
Midterm Examination

CS 294-6: Advanced Topics in Computer Vision

April 11, 2003

HONOR SYSTEM: This examination is strictly individual. You are now allowed to talk, discuss,
exchange solutions, etc., with other fellow students. Furthermore, you are only allowed to use the book
and your class notes. You may only ask questions to the class instructors. Any violation of the honor
system, or any of the ethic regulations, will be immediately reported according to UC Berkeley regulations.

1. (30 points) Motion Estimation from Paracatadioptric Cameras. A paracatadioptric camera
combines a paraboloidal mirror of focal length 1/2 and focus at the origin

Z =
1

2
(X2 + Y 2 − 1) (1)

with an orthographic lens. Therefore, the projection (image) x = (x, y, 0)T of a 3-D point q =
(X, Y, Z)T is obtained by intersecting a parameterized ray with the equation of the paraboloid to
yield b (see Figure 1), and then orthographically projecting b onto the image plane Z = 0.

(a) (3 points) Show that the image of q = (X, Y, Z)T is given by
[
x
y

]
=

1

−Z +
√

X2 + Y 2 + Z2

[
X
Y

]
=

1

λ

[
X
Y

]
. (2)

(b) (3 points) The back-projection ray b ∈ R3 is a ray from the optical center in the direction of
the 3D point q ∈ R3 being imaged (see Figure 1). Show that λb = q, where b = (x, y, z)T and
z = (x2 + y2 − 1)/2.

(c) (3 points) Given two views {(xi
1, x

i
2)}N

i=1 related by a discrete motion (R, T ) ∈ SE(3), can
one apply the 8-point algorithm to the corresponding back-projection rays {(bi

1, b
i
2)}N

i=1 to
compute R and T ?

(d) (8 points) Assume that the camera undergoes a linear velocity v ∈ R3 and an angular velocity
ω ∈ R3, so that the coordinates of a static 3D point q ∈ R3 evolve in the camera frame as
q̇ = ω̂q + v. Show that the time derivative of the back-projection ray is given by

ḃ = −(I + beT
3 )b̂ω +

1

λ

(
I + beT

3 − bbT

1 + eT
3 b

)
v, (3)

and therefore the paracatadioptric optical flow is
[
ẋ
ẏ

]
=

[
xy z − x2 −y

−(z − y2) −xy x

]
ω +

1

λ

[
1 − ρx2 −ρxy (1 − ρz)x
−ρxy 1 − ρy2 (1 − ρz)y

]
v,

where ρ = 1/(1 + z).
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Figure 1: Showing the projection model for paracatadioptric cameras, and the back-projection ray b

associated with image point x.
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(e) (8 points) Derive a factorization method for estimating the motion of the camera and the
structure of the scene from multiple paracatadioptric views as follows. Let (xi, yi)

T , i =
1, . . . , N , be a pixel in the zeroth frame and let (ẋif , ẏif )T be its optical flow in frame f =
1, ..., F , relative to the zeroth frame. Define the optical flow matrix W ∈ R2N×F as:

W =




ẋ11 · · · ẋN1 ẏ11 · · · ẏN1

...
...

...
...

ẋ1F · · · ẋNF ẏ1F · · · ẏNF




T

(4)

and the matrix of rotational flows Ψ and the matrix of translational flows Φ as:

Ψ =

[
{xy} {z − x2} −{y}

−{z − y2} −{xy} {x}

]
∈ R

2N×3, Φ =

[
{ 1−ρx2

λ
} {−ρxy

λ
} { (1−ρz)x

λ
}

{−ρxy
λ

} { 1−ρy2

λ
} { (1−ρz)y

λ
}

]
∈ R

2N×3,

where, e.g., {xy} = (x1y1, · · · , xNyN )T ∈ RN . Show that the optical flow matrix W∈ R2N×F

satisfies

W = [Ψ Φ]2N×6

[
ω1 · · · ωF

v1 · · · vF

]

6×F

= SMT , (5)

where ωf and vf are the rotational and linear velocities, respectively, of the object relative
to the camera between the zeroth and the f -th frames. Show that rank(W ) ≤ 6. Under the
additional assumption that rank(W ) = 6, derive a factorization algorithm for estimating S,
M and {λ} ∈ RN from W .

