HW 1: Advanced Topics in Computer Vision (580.464)

Instructor: René Vidal, Phone: 410-516-7306, E-mail: rvidal@cis.jhu.edu

Due 02/15/05 beginning of the class

1. Exercise 2.4 of MASKS.

- 2. Exercises 2.3 and 2.12 of MASKS. Do not use MATLAB or brute force in 2.12 part 1.
- 3. (a) Show that $\widehat{\omega}^2 = \omega \omega^T \|\omega\|^2 I$ and $\widehat{\omega}^3 = -\|\omega\|^2 \widehat{\omega}$.
 - (b) Show that the Lie bracket between $\widehat{\omega_1}$ and $\widehat{\omega_2}$, $L = [\widehat{\omega_1}, \widehat{\omega_2}] = \widehat{\omega_1}\widehat{\omega_2} \widehat{\omega_2}\widehat{\omega_1}$, is a skew-symmetric matrix, i.e., $L = -L^T = \hat{\omega}$ for some $\omega \in \mathbb{R}^3$. Find a formula for ω as a function of ω_1 and ω_2 .
 - (c) Show that $\exp(\widehat{\omega_1}) \exp(\widehat{\omega_2}) = \exp(\widehat{\omega})$ for some $\omega \in \mathbb{R}^3$. Find a formula for ω as a function of ω_1 and ω_2 .
- 4. (a) Implement a MATLAB function called rodrigues.m that takes as an input either a 3-vector or 3-vector and scalar or a 3×3 matrix and returns the corresponding rotation matrix or the 3-vector (or 3 vector and scalar) corresponding to the rotation axis. You should be able to call the function in one of the following ways: R = rodrigues(ω), R = rodrigues(ω, θ), ω = rodrigues(R), [ω, θ] = rodrigues(R). In case both ω and θ are input (or output) follow the convention of enforcing ||ω|| = 1. You can check in MATLAB help how to use function with variable number of inputs and outputs by typing help nargin, help nargout.
 - (b) Implement a MATLAB function called skew.m that takes as an input either a 3-vector or a 3×3 matrix and returns the corresponding skew-symmetric matrix or the 3-vector corresponding to skew-symmetric matrix.
- 5. Exercise 3.4 of MASKS.
- 6. Exercise 3.10 of MASKS.
- 7. (a) Derive the equations of the motion field $\mathbf{u} = f(\omega, v)$, induced by a camera moving with linear and angular velocity ω, v for the spherical projection model.
 - (b) Derive the equations of the motion field of a planar surface $\mathbf{u} = f(\omega, v, \pi)$, where P is a 3-D plane $N^T \mathbf{X} = d$ with normal $N = [a, b, c]^T$ observed by a camera moving with linear and angular velocity ω, v . How well does the affine flow model approximates the motion field of a plane moving in 3D ?
- 8. (a) Implement a MATLAB function x = project(X,type) that takes a matrix X ∈ ℝ^{3×P} whose columns are points in ℝ³ and a type of projection type (orthographic, perspective, spherical or paracatadioptric) and returns the projection of these points x ∈ ℝ^{3×P} onto the image retina according to the given model. Your implementation should contain no for loops.
 - (b) Implement a MATLAB function u = optflow(w,v,X,type) that takes a rotational velocity w, a translational velocity v, a matrix X ∈ ℝ^{3×P} whose columns are points in ℝ³ and a type of projection type (orthographic, perspective, spherical or paracatadioptric) and returns the optical flow of these points u ∈ ℝ^{2×P} according to the given projection model. Your implementation should contain no for loops.