
 Course 23: Multiple-View Geometry For Image-Based Modeling

Jana Kosecka (CS, GMU)
Yi Ma (ECE, UIUC)
Stefano Soatto (CS, UCLA)
Rene Vidal (Berkeley, John Hopkins)

Lecture A:
 Overview and Introduction

Stefano Soatto

Computer Science Department, ULCA http://www.cs.ucla.edu/~soatto

COURSE LECTURES

A. Overview and introduction (Soatto)
B. Preliminaries: geometry \& image formation (Soatto)
C. Image primitives \& correspondence (Soatto)
D. Two-view geometry (Kosecka)
E. Uncalibrated geometry and stratification (Ma)
F. Multiview recon. from points and lines (Vidal)
G. Reconstruction from scene knowledge (Ma)
H. Step-by-step building of 3-D model (Kosecka)
I. Multiple motion estimation \& segmentation (Vidal)

IMAGING and VISION: From 3D to 2D and then back again

GEOMETRY FOR TWO VIEWS

GEOMETRY FOR MULTIPLE VIEWS

MULTIVIEW GEOMETRY WITH SYMMETRY

APPLICATIONS: System Implementation, motion segmentation.

August 8, 2004 SI GGRAPH'04, Los Angeles

Reconstruction from images - The Fundamental Problem

Input: Corresponding "features" in multiple perspective images. Output: Camera pose, calibration, scene structure representation.

[^0]
Fundamental Problem: An Anatomy of Cases

August 8, 2004 SIGGRAPH'04, Los Angeles

VISION AND GEOMETRY

"The rise of projective geometry made such an overwhelming impression on the geometers of the first half of the nineteenth century that they tried to fit all geometric considerations into the projective scheme. ... The dictatorial regime of the projective idea in geometry was first successfully broken by the German astronomer and geometer Mobius, but the classical document of the democratic platform in geometry establishing the group of transformations as the ruling principle in any kind of geometry and yielding equal rights to independent consideration to each and any such group, is F. Klein's Erlangen program."
-- Herman Weyl, Classic Groups, 1952
Synonyms: Group = Symmetry

Rate: 10 Hz ; Accuracy: $5 \mathrm{~cm}, 4^{\circ}$

APPLICATIONS - Real-Time Sports Coverage

First-down line and virtual advertising

1. Small baselines versus large baselines
2. Point features versus line features

August 8, 2004 SIGGRAPH'04, Los Angeles

1. Two views versus multiple views
2. Discrete versus continuous motion
3. General versus planar scene
4. Calibrated versus uncalibrated camera
5. One motion versus multiple motions

Lecture B:
 Rigid-Body Motion and Imaging Geometry Stefano Soatto

Computer Science Department, ULCA http://www.cs.ucla.edu/~soatto

OUTLINE

3-D EUCLIDEAN SPACE \& RIGID-BODY MOTION

- Coordinates and coordinate frames
- Rigid-body motion and homogeneous coordinates

GEOMETRIC MODELS OF IMAGE FORMATION

- Pinhole camera model

CAMERA INTRINSIC PARAMETERS

- From metric to pixel coordinates

SUMMARY OF NOTATION

3-D EUCLIDEAN SPACE - Cartesian Coordinate Frame

Standard base vectors:
$e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \quad e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Coordinates of a point p in space:

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \in \mathbf{R}^{3}
$$

3-D EUCLIDEAN SPACE - Vectors

A "free" vector is defined by a pair of points (p, q) :
$\boldsymbol{X}_{p}=\left[\begin{array}{c}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right] \in \mathbb{R}^{3}, \boldsymbol{X}_{q}=\left[\begin{array}{c}X_{2} \\ Y_{2} \\ Z_{2}\end{array}\right] \in \mathbb{R}^{3}$,
Coordinates of the vector v :
$v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]=\left[\begin{array}{c}X_{2}-X_{1} \\ Y_{2}-Y_{1} \\ Z_{2}-Z_{1}\end{array}\right] \in \mathbb{R}^{3}$

3-D EUCLIDEAN SPACE - Inner Product and Cross Product

Inner product between two vectors:

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

$\langle u, v\rangle \doteq u^{T} v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
$\|u\| \doteq \sqrt{u^{T} u_{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{3}}$
Cross product between two vectors:
$u \times v \doteq \widehat{u} v, \quad u, v \in \mathbb{R}^{3}$
$\widehat{u}=\left[\begin{array}{ccc}0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0\end{array}\right] \in \mathbb{R}^{3 \times 3}$

August 8, 2004 SIGGRAPH'04, Los Angeles

RIGID-BODY MOTION - Rotation

Coordinates are related by: $\boldsymbol{X}_{c}=R \boldsymbol{X}_{w}$

Coordinates are related by: $\boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$,
Velocities are related by: $\quad \dot{\boldsymbol{X}}_{c}=\widehat{\omega} \boldsymbol{X}_{c}+v$.

