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1. Manifold Learning. Let {xj ∈ RD}Nj=1 be a set of points that lie approximately in a manifold of dimension
d embedded in RD. Imagine you have applied KPCA with kernel κ and LLE with K-NN to the data. Assume
now you are given a new point x ∈ RD and you wish to find its corresponding point y ∈ Rd according to KPCA
and LLE. How would you compute y ∈ Rd without applying KPCA or LLE from scratch to the N + 1 points?
Under what conditions the solution you propose is equivalent to applying KPCA or LLE to the N + 1 points?

ANSWER: In the case of PCA, recall that given a subspace with parameters µN and UN estimated from the
N data points, the low-dimensional coordinates associated with a new point x are given by y = U>N (x− µN ).
Therefore, y can be estimated directly without having to recompute the subspace anew. Now, if we choose to
recompute µ and U from the N + 1 points including xN+1

.
= x, the new mean will be given by

µN+1 =
1

N + 1

N+1∑
j=1

xj =
1

N + 1
(

N∑
j=1

xj + xN+1) =
N

N + 1
µN +

1

N + 1
xN+1,

which is equal to µN only if xN+1 = µN . In this case, the new covariance matrix ΣN+1 = 1
N+1

∑N+1
j=1 (xj −

µN+1)(xj−µN+1)> = 1
N+1

∑N+1
j=1 (xj−µN )(xj−µN )> = N

N+1ΣN + 1
N+1 (xN+1−µN )(xN+1−µN )>

reduces to N
N+1ΣN , hence the top d eigenvectors of ΣN and ΣN+1 are the same, and so UN+1 = UN .

In the case of KPCA, recall from Mercer’s theorem that given a kernel κ that satisfies some suitable conditions,
there exists an embedding φ such that κ(x,y) = φ(x)>φ(y). We can use this embedding to define the mean
embedded vector φ̄N = 1

N

∑
φ(xj) and the embedded data matrix Φ = [φ(x1) − φ̄N , . . . , φ(xN ) − φ̄N ]. It

follows from (4.23) of the GPCA book that the low-dimensional coordinates of a new pointx can be computed as

y = W>Φ>(φ(x)− φ̄N ) = W>κ̃x,

where W ∈ RN×d is a matrix whose ith column,wi, is the eigenvector of the centered kernel matrix K̃ = Φ>Φ
associated with its ith largest eigenvalue, λi, and normalized so that ‖wi‖ = λ−2

i , and the vector κ̃x is defined as

κ̃x = Φ>(φ(x)− φ̄N ) = [κ̃(x1,x), κ̃(x2,x), . . . , κ̃(xN ,x)]> ∈ RN ,

where κ̃ is the centered kernel

κ̃(x,y) = (φ(x)−φ̄N )>(φ(y)−φ̄N ) = κ(x,y)− 1

N

N∑
j=1

κ(x,xj)−
1

N

N∑
i=1

κ(xi,y)+
1

N2

N∑
i=1

N∑
j=1

κ(xi,yj).

Therefore, in the case of KPCA we can compute the vector y directly from the kernel matrix for N points.
Alternatively, if we were to compute y from the kernel matrix for N + 1 points, the low-dimensional coordinate
for the (N + 1)st point would not be the same, unless φ(xN+1) = φ̄N in which case φ̄N+1 = φ̄N and
(φ(xN+1)− φ̄N )(φ(xN+1)− φ̄N )> does not affect the top d eigenvectors of the embedded covariance matrix.

Now, in the case of LLE, recall that each data point is expressed approximately as an affine combination of
its K-NN, i.e., xj ≈

∑N
i=1 xicij , where

∑N
j=1 cij = 1 and cij = 0 if xi is not a K-NN of xj . Recall also

that the calculation of the coefficients cij can be done locally, i.e., it depends on points xj and its K-NN,
xj1 ,xj2 , . . . ,xjK . Then, the low-dimensional coordinates are obtained so that yj ≈

∑N
i=1 yicij . Therefore,

given a new point x, a simple method for obtaining its low-dimensional representation is to identify its K-NN,
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find its coefficients c·,N+1, and then define its low-dimensional representation as y =
∑N
i=1 yici,N+1. Suppose

now that we apply LLE to the N + 1 points. Then, if the K-NN of the first N points do not change, then the
coefficients cij do not change for (i, j) ∈ N ×N . The only new coefficients are those for the new point c·,N+1.
Assume further that the point xN+1 can be written as an exact linear combination of its K-NN, i,e,m there are
c·,N+1 such that xN+1 =

∑
ci,N+1xi. Then the reconstruction error is not affected by the new data point, and

hence y =
∑N
i=1 yici,N+1.

