HW 1: Advanced Topics in Computer Vision (580.464)

Instructor: René Vidal, Phone: 410-516-7306, E-mail: rvidal@cis.jhu.edu

Due $02 / 15 / 05$ beginning of the class

1. Exercise 2.4 of MASKS.

2. Exercises 2.3 and 2.12 of MASKS. Do not use MATLAB or brute force in 2.12 part 1 .
3. (a) Show that $\widehat{\omega}^{2}=\omega \omega^{T}-\|\omega\|^{2} I$ and $\widehat{\omega}^{3}=-\|\omega\|^{2} \widehat{\omega}$.
(b) Show that the Lie bracket between $\widehat{\omega_{1}}$ and $\widehat{\omega_{2}}, L=\left[\widehat{\omega_{1}}, \widehat{\omega_{2}}\right]=\widehat{\omega_{1}} \widehat{\omega_{2}}-\widehat{\omega_{2}} \widehat{\omega_{1}}$, is a skew-symmetric matrix, i.e., $L=-L^{T}=\hat{\omega}$ for some $\omega \in \mathbb{R}^{3}$. Find a formula for ω as a function of ω_{1} and ω_{2}.
(c) Show that $\exp \left(\widehat{\omega_{1}}\right) \exp \left(\widehat{\omega_{2}}\right)=\exp (\widehat{\omega})$ for some $\omega \in \mathbb{R}^{3}$. Find a formula for ω as a function of ω_{1} and ω_{2}.
4. (a) Implement a MATLAB function called rodrigues.m that takes as an input either a 3-vector or 3vector and scalar or a 3×3 matrix and returns the corresponding rotation matrix or the 3 -vector (or 3 vector and scalar) corresponding to the rotation axis. You should be able to call the function in one of the following ways: $R=\operatorname{rodrigues}(\omega), R=\operatorname{rodrigues}(\omega, \theta), \omega=\operatorname{rodrigues}(R),[\omega, \theta]=$ rodrigues (R). In case both ω and θ are input (or output) follow the convention of enforcing $\|\omega\|=1$. You can check in MATLAB help how to use function with variable number of inputs and outputs by typing help nargin, help nargout.
(b) Implement a MATLAB function called skew.m that takes as an input either a 3 -vector or a 3×3 matrix and returns the corresponding skew-symmetric matrix or the 3 -vector corresponding to skew-symmetric matrix.
5. Exercise 3.4 of MASKS.
6. Exercise 3.10 of MASKS.
7. (a) Derive the equations of the motion field $\mathbf{u}=f(\omega, v)$, induced by a camera moving with linear and angular velocity ω, v for the spherical projection model.
(b) Derive the equations of the motion field of a planar surface $\mathbf{u}=f(\omega, v, \pi)$, where P is a 3-D plane $N^{T} \mathbf{X}=d$ with normal $N=[a, b, c]^{T}$ observed by a camera moving with linear and angular velocity ω, v. How well does the affine flow model approximates the motion field of a plane moving in 3D ?
8. (a) Implement a MATLAB function $\mathrm{x}=\operatorname{project}\left(\mathrm{X}\right.$,type) that takes a matrix $\mathrm{X} \in \mathbb{R}^{3 \times P}$ whose columns are points in \mathbb{R}^{3} and a type of projection type (orthographic, perspective, spherical or paracatadioptric) and returns the projection of these points $\mathrm{x} \in \mathbb{R}^{3 \times P}$ onto the image retina according to the given model. Your implementation should contain no for loops.
(b) Implement a MATLAB function $u=o p t f l o w(w, v, X, t y p e)$ that takes a rotational velocity w, a translational velocity v , a matrix $\mathrm{X} \in \mathbb{R}^{3 \times P}$ whose columns are points in \mathbb{R}^{3} and a type of projection type (orthographic, perspective, spherical or paracatadioptric) and returns the optical flow of these points $\mathrm{u} \in \mathbb{R}^{2 \times P}$ according to the given projection model. Your implementation should contain no for loops.
