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1. Manifold Learning. Let {z; € R” };V:I be a set of points that lie approximately in a manifold of dimension
d embedded in R”. Imagine you have applied KPCA with kernel x and LLE with K -NN to the data. Assume
now you are given a new point € R” and you wish to find its corresponding point y € R? according to KPCA
and LLE. How would you compute y € R? without applying KPCA or LLE from scratch to the N + 1 points?
Under what conditions the solution you propose is equivalent to applying KPCA or LLE to the N + 1 points?

ANSWER: In the case of PCA, recall that given a subspace with parameters p5 and Uy estimated from the
N data points, the low-dimensional coordinates associated with a new point x are given by y = U I\T,(a: —Ky).
Therefore, y can be estimated directly without having to recompute the subspace anew. Now, if we choose to
recompute ¢ and U from the N + 1 points including z ;1 = «, the new mean will be given by

I e R e
BNi1 = N+l J N+1) N+1 N+1 N+1,

which is equal to gt only if TN+1 = py- In this case, the new covariance matrix Xy 41 = 7 +1 ZN+1(

By (@) — NN+1) = N+1 EN+1( py) (@ —py)" = NLHEN + ﬁ(xNﬂ —py)(TN1— NN)T
reduces to NL_HE N, hence the top d elgenvectors of X and X 41 are the same, and so Uy 41 = Uy.

In the case of KPCA, recall from Mercer’s theorem that given a kernel « that satisfies some suitable conditions,
there exists an embedding ¢ such that x(z,y) = ¢(x) " $(y). We can use this embedding to define the mean
embedded vector ¢ = - > ¢(w;) and the embedded data matrix ® = [¢(z1) — @y, ..., d(xn) — Pyl It
follows from (4.23) of the GPCA book that the low-dimensional coordinates of a new point  can be computed as

y=W'o (¢(x)— ¢py) =W g,

where W € RV*? is a matrix whose ith column, w;;, is the eigenvector of the centered kernel matrix K=3T®
associated with its ¢th largest eigenvalue, \;, and normalized so that ||w;| = /\;2» and the vector &, is defined as

Ko = (I)T(¢( ) d)N) [ (iL‘l,:B),f{(:BQ,:I:), .- '7’%($N7w)]—r € RNv

where & is the centered kernel
) ) 1 1 N N
Aa,y) = (@(x) - ) (0(y) ~dn) = sl@.y) — 5 D klw.x)) = > wlziy)+ ZZ R, yj)-
i=1 i=1 j=1

Therefore, in the case of KPCA we can compute the vector y directly from the kernel matrix for /N points.
Alternatively, if we were to compute y from the kernel matrix for N + 1 points, the low-dimensional coordinate
for the (N 4 1)st point would not be the same, unless ¢(xny11) = ¢ in which case ¢y, = ¢y and
(d(xnys1) — Py)(d(xNi1) — Pp) T does not affect the top d eigenvectors of the embedded covariance matrix.
Now, in the case of LLE, recall that each data point is expressed approximately as an affine combination of
its K-NN, i.e., x; ~ YN | a;c;;, where Z;\Ll cij = land ¢;; = 0 if x; is not a K-NN of x;. Recall also
that the calculation of the coefficients ¢;; can be done locally, i.e., it depends on points x; and its K-NN,

xj,,%j,,- -, %j.. Then, the low-dimensional coordinates are obtained so that y; ~ > ;" y,c;;. Therefore,
given a new point x, a simple method for obtaining its low-dimensional representation is to identify its /{-NN,



find its coefficients c. y1, and then define its low-dimensional representation as y = Zfil Y;Ci, N+1. Suppose
now that we apply LLE to the IV 4 1 points. Then, if the K-NN of the first /V points do not change, then the
coefficients ¢;; do not change for (¢, j) € N x N. The only new coefficients are those for the new point c. y1.
Assume further that the point &y can be written as an exact linear combination of its /{-NN, i,e,m there are
¢. n+1 such that €1 = > ¢; y+12,. Then the reconstruction error is not affected by the new data point, and

N
hence y = 22:1 Y,Ci, N+1.

. K-Subspaces. Consider the objective function of the K-subspaces algorithm:
N

Fpdio AUYS) = ) min (|(1 = UU7) (25 — o)1 (M
= i=1,...,n

Let {ugk ., {U }”:1 be the estimates of the subspace parameters at the kth iteration of the K -subspaces
algorithm. Show that the iterations of K-subspaces are such that

Ay U ) < re® Y (o). 2)

ANSWER: Let S; denote the ith subspace, d(z;, S;) = ||(I — U;U," )(x;, p;)|| denote the distance from point
x; to subspace S;, and S = {.S;}!_; denote the collection of all subspaces. Then the objective function can be

rewritten as f(S) = E;\Ll min;—1,_, d(z;,S;)?. Therefore, our goal is to prove that f(S*+1)) < f(SK),
where S(*) is the estimate of all subspaces at the kth iteration of K -subspaces. Now, recall that the kth iteration
of K-subspaces consists of two steps: (1) finding the optimal subspaces S**+1) given the current assignments

of points to subspaces w( ) and (2) finding the optimal assignments w( +) given the subspaces S(*+1), that is
1 4= argmind(z;, Sékﬂ))2
S = argmmZZw Yd(x;,8;)? and wz(]kﬂ) =T
j=1i=1 0 else.

Now,

N N
FEEH) =3 min d(a, e Z wi WV d(a;, 87V)? (by definition of w(i V)

= i=1,...,n =1 i1

N n
< Z Z wgf)d(wj7 Si(k“))2 (because wgﬁl) are the best assignments of ; to Si(kﬂ))

j=11i=1
N n
< Z wgf)d(acj, Si(k))2 (because Si(kH) are the optimal subspaces given the assignments wg?))
j=1i=1
= f(5™),
which proofs the claim.
. Low-Rank Subspace Clustering. Let X = [z1,...,zy] € RP*Y be a data matrix whose columns are drawn

from a union of n subspaces. Let X = UXV " and X = U; %, V;' be, respectively, the full and compact SVDs
of X, with V partitioned as [V, V3], where V; € RV*", V, € RV*(N=7) and rank(X) = r. Let us express
each data point as a linear combination of all data points, i.e., for all j, ¢; = Zf\;l x;cij, or equivalently
x; = Xcj, where ¢; € RY. Let us now search for a matrix of coefficients C' = [€1,...,¢eN] € RNXN that
solves the following optimization problem:

A
min || C. + §||O||2F st. X =XC and C =CT, 3)

where A > 0 is a parameter. Prove that C* = V; V.
Hint: We showed in class that the solutions to X = X C are of the form C = V; V," +V, A, for A € RW=m)xN



ANSWER: Since the solutions to X = X C are of the form C = V] VlT + V5 A for some A, and C' must also
be symmetric, we have that V;V;" + VoA = ViV;T + ATV, <= VoA = ATV,". Therefore, we must have
that A = XV," for some matrix ¥ € R(N=")X(N=7)_This implies that

c= W {é g} v v’

and 0 ||C|« + 3[|C|% =7 + |Z]|+ + 3 (r + ||||%). Therefore, the optimization problem in (3) thus reduces
to miny, || X[|. + 4(|2(|%, whose optimal solution is $ = 0. Therefore, C' = V; V" as claimed.