2. (20 points) Motion Estimation from Multiple Views of Multiple Line Features. Following
the development of Section 8.3.3, derive a multiple view factorization algorithm for the line case
using the rank condition on Ml. The algorithm is in spirit similar to algorithm 8.1. for point
features, with the main difference being initialization. In particular, answer the following questions

(a) (3 points) Given Ml describe how to compute the distance and the direction of each line lj

assuming known motions Ri, Ti and hence known Ml.

(b) (3 points) Given the known 3-D line parameters show how to estimate [Ri, Ti] for i = 1, . . . n.

(c) (3 points) Integrate the above steps into an overall factorization based algorithm.

(d) (3 points) How many lines in general position are needed? Why a minimum of three line
features is needed?

(e) (8 points) Show how to initialize the algorithm from three views as follows.

i. Consider the trilinear constraint in (8.52)

(lT2 R2T
T
3 l3 − l

T
3 R3T

T
2 l2)̂l1 = 0

and show that it can be re-written as

(
lT2 G1l3 lT2 G2l3 lT2 G3l3

)
l̂1 = 0 (6)

where G1 = r1
2T

T
3 −T2r

1T
3 ∈ R

3×3, G2 = r2
2T

T
3 −T2r

2T
3 ∈ R

3×3 and G3 = r3
2T

T
3 −T2r

3T
3 ∈

R3×3, with R2 = [r1
2 r2

2 r3
2] and R3 = [r1

3 r2
3 r3

3].

ii. Show that one can solve linearly for the 27 unknowns in G1, G2 and G3 up to a scale
factor from 13 line features using (6).

iii. Show that GT
1 T̂2r

1
2 = GT

2 T̂2r
2
2 = GT

3 T̂2r
3
2 = 0. Thus, assuming that G1, G2 and G3 are

rank 2 matrices, the following matrix is known (with each column up to a scale factor)

H2 = [T̂2r
1
2 T̂2r

2
2 T̂2r

3
2].

iv. Show that the range of H2 is the same as the range of the essential matrix E2 = T̂2R2

and that one can obtain E2 from the SVD of H2. Outline a similar procedure to obtain
E3 = T̂3R3 from the right null space of G1, G2 and G3.

v. Show that one can now recover (R2, T2) and (R3, T3) using the last step in the 8-point
algorithm.
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3. (20 points) Segmentation of Planar Motions. Let {(xj , yj) ∈ R2 × R2}N
j=1 be a given set of

corresponding points in the XY plane. Each point yj is obtained by transforming xj according to
one of the following n planar motions {Mi : R2 → R2}n

i=1

x 7→ fi

[(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
x +

(
ui

vi

)]
. (7)

Each motion represents a rotation along Z by an amount θi ∈ S
1, a translation in the XY plane by

an amount (ui, vi)
T ∈ R2 and scaling by a factor fi ∈ R. Let z

j
1 ∈ C and z

j
2 ∈ C be the complex

representation of xj and yj , respectively, for j = 1, . . . , N .

(a) (6 points) Write (7) as a single equation relating z1 and z2 in which the original motion
parameters {(fi, θi, ui, vi)}n

i=1 become Ri = fi exp(
√
−1θi) ∈ C and Ti = fi(ui +

√
−1vi) ∈ C.

(b) (3 points) Show that the estimation of {(Ri, Ti)}n
i=1 is a GPCA problem with complex data.

What is the value of K? What are the data vectors? What are the normal vectors?

(c) (5 points) Is it possible to solve this GPCA problem with complex data the same way (with
just the obvious modifications) as GPCA for real data? If yes, why? If no, how can standard
GPCA be modified to deal with complex data?

(d) (3 points) Following standard GPCA (or the modified version in (c)), derive a formula for
the number of motions n and briefly say how to estimate the motion parameters {(Ri, Ti)}n

i=1.

(e) (3 points) Show how to recover the original motion parameters {(fi, θi, ui, vi)}n
i=1.

