Exam 2: Unsupervised Learning (600.692)

Instructor: René Vidal

May 12, 2017

1. **Manifold Learning.** Let $\{x_j \in \mathbb{R}^D\}_{j=1}^N$ be a set of points that lie approximately in a manifold of dimension d embedded in \mathbb{R}^D . Imagine you have applied KPCA with kernel κ and LLE with K-NN to the data. Assume now you are given a new point $x \in \mathbb{R}^D$ and you wish to find its corresponding point $y \in \mathbb{R}^d$ according to KPCA and LLE. How would you compute $y \in \mathbb{R}^d$ without applying KPCA or LLE from scratch to the N + 1 points? Under what conditions the solution you propose is equivalent to applying KPCA or LLE to the N + 1 points?

ANSWER: In the case of PCA, recall that given a subspace with parameters μ_N and U_N estimated from the N data points, the low-dimensional coordinates associated with a new point \boldsymbol{x} are given by $\boldsymbol{y} = U_N^{\top}(\boldsymbol{x} - \boldsymbol{\mu}_N)$. Therefore, \boldsymbol{y} can be estimated directly without having to recompute the subspace anew. Now, if we choose to recompute $\boldsymbol{\mu}$ and U from the N + 1 points including $x_{N+1} \doteq \boldsymbol{x}$, the new mean will be given by

$$\boldsymbol{\mu}_{N+1} = \frac{1}{N+1} \sum_{j=1}^{N+1} \boldsymbol{x}_j = \frac{1}{N+1} (\sum_{j=1}^N \boldsymbol{x}_j + \boldsymbol{x}_{N+1}) = \frac{N}{N+1} \boldsymbol{\mu}_N + \frac{1}{N+1} \boldsymbol{x}_{N+1}$$

which is equal to $\boldsymbol{\mu}_N$ only if $\boldsymbol{x}_{N+1} = \boldsymbol{\mu}_N$. In this case, the new covariance matrix $\Sigma_{N+1} = \frac{1}{N+1} \sum_{j=1}^{N+1} (\boldsymbol{x}_j - \boldsymbol{\mu}_{N+1}) (\boldsymbol{x}_j - \boldsymbol{\mu}_{N+1})^\top = \frac{1}{N+1} \sum_{j=1}^{N+1} (\boldsymbol{x}_j - \boldsymbol{\mu}_N) (\boldsymbol{x}_j - \boldsymbol{\mu}_N)^\top = \frac{N}{N+1} \Sigma_N + \frac{1}{N+1} (\boldsymbol{x}_{N+1} - \boldsymbol{\mu}_N) (\boldsymbol{x}_{N+1} - \boldsymbol{\mu}_N)^\top$ reduces to $\frac{N}{N+1} \Sigma_N$, hence the top *d* eigenvectors of Σ_N and Σ_{N+1} are the same, and so $U_{N+1} = U_N$.

In the case of KPCA, recall from Mercer's theorem that given a kernel κ that satisfies some suitable conditions, there exists an embedding ϕ such that $\kappa(\boldsymbol{x}, \boldsymbol{y}) = \phi(\boldsymbol{x})^{\top} \phi(\boldsymbol{y})$. We can use this embedding to define the mean embedded vector $\bar{\phi}_N = \frac{1}{N} \sum \phi(\boldsymbol{x}_j)$ and the embedded data matrix $\Phi = [\phi(\boldsymbol{x}_1) - \bar{\phi}_N, \dots, \phi(\boldsymbol{x}_N) - \bar{\phi}_N]$. It follows from (4.23) of the GPCA book that the low-dimensional coordinates of a new point \boldsymbol{x} can be computed as

$$\boldsymbol{y} = \boldsymbol{W}^{\top} \boldsymbol{\Phi}^{\top} (\boldsymbol{\phi}(\boldsymbol{x}) - \bar{\boldsymbol{\phi}}_N) = \boldsymbol{W}^{\top} \tilde{\kappa}_{\boldsymbol{x}},$$

where $W \in \mathbb{R}^{N \times d}$ is a matrix whose *i*th column, w_i , is the eigenvector of the centered kernel matrix $\tilde{\mathcal{K}} = \Phi^{\top} \Phi$ associated with its *i*th largest eigenvalue, λ_i , and normalized so that $||w_i|| = \lambda_i^{-2}$, and the vector $\tilde{\kappa}_x$ is defined as

$$\tilde{\kappa}_{\boldsymbol{x}} = \Phi^{\top}(\phi(\boldsymbol{x}) - \bar{\phi}_N) = [\tilde{\kappa}(\boldsymbol{x}_1, \boldsymbol{x}), \tilde{\kappa}(\boldsymbol{x}_2, \boldsymbol{x}), \dots, \tilde{\kappa}(\boldsymbol{x}_N, \boldsymbol{x})]^{\top} \in \mathbb{R}^N,$$

