΣAV
>‖2F

≡ min
U,V
‖ΣX‖2F − 2〈ΣX , UΣAV

>〉+ ‖ΣA‖2F (U, V are orthogonal matrices)

≡ max
U,V
〈ΣX , UΣAV

>〉 (omitting constant terms w.r.t. U and V )

Now, using Von Neumann’s theorem we have that 〈ΣX , UΣAV
>〉 ≤

∑min(D,N)
i=1 σi(X)σi(A), where

σi(X) and σi(A), i = 1, 2, . . . , are the singular values of X and A, respectively, and that equality occurs
(i.e., the maximum with respect to U and V is achieved) when U = I and V = I , i.e.,

U = I, V = I =⇒ U>XUA = I, V >X VA = I =⇒ UA = UX , VA = VX .

(b) (35 points) Let σ̄d(X) be the average of the top d singular values of X , where d is the largest integer such
that σd(X) > τd

1+τd σ̄d(X). Show that an optimal solution for A is:

A = UXSµ(ΣX)V >X where µ =
τd

1 + τd
σ̄d(X) (2)

and Sµ(Y ) = argminA
1
2‖Y −A‖

2
F + µ‖A‖1 is the shrinkage thresholding operator.

Hint: Show that an optimal solution for ΣA satisfies (Id + τ11>)σ(A) = σ1:d(X), where σ(A) ∈ Rd is
the vector of singular values of A (similarly for X). Show also that (Id + τ11>)−1 = (Id − τ

1+τd11
>).
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Solution #1: Let us first show that for any d, (Id + τ11>)−1 = (Id − τ
1+τd11

>), which is equivalent to
showing that (Id + τ11>)(Id − τ

1+τD11>) = I . We have

(I + τ11>)(I − τ

1 + τd
11>) = I − τ

1 + τd
11> + τ11> − τ2

1 + τd
11>11>

= I − τ

1 + τd
11> + τ11> − τ2d

1 + τd
11>

= I −
( τ

1 + τd
− τ +

dτ2

1 + τd

)
11>

= I (This shows one of the hints).

Now, following the results from part (a) we have that

min
ΣA≥0

‖X −A‖2F + τ‖A‖2∗ ≡ min
ΣA≥0

‖ΣX − ΣA‖2F + τ‖ΣA‖2∗ ≡ min
σ(A)≥0

‖σ(X)− σ(A)‖22 + τ‖σ(A)‖21

≡ min
σ(A)≥0

∑
i

(σi(X)− σi(A))2 + τ
(∑

i

σi(A)
)2

.

For k = 1, . . . ,K
.
= min(D,N), let λk ≥ 0 be the KKT multiplier for the constraint σk(A) ≥ 0. The

KKT conditions are given by

∀k = 1, . . .K, λk ≥ 0, σk(A) ≥ 0, λkσk(A) = 0, 2(σk(A)− σk(X)) + 2τ

K∑
i=1

σi(A)− λk = 0.

Let d = |{k : σk(A) > 0}| be the number of nonzero σk(A). For k = 1, . . . , d we have λk = 0, hence

σk(A) + τ

d∑
i=1

σi(A) = σk(X) =⇒ (Id + τ11>)σ(A) = σ1:d(X) (This shows one of the hints)

=⇒ σ(A) = (Id −
τ

1 + τd
11>)σ1:d(X)

=⇒ σk(A) = σk(X)− τ

1 + τd

d∑
i=1

σi(X) =⇒ ΣA = Sµ(ΣX).

Therefore, d is the largest integer such that σk(X) > τ
1+τd

∑d
i=1 σi(X) for all k = 1, . . . , d. Since the

sequence σk(X) is non increasing, so is the sequence σk(A), and hence d is the largest integer such that
σd(X) > τ

1+τd

∑d
i=1 σi(X). Note that such an integer exists since for d=1 we have σ1(X)> τ

1+τ σ1(X).
On the other hand, for k = d+ 1, . . . ,K we have that λk ≥ 0, because

λk
2

= τ

d∑
i=1

σi(A)− σk(X) = τ
( d∑
i=1

σi(X)− τd

1 + τd

d∑
i=1

σi(X)
)
− σk(X)

=
τ

1 + τd

d∑
i=1

σi(X)− σk(X) ≥ 0.