4. (30 points) Experimental Evaluation of the 8-point Algorithm. In this problem, you are
asked to test the performance of the 8-point algorithm for different levels of noise, baseline, depth
variation, and field of view.

(a) (6 points) Write a function X = points(N,fov,Zmin,Zmax) that generates a cloud of N
points uniformly distributed in front of the camera in a truncated pyramid specified by the
field of view and the depth variation, as illustrated in Figure 2. Also write a function x =

project(X) that projects a cloud of points X ∈ R3×N onto their perspective images x ∈ R3×N ,
without using a for loop.

Camera Center

Variation
Depth

Points

XY

Field of View

Z

Figure 2: Truncated pyramid used to generate the structure.

(b) (6 points) Generate N = 20 with a FOV of 60◦ and a depth variation from Zmin = 1 to
Zmax = 20 units of focal length. Project those 3D points onto two perspective images related
by motion (R, T ), where R is a randomly chosen rotation of 20◦ and T is a randomly chosen
translation with norm ‖T‖ = τZmin, where τ = 1. Add zero-mean Gaussian noise with
standard deviation σ = 0, 0.5, 1, 1.5, 2 pixels to the image data. When adding noise, use a
calibration matrix of K = [500 0 250; 0 500 250; 0 0 1]. For each noise level, run 100
trials of the 8-point algorithm (i.e. 100 randomly chosen 3D points and motions) and compute
the estimated rotation R̃ and translation T̃ . For each trial compute the error in rotation and
translation as

Rot. error = acos
( trace(RR̃T ) − 1

2

)
(degrees). (8)

Trans. error = acos
( T T T̃

‖T‖‖T̃‖

)
(degrees). (9)
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Plot of the mean error (over the trials) for both rotation and translation as a function of noise.
How does the error behave as a function of the noise level?

(c) (6 points) For σ = 1, plot the mean errors as a function of the baseline τ = 0.1, 0.4, 0.7, 1.0, 1.3.
What is the effect of τ in the performance of the algorithm? Explain.

(d) (6 points) For σ = 1, and τ = 1 plot the mean errors as a function of the depth variation
Zmax = 1.1, 5, 10, 15, 20, 25. What is the effect of Zmax in the performance of the algorithm?
Explain.

(e) (6 points) For σ = 1, τ = 1 and Zmax = 20 plot the mean errors as a function of field of view
FOV = 20, 40, 60, 80, 100◦. What is the effect of FOV in the performance of the algorithm?
Explain.

5. (10 points) Calibration with Partial Knowledge of the Structure and K. Consider a
camera with the calibration matrix

K =




f 0 0
0 f 0
0 0 1




where the only unknown parameter is the focal length f . Assume that the image of the center of
projection is known, the skew is zero and the aspect ratio is 1. Suppose you have a single view of the
rectangular planar structure, whose four end points in the world coordinate frame have following
coordinates X1 = [0, 0, 0, 1]T , X2 = [αb, 0, 0, 1]T , X2 = [0, b, 0, 1]T , X4 = [αb, b, 0, 1]T , where one
of the dimension of the plane b as well as the ratio α between the two sides of the rectangle are
unknown.

(a) Write down the projection equation for this special case relating the 3-D coordinates of the
planar points to their image projections.

(b) Show that the image coordinates x and the 3-D coordinates of points on the world plane are
in fact related by a 3 × 3 homography matrix of the following form

λx = H [X, Y, 1]T .

Write down the explicit form of H in terms of camera pose R, T and the intrinsic parameters
of the camera H .

(c) Assuming the known structure (up to scales α, b) describe an algorithm for recovering the
unknown homography H .

(d) Given H describe steps which would enable you to factor it and recover the unknown focal
length f and rotation R. Also recover translation T and ratio α up to a universal scale factor.

6. (5 points) 6-point Algorithm for the Recovery of Fundamental (Essential) Matrix. The
relationship between homography and Fundamental (Essential) matrix suggest a simple alternative
algorithm for recovery of the fundamental matrix (section 5.3.4). Outlines the steps of the algorithm
by assuming that you have available correspondences between at least 4 planar points and at least
two points which do not lie in the plane.
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