where $\tilde{\kappa}$ is the centered kernel

$$\tilde{\kappa}(\boldsymbol{x},\boldsymbol{y}) = (\phi(\boldsymbol{x}) - \bar{\phi}_N)^{\top} (\phi(\boldsymbol{y}) - \bar{\phi}_N) = \kappa(\boldsymbol{x},\boldsymbol{y}) - \frac{1}{N} \sum_{j=1}^N \kappa(\boldsymbol{x},\boldsymbol{x}_j) - \frac{1}{N} \sum_{i=1}^N \kappa(\boldsymbol{x}_i,\boldsymbol{y}) + \frac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N \kappa(\boldsymbol{x}_i,\boldsymbol{y}_j).$$

Therefore, in the case of KPCA we can compute the vector \boldsymbol{y} directly from the kernel matrix for N points. Alternatively, if we were to compute \boldsymbol{y} from the kernel matrix for N+1 points, the low-dimensional coordinate for the (N + 1)st point would not be the same, unless $\phi(\boldsymbol{x}_{N+1}) = \bar{\phi}_N$ in which case $\bar{\phi}_{N+1} = \bar{\phi}_N$ and $(\phi(\boldsymbol{x}_{N+1}) - \bar{\phi}_N)(\phi(\boldsymbol{x}_{N+1}) - \bar{\phi}_N)^{\top}$ does not affect the top d eigenvectors of the embedded covariance matrix. Now, in the case of LLE, recall that each data point is expressed approximately as an affine combination of its K-NN, i.e., $\boldsymbol{x}_j \approx \sum_{i=1}^N \boldsymbol{x}_i c_{ij}$, where $\sum_{j=1}^N c_{ij} = 1$ and $c_{ij} = 0$ if \boldsymbol{x}_i is not a K-NN of \boldsymbol{x}_j . Recall also that the calculation of the coefficients c_{ij} can be done locally, i.e., it depends on points \boldsymbol{x}_j and its K-NN, $\boldsymbol{x}_{j_1}, \boldsymbol{x}_{j_2}, \dots, \boldsymbol{x}_{j_K}$. Then, the low-dimensional coordinates are obtained so that $\boldsymbol{y}_j \approx \sum_{i=1}^N \boldsymbol{y}_i c_{ij}$. Therefore, given a new point \boldsymbol{x} , a simple method for obtaining its low-dimensional representation is to identify its K-NN, find its coefficients $c_{\cdot,N+1}$, and then define its low-dimensional representation as $\boldsymbol{y} = \sum_{i=1}^{N} \boldsymbol{y}_i c_{i,N+1}$. Suppose now that we apply LLE to the N + 1 points. Then, if the K-NN of the first N points do not change, then the coefficients c_{ij} do not change for $(i, j) \in N \times N$. The only new coefficients are those for the new point $c_{\cdot,N+1}$. Assume further that the point \boldsymbol{x}_{N+1} can be written as an exact linear combination of its K-NN, i,e,m there are $c_{\cdot,N+1}$ such that $\boldsymbol{x}_{N+1} = \sum c_{i,N+1} \boldsymbol{x}_i$. Then the reconstruction error is not affected by the new data point, and hence $\boldsymbol{y} = \sum_{i=1}^{N} \boldsymbol{y}_i c_{i,N+1}$.

2. K-Subspaces. Consider the objective function of the K-subspaces algorithm:

$$f(\{\boldsymbol{\mu}_i\}_{i=1}^n, \{U_i\}_{i=1}^n) = \sum_{j=1}^N \min_{i=1,\dots,n} \|(I - U_i U_i^\top)(\boldsymbol{x}_j - \boldsymbol{\mu}_i)\|^2.$$
(1)

Let $\{\mu_i^{(k)}\}_{i=1}^n, \{U_i^{(k)}\}_{i=1}^n$ be the estimates of the subspace parameters at the kth iteration of the K-subspaces algorithm. Show that the iterations of K-subspaces are such that

$$f(\{\boldsymbol{\mu}_{i}^{(k+1)}\}_{i=1}^{n}, \{U_{i}^{(k+1)}\}_{i=1}^{n}) \leq f(\{\boldsymbol{\mu}_{i}^{(k)}\}_{i=1}^{n}, \{U_{i}^{(k)}\}_{i=1}^{n}).$$