Therefore, the optimal solution for the optimization problem is given by

A = UAΣAV
>
A = UXSµ(ΣX)V >X . (3)

Solution #2: Recall that if A = UΣV > is the rank r compact SVD of A, then ∂‖A‖∗ = UV > + W ,
where U ∈ RD×r, V ∈ RN×r and W ∈ RD×N are such that U>W = 0, WV = 0 and ‖W‖2 ≤ 1.
Let us decompose the SVD of X as UX = [U1 U2], VX = [V1 V2] and ΣX = diag(Σ1,Σ2), where
U1 ∈ RD×r, U2 ∈ RD×(D−r), Σ1 ∈ Rr×r, Σ2 ∈ R(D−r)×(N−r), V1 ∈ RN×r and V2 ∈ RN×(N−r), so
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that X = U1Σ1V
>
1 + U2Σ2V

>
2 . Since the objective function is strictly convex, the global minimizer is

unique and must satisfy

A−X + τ‖A‖∗∂‖A‖∗ 3 0 ⇐⇒ A+ τ‖A‖∗∂‖A‖∗ 3 X. (4)

To find the global minimizer, we must find (U,Σ, V,W ) such that U>W = 0, WV = 0, ‖W‖2 ≤ 1 and

UΣV > + τ‖Σ‖∗(UΣV > +W ) = X

U(Σ + τ‖Σ‖∗Ir)V > + τ‖Σ‖∗W = U1Σ1V
>
1 + U2Σ2V

>
2 .

A candidate solution is U = U1, Σ + τ‖Σ‖∗Ir = Σ1, V = V1, and τ‖Σ‖∗W = U2Σ2V
>
2 , from which

we have

‖Σ‖∗ + τ‖Σ‖∗r = ‖Σ1‖∗ =⇒ ‖Σ‖∗ =
‖Σ1‖∗
1 + τr

=⇒ Σ = Σ1 −
τ

1 + τr
‖Σ1‖∗Ir

W =
U2Σ2V

>
2

τ‖Σ‖∗
=
U2Σ2V

>
2

τ‖Σ1‖∗
(1 + τr) =⇒ ‖W‖2 =

σr+1(X)

τ‖Σ1‖∗
(1 + τr) ≤ 1 =⇒ σr+1(X) ≤ τ

1 + τr
‖Σ1‖∗.

For this solution, the objective function reduces to the following function of r

‖A−X‖2F + τ‖A‖2∗ = τ2‖Σ‖2∗(‖Σ‖2∗ +
‖Σ2‖2∗
τ2‖Σ‖2∗

) + τ‖Σ‖2∗ = τ2‖Σ‖4∗ + ‖Σ2‖2∗ + τ‖Σ‖2∗

=
τ2

(1 + τr)2
‖Σ1‖4∗ +

τ

1 + τr
‖Σ1‖2∗ + ‖Σ2‖2∗,

which is minimized by the largest possible integer d such that σd(X) > τ
1+τd‖Σ1‖∗ = τ

1+τd

∑d
i=1 σi(X)

.
=

µ. Such an integer exists, since for d = 1 we have σ1(X) > τ
1+τ σ1(X).

Therefore, the optimal solution for the optimization problem is given by

A = UΣV > = U1(Σ1 − µId)V >1 = UXSµ(ΣX)V >X . (5)

(c) (5 points) What is the estimate of the subspace dimension given by the above model selection approach?
What is the estimate when τ →∞?

Solution: The estimate of the subspace dimension is the number of singular values of X that are bigger
than or equal to µ = τd

1+τd σ̄d(X). When τ → ∞, d = 0 because the condition σ1(X)> τ
1+τ σ1(X) is no

longer valid.

(d) (5 points) Discuss the advantages of this model selection approach versus the one discussed in class

min
A

1

2
‖X −A‖2F + τ‖A‖∗, (6)

where an optimal solution is given by A = UXSτ (ΣX)V >X . Hint: consider the case τ →∞.

Solution: The approach discussed in class uses a fixed threshold to estimate the dimension, which is
independent on scalings of the data. The approach proposed here has the advantage that it uses a data-
dependent threshold that is adapted to scalings of the data, which may facilitate tuning the τ parameter.

