etry
ure D)

Jana Kosecka
Department of Computer Science
George Mason University
http://www.cs.gmu.edu/~kosecka

Given two views of the scene
recover the unknown camera

displacement and 3D scene
01 structure

02
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- 3Dpoints X =[X,Y,Z,W]T eR* (W=1)
- Image points x = [z,y,2]T € R3, (2 =1)
- Perspective Projection AX — X
— _ X _Y
- Rigid Body Motion M = [R,T] € ®3*4

< Rigid Body Motion + Projective projection

Ax = NX = [R, 71X
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)\2X2 = RA:[X]_ + 7T
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-d Motion Recovery

Euclidean transformation
Aoxo = RA\xq + T

measurements unknowns
Y7y I =7 (R, T1, X)||2 4 ||xh — (R, T2, X))||2

Find such Rotation and Translation and Depth that
the reprojection error is minimized

Two views — 200 points

6 unknowns — Motion 3 Rotation, 3 Translation
- Structure 200x3 coordinates
- (-) universal scale

Difficult optimization problem
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Epipolar Geometry

}\QXQ - R)\]_Xl + T

correspondences

(R.T)
< Algebraic Elimination of Depth [Longuet-Higgins '81]:
xy LBx1 =0
E
= Essential matrix E=TR
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= Epipolar lineslq, i>

xgExl =0

= Epipoles e1. e

E=TR

correspondences

l1 ~ ETx5 lszi = lo ~ Exq
Fei = l;rez = esET =0

SIGRAPH 2004

-n of the Essential Matrix

T —
x5TRx1 =0
= Essential matrix & = T'R  Special 3x3 matrix

€1 €2 €2
Xg €4 €5 €g | X1 — 0
€r €g €9

Theorem 1a (Essential Matrix Characterization)
A non-zero matrix E is an essential matrix iff its SVD: E = UXV7T

satisfies: > = diag([o1,02,03]) withoy =02 #0 ando3z =0
and U,V € SO(3)
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_e Essential Matrix

e Estimate Essential matrix F — TR

= Decompose Essential matrix into [, 1"
ngRxl =0

e Given n pairs of image correspondences:
« Find such Rotation and Translation that the epipolar error is
minimized
. T 1
7
ming 22-:1 sz Ele
= Space of all Essential Matrices is 5 dimensional

« 3 Degrees of Freedom — Rotation
= 2 Degrees of Freedom — Translation (up to scale )
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_y from the Essential Matrix

Essential matrix E=TR

Theorem 1a (Pose Recovery)
There are two relative poses (R.T) withT € R®and R € SO(3)

corresponding to a non-zero matrix essential matrix.
E=UxvT

(T1,R1) = (URz(+D)=UT, URL(+D)VT)
(I2,R2) = (URz(-3)=UT,URZL(-5)V")
0 -1

> =diag([1,1,0]) RA(+5)=|1 O
0 O

-Twisted pair ambiguity (Rp, T5) = (e“"Ry, —T})
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_ential Matrix

ngRxl =0
e Denotea = X1 ® X9

a = (7122, 1Y2, 122, Y172, Y1Y2, Y122, 21T, 21Y2, 2122]
_ T
E® = [e1,ea,e7,€2,€5,€g, €3, €6, €9]

- Rewrite alEs =0

« Collect constraints from all points

xE*=20

mingY7_; x5 Ex) mmm) mings||xE°||?
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_ential Matrix

ming Z?’:l X%TEX; - minEs | | XES | | 2
Solution

= Eigenvector associated with the smallest eigenvalue of XTX

- ifrank(xTx) <8  degenerate configuration =

Projection on to Essential Space

7

Theorem 2a (Project to Essential Manifold)
If the SVD of a matrix F € R3*3 is given by F = Udiag(o1,02,03)VT
then the essential matrix & which minimizes the

Frobenius distance ||E — F||§ is given by E = Udiag(s,0,0)VT
withg = 21102
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-ear algorithm

E = {TR|R € SO(2),T € 5%}
= Solve the LLSE problem:
ming Z?:l X‘%TEX‘;IL

xE*® = O followed by projection

« Project onto the essential manifold:

SVD: F = UZVT / E is 5 diml. sub. mnfid. in
> = diag(1,1,0)

E=Uux'vT

« Recover the unknown pose:

(T,R) = (URz(£5)=UT , URL(£D)VT)

SIGRAPH 2004

« 8-point linear algorithm

13

ose ecorey

« There are exactly two pairs (R, T) corresponding to each
essential matrix £ .

« There are also two pairs (R,T)corresponding to each
essential matrix —F .

= Positive depth constraint - used to disambiguate the
physically impossible solutions

* Translation has to be non-zero

= Points have to be in general position
- degenerate configurations — planar points
- quadratic surface
e Linear 8-point algorithm
< Nonlinear 5-point algorithms yield up to 10 solutions

SIGRAPH 2004
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3D structure recovery
AoXo = RA1x31 + T

« Eliminate one of the scale’s
NxbRx] +yxbT'=0, j=1,2,...,n
* Solve LLSE problem

MIN = [gng{ xAJQT] [{‘Yﬂ =0

If the configuration is non-critical, the Euclidean structure of then points
and motion of the camera can be reconstructed up to a universal scale.
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Point Feature Matching
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Camera Pose
and
Sparse Structure Recovery
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e Plane in first camera coordinate frame
aX +bY +cZ+d=0
1T~ —

&N X=1

AoxXo> = R\x1 + 7T

Aoxp = (R+ STNT)A1x;

X v HX]_

Planar homography

Linear mapping relating two

H = (R + éTNT) corresp(_)nding p_Ianar points
in two views
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-ion of H

- Algebraic elimination of depth xpHx1 =0

- Hy can be estimated linearly Hy, = \H

- Normalization of H = Hy, /o3

- Decomposition of H into 4 solutions H = (R + éTNT)

Ry = WU R3 =R, Ry = WoU¥ Ra = R>
N1=1/)§u1 N3=—N1 N2=17§u2 N4=—N2
IT = - RNy (313 =41 | 315 = (H — Ro)No | S1y = 31

H'TH=VEZVT V =[v,v0,v3] X = diag(c?,03,03)

. \/1—051)1—‘;-\/0%—11)3 \/1—057)1—\/0%—11)3
Ul = un

U1 = va,u1,v2u1], Wi = |Hvg, Huy, HuoHug),

Uz = [vo,un, Touz], Wa = [Hvo, Huo, HupHus).
N
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_ pose recovery for planar scene

o~

- Given at least 4 point correspondences X%iji =0
- Compute an approximation of the homography matrix H;’
- As nullspace of X .
xH =0 the rows of X are a=x{®x§
- Normalize the homography matrix
H = Hp/o3

- Decompose the homography matrix

HTH=vzvT
- Select two physically possible solutions imposing

positive depth constraint
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-Two view related by rotation only Asxo = RA1X1
xXs5Rx1 =0
- Mapping to a reference view

22
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-Structure Recovery — Two Views

- Two views — general motion, general structure
1. Estimate essential matrix
2. Decompose the essential matrix
3. Impose positive depth constraint
4. Recover 3D structure

- Two views — general motion, planar structure
1. Estimate planar homography
2. Normalize and decompose H
3. Recover 3D structure and camera pose

SIGRAPH 2004 23

12