2. K-Subspaces. Consider the objective function of the K-subspaces algorithm:

f({µi}ni=1, {Ui}ni=1) =

N∑
j=1

min
i=1,...,n

‖(I − UiU>i )(xj − µi)‖2. (1)

Let {µ(k)
i }ni=1, {U

(k)
i }ni=1 be the estimates of the subspace parameters at the kth iteration of the K-subspaces

algorithm. Show that the iterations of K-subspaces are such that

f({µ(k+1)
i }ni=1, {U

(k+1)
i }ni=1) ≤ f({µ(k)

i }
n
i=1, {U

(k)
i }

n
i=1). (2)

ANSWER: Let Si denote the ith subspace, d(xj , Si) = ‖(I −UiU>i )(xj ,µi)‖ denote the distance from point
xj to subspace Si, and S = {Si}ni=1 denote the collection of all subspaces. Then the objective function can be
rewritten as f(S) =

∑N
j=1 mini=1,...,n d(xj , Si)

2. Therefore, our goal is to prove that f(S(k+1)) ≤ f(S(k)),
where S(k) is the estimate of all subspaces at the kth iteration of K-subspaces. Now, recall that the kth iteration
of K-subspaces consists of two steps: (1) finding the optimal subspaces S(k+1) given the current assignments
of points to subspaces w(k)

ij and (2) finding the optimal assignments w(k+1)
ij given the subspaces S(k+1), that is

S(k+1) = argmin
S

N∑
j=1

n∑
i=1

w
(k)
ij d(xj , Si)

2 and w
(k+1)
ij =

1 i = argmin
`=1,...,n

d(xj , S
(k+1)
` )2

0 else.

Now,

f(S(k+1)) =

N∑
j=1

min
i=1,...,n

d(xj , S
(k+1)
i )2 =

N∑
j=1

n∑
i=1

w
(k+1)
ij d(xj , S

(k+1)
i )2 (by definition of w(k+1)

ij )

≤
N∑
j=1

n∑
i=1

w
(k)
ij d(xj , S

(k+1)
i )2 (because w(k+1)

ij are the best assignments of xj to S(k+1)
i )

≤
N∑
j=1

n∑
i=1

w
(k)
ij d(xj , S

(k)
i )2 (because S(k+1)

i are the optimal subspaces given the assignments w(k)
ij )

= f(S(k)),

which proofs the claim.

3. Low-Rank Subspace Clustering. Let X = [x1, . . . ,xN ] ∈ RD×N be a data matrix whose columns are drawn
from a union of n subspaces. Let X = UΣV > and X = U1Σ1V

>
1 be, respectively, the full and compact SVDs

of X , with V partitioned as [V1, V2], where V1 ∈ RN×r, V2 ∈ RN×(N−r) and rank(X) = r. Let us express
each data point as a linear combination of all data points, i.e., for all j, xj =

∑N
i=1 xicij , or equivalently

xj = Xcj , where cj ∈ RN . Let us now search for a matrix of coefficients C = [c1, . . . , cN ] ∈ RN×N that
solves the following optimization problem:

min
C
‖C‖∗ +

λ

2
‖C‖2F s.t. X = XC and C = C>, (3)

where λ > 0 is a parameter. Prove that C∗ = V1V
>
1 .

Hint: We showed in class that the solutions toX = XC are of the formC = V1V
>
1 +V2A, forA ∈ R(N−r)×N .
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ANSWER: Since the solutions to X = XC are of the form C = V1V
>
1 + V2A for some A, and C must also

be symmetric, we have that V1V
>
1 + V2A = V1V

>
1 + A>V >2 ⇐⇒ V2A = A>V >2 . Therefore, we must have

that A = ΣV >2 for some matrix Σ ∈ R(N−r)×(N−r). This implies that

C =
[
V1 V2

] [I 0
0 Σ

] [
V1 V2

]>
and so ‖C‖∗ + λ

2 ‖C‖
2
F = r + ‖Σ‖∗ + λ

2 (r + ‖Σ‖2F ). Therefore, the optimization problem in (3) thus reduces
to minΣ ‖Σ‖∗ + λ

2 ‖Σ‖
2
F , whose optimal solution is Σ = 0. Therefore, C = V1V

>
1 as claimed.
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