

Characterization of the Essential Matrix $\mathbf{x}_2^T \hat{T} \hat{T} \mathbf{x}_1 = \mathbf{0}$ • Essential matrix $E = \hat{T} R$ Special 3x3 matrix $\mathbf{x}_2^T \begin{bmatrix} e_1 & e_2 & e_2 \\ e_4 & e_5 & e_6 \\ e_7 & e_8 & e_9 \end{bmatrix} \mathbf{x}_1 = \mathbf{0}$ **Theorem 1a (Essential Matrix Characterization)**A non-zero matrix E is an essential matrix iff its SVD: $E = U \sum V^T$
satisfies: $\Sigma = diag([\sigma_1, \sigma_2, \sigma_3])$ with $\sigma_1 = \sigma_2 \neq 0$ and $\sigma_3 = 0$
and $U, V \in SO(3)$