$$(2)$$

ANSWER: Let S_i denote the *i*th subspace, $d(\boldsymbol{x}_j, S_i) = \|(I - U_i U_i^{\top})(\boldsymbol{x}_j, \boldsymbol{\mu}_i)\|$ denote the distance from point \boldsymbol{x}_j to subspace S_i , and $S = \{S_i\}_{i=1}^n$ denote the collection of all subspaces. Then the objective function can be rewritten as $f(S) = \sum_{j=1}^N \min_{i=1,...,n} d(\boldsymbol{x}_j, S_i)^2$. Therefore, our goal is to prove that $f(S^{(k+1)}) \leq f(S^{(k)})$, where $S^{(k)}$ is the estimate of all subspaces at the *k*th iteration of *K*-subspaces. Now, recall that the *k*th iteration of *K*-subspaces consists of two steps: (1) finding the optimal subspaces $S^{(k+1)}$ given the current assignments of points to subspaces $w_{ij}^{(k)}$ and (2) finding the optimal assignments $w_{ij}^{(k+1)}$ given the subspaces $S^{(k+1)}$, that is

$$S^{(k+1)} = \underset{S}{\operatorname{argmin}} \sum_{j=1}^{N} \sum_{i=1}^{n} w_{ij}^{(k)} d(\boldsymbol{x}_j, S_i)^2 \quad \text{and} \quad w_{ij}^{(k+1)} = \begin{cases} 1 & i = \underset{\ell=1, \dots, n}{\operatorname{argmin}} d(\boldsymbol{x}_j, S_{\ell}^{(k+1)})^2 \\ 0 & \text{else.} \end{cases}$$

Now,

$$\begin{split} f(S^{(k+1)}) &= \sum_{j=1}^{N} \min_{i=1,\dots,n} d(\boldsymbol{x}_{j}, S_{i}^{(k+1)})^{2} = \sum_{j=1}^{N} \sum_{i=1}^{n} w_{ij}^{(k+1)} d(\boldsymbol{x}_{j}, S_{i}^{(k+1)})^{2} & \text{(by definition of } w_{ij}^{(k+1)}) \\ &\leq \sum_{j=1}^{N} \sum_{i=1}^{n} w_{ij}^{(k)} d(\boldsymbol{x}_{j}, S_{i}^{(k+1)})^{2} & \text{(because } w_{ij}^{(k+1)} \text{ are the best assignments of } \boldsymbol{x}_{j} \text{ to } S_{i}^{(k+1)}) \\ &\leq \sum_{j=1}^{N} \sum_{i=1}^{n} w_{ij}^{(k)} d(\boldsymbol{x}_{j}, S_{i}^{(k)})^{2} & \text{(because } S_{i}^{(k+1)} \text{ are the optimal subspaces given the assignments } w_{ij}^{(k)}) \\ &= f(S^{(k)}), \end{split}$$

which proofs the claim.

3. Low-Rank Subspace Clustering. Let $X = [x_1, \ldots, x_N] \in \mathbb{R}^{D \times N}$ be a data matrix whose columns are drawn from a union of *n* subspaces. Let $X = U\Sigma V^{\top}$ and $X = U_1\Sigma_1 V_1^{\top}$ be, respectively, the full and compact SVDs of *X*, with *V* partitioned as $[V_1, V_2]$, where $V_1 \in \mathbb{R}^{N \times r}$, $V_2 \in \mathbb{R}^{N \times (N-r)}$ and $\operatorname{rank}(X) = r$. Let us express each data point as a linear combination of all data points, i.e., for all j, $x_j = \sum_{i=1}^{N} x_i c_{ij}$, or equivalently $x_j = Xc_j$, where $c_j \in \mathbb{R}^N$. Let us now search for a matrix of coefficients $C = [c_1, \ldots, c_N] \in \mathbb{R}^{N \times N}$ that solves the following optimization problem:

$$\min_{C} \|C\|_{*} + \frac{\lambda}{2} \|C\|_{F}^{2} \text{ s.t. } X = XC \text{ and } C = C^{\top},$$
(3)

where $\lambda > 0$ is a parameter. Prove that $C^* = V_1 V_1^{\top}$.

Hint: We showed in class that the solutions to X = XC are of the form $C = V_1 V_1^\top + V_2 A$, for $A \in \mathbb{R}^{(N-r) \times N}$.

ANSWER: Since the solutions to X = XC are of the form $C = V_1V_1^\top + V_2A$ for some A, and C must also be symmetric, we have that $V_1V_1^\top + V_2A = V_1V_1^\top + A^\top V_2^\top \iff V_2A = A^\top V_2^\top$. Therefore, we must have that $A = \Sigma V_2^\top$ for some matrix $\Sigma \in \mathbb{R}^{(N-r) \times (N-r)}$. This implies that

$$C = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & \Sigma \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^\top$$

and so $||C||_* + \frac{\lambda}{2} ||C||_F^2 = r + ||\Sigma||_* + \frac{\lambda}{2} (r + ||\Sigma||_F^2)$. Therefore, the optimization problem in (3) thus reduces to $\min_{\Sigma} ||\Sigma||_* + \frac{\lambda}{2} ||\Sigma||_F^2$, whose optimal solution is $\Sigma = 0$. Therefore, $C = V_1 V_1^{\top}$ as claimed.