RIGID-BODY MOTION - Homogeneous Coordinates

3-D coordinates are related by: $\boldsymbol{X}_{c}=R \boldsymbol{X}_{w}+T$,
Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \in \mathbb{R}^{4},
$$

Homogeneous coordinates/velocities are related by:

$$
\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{ll}
R & T \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right] \quad\left[\begin{array}{c}
\dot{X}_{c} \\
\dot{Y}_{c} \\
\dot{Z}_{c} \\
1
\end{array}\right]=\left[\begin{array}{ll}
\hat{\omega} & v \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]
$$

2-D coordinates $x=\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{f}{Z}\left[\begin{array}{l}X \\ Y\end{array}\right]$
Homogeneous coordinates

$$
\begin{gathered}
x \rightarrow\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\frac{1}{Z}\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right], \quad \boldsymbol{X} \rightarrow\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right], \\
Z\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]}_{K_{f}} \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{\Pi_{0}}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
\end{gathered}
$$

CAMERA PARAMETERS - Pixel Coordinates

$$
\boldsymbol{x}^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
s_{x} & s_{\theta} & o_{x} \\
0 & s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

pixel coordinates y^{\prime}

Pinhole camera Pixel coordinates

$$
\lambda \boldsymbol{x}=K_{f} \Pi_{0} \boldsymbol{X} \quad \boldsymbol{x}^{\prime}=K_{s} \boldsymbol{x}
$$

$\lambda \boldsymbol{x}^{\prime}=K_{s} K_{f} \Pi_{0} \mathbf{X}=\underbrace{\left[\begin{array}{ccc}f s_{x} & f s_{\theta} & o_{x} \\ 0 & f s_{y} & o_{y} \\ 0 & 0 & 1\end{array}\right]} \underbrace{\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]}\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$
Calibration matrix
(intrinsic parameters)

$$
K \underbrace{=K_{s} K_{f}} \quad \Pi_{0}
$$

Projection matrix
$\Pi=[K, 0] \in \mathbb{R}^{3 \times 4}$
Camera model $\quad \boldsymbol{\lambda} \boldsymbol{x}^{\prime}=\boldsymbol{K} \boldsymbol{\Pi}_{0} \boldsymbol{X}=\Pi \boldsymbol{X}$

CAMERA PARAMETERS - Radial Distortion

Nonlinear transformation along the radial direction

$\boldsymbol{x}=c+f(r)\left(\boldsymbol{x}_{d}-c\right), \quad r=\left\|\boldsymbol{x}_{d}-c\right\|$
$f(r)=1+a_{1} r+a_{2} r^{2}+a_{3} r^{3}+a_{4} r^{4}+\cdots$
Distortion correction: make lines straight

IMAGE FORMATION - Image of a Point

Homogeneous coordinates of a 3-D point p

$$
\boldsymbol{X}=[X, Y, Z, W]^{T} \in \mathbb{R}^{4}, \quad(W=1)
$$

Homogeneous coordinates of its 2-D image

$$
\boldsymbol{x}=[x, y, z]^{T} \in \mathbb{R}^{3}, \quad(z=1)
$$

Projection of a 3-D point to an image plane

$$
\lambda x=\Pi X
$$

$\lambda \in \mathbb{R}, \Pi=[R, T] \in \mathbb{R}^{3 \times 4}$

$$
\lambda x^{\prime}=\Pi X
$$

$$
\lambda \in \mathbb{R}, \Pi=[K R, K T] \in \mathbb{R}^{3 \times 4}
$$

IMAGE FORMATION - Image of a Line

Homogeneous representation of a 3-D line L
$\boldsymbol{X}=\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[\begin{array}{c}X_{o} \\ Y_{o} \\ Z_{o} \\ 1\end{array}\right]+\mu\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3} \\ 0\end{array}\right], \quad \mu \in \mathbb{R}$
Homogeneous representation of its 2-D image

$$
l=[a, b, c]^{T} \in \mathbb{R}^{3}
$$

Projection of a 3-D line to an image plane

$$
\begin{gathered}
l^{T} x=l^{T} \Pi X=0 \\
\Pi=[K R, K T] \in \mathbb{R}^{3 \times 4}
\end{gathered}
$$

SUMMARY OF NOTATION - Multiple Images

1. Images are all "incident" at the corresponding features in space;
2. Features in space have many types of incidence relationships;
3. Features in space have many types of metric relationships.

August 8, 2004 SIGGRAPH'04, Los Angeles

[^0]: August 8, 2004 SI GGRAPH'04, Los Angeles