2. PCA with missing entries and outliers. Let L0 ∈ RD×N be a low-rank matrix, i.e., rank(L0)� min{D,N}.
LetE0 ∈ RD×N be a sparse matrix, i.e., its number of nonzero entries is ‖E0‖0 � ND. Suppose you are given
a subset of the entries of X = L0 + E0 ∈ RD×N indexed by a set Ω ⊆ {1, . . . , D} × {1, . . . , N}. To recover
L0 and E0 you consider the optimization problem, where τ > 0 and λ > 0 are fixed parameters:

min
L,E

1

2
‖L‖2F + τ‖L‖∗ +

λ

2
‖E‖2F + λτ‖E‖1 such that PΩ(X) = PΩ(L+ E). (7)
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(a) (30 points) Write down the Lagrangian for this problem and use it to give a detailed derivation of the
following (dual ascent) algorithm for solving the above problem

Lk+1 = Dτ (Zk) (8)

Ek+1 = Sτ (Zk/λ) (9)

Zk+1 = Zk + δkPΩ(X − Lk+1 − Ek+1), (10)

where Sτ (Y ) = argminA
1
2‖Y − A‖2F + τ‖A‖1 is the shrinkage thresholding operator, Dτ (Y ) =

argminA
1
2‖Y − A‖2F + τ‖A‖∗ is the singular value thresholding operator, Z ∈ RD×N is the matrix

of Lagrange multipliers initialized as Z0 = 0, and δk > 0 is a sequence of real numbers.

Solution: The Lagrangian is formulated as

L(L,E,Z) =
1

2
‖L‖2F + τ‖L‖∗ +

λ

2
‖E‖2F + λτ‖E‖1 + 〈Z,PΩ(X)− PΩ(L+ E)〉.

Solving for L with E and Z fixed we obtain

min
L
L(L,E,Z) ≡ min

L
(
1

2
‖L‖2F + τ‖L‖∗ − 〈Z,PΩ(L)〉)

≡ min
L

(
1

2
‖L‖2F + τ‖L‖∗ − 〈PΩ(Z), L〉)

≡ min
L

(
1

2
‖L‖2F + τ‖L‖∗ − 〈PΩ(Z), L〉)

≡ min
L

(
1

2
‖PΩ(Z)− L‖2F + τ‖L‖∗ − ‖PΩ(Z)‖2F )

≡ min
L

(
1

2
‖PΩ(Z)− L‖2F + τ‖L‖∗)

The solution to the above problem is given by Lk+1 = minL L(L,Ek, Zk) = Dτ (PΩ(Zk)) = Dτ (Zk)
(update only observed values)
Solving for E with L and Z fixed we obtain

min
E
L(L,E,Z) =⇒ min

E
(
λ

2
‖E‖2F + τλ‖E‖1 − 〈Z,PΩ(E)〉)

=⇒ min
E

(
λ

2
‖E‖2F + τλ‖E‖1 − 〈PΩ(Z), E〉)

=⇒ min
E

(
1

2
‖E‖2F + τ‖E‖1 − 〈

1

λ
PΩ(Z), E〉)

=⇒ min
E

(
1

2
‖ 1

λ
PΩ(Z)− E‖2F + τ‖E‖1 − ‖PΩ(Z)‖2F )

=⇒ min
E

(
1

2
‖ 1

λ
PΩ(Z)− E‖2F + τ‖E‖1)

The solution to the above problem is given byEk+1 = minE L(Lk, E, Zk) = Sτ ( 1
λPΩ(Zk)) = Sτ ( 1

λZ
k)

(update only observed values)

The update of Z is given by gradient descent

Zk+1 = Zk + δk
∂L(Lk+1, Ek+1, Z)

∂Z
|Z=Zk

= Zk + δkPΩ(X − Lk+1 − Ek+1)

(b) (10 points) What parameter should be increased to make L low rank and make E sparse? Can you guess
sufficient conditions on L0 and E0 under which L∗ = L0 and E∗ = E0 with overwhelming probability.

Solution: To make L low rank we should increase τ . To make E sparse we should increase λτ . The
conditions for correct recovery should require L0 to be τ incoherent w.r.t the set of sparse matrices and Eo
should be sufficiently sparse.
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