
Midterm 1: Advanced Topics in Computer Vision (580.464)

Instructor: René Vidal

March 30, 2005

HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss,
exchange solutions, etc., with other fellow students. Furthermore, you are not allowed to use the book or
your class notes. You may only ask questions to the class instructor. Any violation of the honor system,
or any of the ethic regulations, will be immediately reported according to JHU regulations.

NAME: Signature:

CHEAT SHEET:

1. Brightness constancy constraint (BCC): I(x + u, y + v, t + 1)− I(x, y, t) = 0 ≈ Ixu + Iyv + It.

2. Two view geometry of a nonplanar scene: λ2x2 = λ1Rx1 + T =⇒ xT
2 T̂Rx1 = 0.

3. Two view geometry of a planar scene: λ1N
T x1 = d and λ2x2 = λ1Rx1 + T =⇒ x̂2Hx1 = 0,

where H = (R + TNT /d) is the so-called homography.

4. Lemma 1 If A is positive definite, then

max
Q∈SO(3)

trace(QA) = trace(A) (1)

Therefore, one solution to the optimization problem is Q = I.

5. Given B = AAT , then A can be computed up to a rotation via QR decomposition. If in addition
A is upper triangular, then A can be computed via Choleski decomposition.

6. Reprojection error: Let xfp ∈ R2 be the image of point Xp ∈ R3 in frame f . Let π : R3 → R2 be
a projection map. The reprojection error is

P∑
p=1

F∑

f=1

‖xfp − π(RfXp + Tf )‖2. (2)
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1. (10 Points) Optical flow with changes in illumination. Let I(x, y, t) be a video sequence
taken by a rigidly moving camera observing a rigid, static and Lambertian scene. Assume that
between two consecutive views there is an affine change in the image intensities, i.e. the brightness
constancy constraint reads

I(x + u, y + v, t + 1) = aI(x, y, t) + b, (3)

where u(x, y) and v(x, y) represent the optical flow (motion parameters) and a(x, y) and b(x, y)
represent photometric parameters. Propose a linear algorithm for estimating (u, v, a, b) from the
image brightness I and its spatio-temporal derivatives Ix, Iy, It. What is the minimum size of a
window around each pixel that allows one to solve the problem?

After subtracting I(x, y, t) on both sides, and applying the BCC, we obtain

Ixu + Iyv + It = (a− 1)I + b, (4)

which reduces to the standard BCC when a = 1 and b = 0. This new BCC can be re-written as

Ixu + Iyv + (1− a)I − b = −It =⇒ [
Ix Iy I 1

]



u
v

1− a
−b


 = −It. (5)

From this equation, we can solve for the parameters (u, v, a, b) in a least squares sense by assuming
that such parameters are constant on a neighborhood Ω around each pixel. This leads to the
following linear system of equations

∑

Ω




I2
x IxIy IxI Ix

IxIy I2
y IyI Iy

IxI IyI I2 I
Ix Iy I 1







u
v

1− a
−b


 = −

∑

Ω




ItIx

ItIy

ItI
It


 . (6)

Since there are four unknowns, we need at least 4 pixels, e.g. a 2× 2 window.

2. (20 Points) Self-calibration and motion estimation for purely rotating cameras.

(a) (10 Points) Given two calibrated perspective images of a scene (x1, x2) related by a purely
rotational motion R ∈ SO(3), propose a linear algorithm for computing R from a set of P noisy
point correspondences (x1, x2). In your derivation of the algorithm, please write the linear
system you need to solve explicitly, find the number of unknowns you need to solve for, find
the minimum number of point correspondences needed, describe the way the linear system is
solved using SVD, and derive a method for projecting a noisy matrix R̃ ∈ R3×3 onto SO(3) by
minimizing the Frobenius norm of the error minR∈SO(3) ‖R− R̃‖2F = trace((R− R̃)(R− R̃)T ).
The relationship between the two camera matrices can be written as X2 = RX1, hence we
have λ2x2 = λ1Rx1. After taking the cross product with x2 we obtain

x̂2Rx1 = 0. (7)

Notice that this equation is entirely analogous to the equation relating two views of a planar
scene, x̂2Hx1 = 0, where H = R + TNT /d is the homography of the plane NT X = d. In
fact, when T = 0, H reduces to R.
In order to solve for R from (7), notice that (7) gives 3 linear equations on the 9 entries of
R ∈ R3×3. Out of these 3 equations, only two are linearly independent, because rank(x̂2) = 2.
If we let x2 = (y1, y2, 1)T , then two independent rows of x̂2 are (1, 0,−y1) and (0, 1,−y2).
Therefore, we can write the two equations explicitly as

Ar =




...
xT

1 0T −y1x
T
1

0T xT
1 −y2x

T
1

...




[
r11 r12 · · · r33

]T = 0 (8)
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For P correspondences, we have A ∈ R2P×9, therefore the minimum number of correspondences
needed to solve for r up to scale can be obtained from 2P ≥ 9− 1 = 8, which gives P = 4. In
the presence of noise, we solve the linear system Ar = 0 in a least squares sense, i.e. we let
r = V9, where A = UΣV T is the SVD of A, and V9 is the 9th column of V .
Notice however that the so-obtained matrix R̃ ∈ R3×3 is an arbitrary matrix, and not neces-
sarily a rotation, thus we need to find a way of projecting this matrix onto R ∈ SO(3). To
this end, let R̃ = UΣV T be the SVD of R̃. We seek a matrix R such that minimizes

‖R− UΣV T ‖2F = 3− 2trace(RT UΣV T ) + trace(Σ2). (9)

This is equivalent to maximizing trace(RT UΣV T ) = trace(V RT UΣ). Therefore, from Lemma
1 we have V RT U = I, from which it follows that R = UV T .

(b) (10 Points) Given two uncalibrated perspective images of a scene (x1,x2) related by a purely
rotational motion R ∈ SO(3), propose a linear algorithm for computing the camera calibration
matrix K and the camera rotation R from a set of P point correspondences. What is the
minimum number of correspondences needed? Hint: Show that one can linearly solve for the
homography at infinity H = KRK−1. Then show that if we let S = KKT , then HSHT = S.
In the case of uncalibrated cameras, we replace xi by K−1xi for i = 1, 2. Therefore, the
equation relating the two views becomes λ2K

−1x2 = λ1RK−1x1, i.e. λ2x2 = λ1KRK−1x1.
If we let H = KRK−1, then we have x̂2Hx1 = 0. We can solve for the homography at infinity
H up to a scale factor using the same algorithm as in the previous problem, except that we do
not need to apply the projection step, because H is not a rotation. In order to obtain the scale
of H, notice that det(H) = det(K) det(R) det(K−1) = 1. That is, once H has been computed,
we divide the solution by the cubic root of its determinant, H/ 3

√
det(H) so that det(H) = 1

from now on.
Now, if we let S = KKT , then we have that HSHT = KRK−1KKT K−T RT KT = S. This
gives a set of 6 equations on the 6 unknowns in S, because S is symmetric. We can solve for S
up to a scale factor from this linear system. Since det(S) = det(K)2 > 0, we divide S by the
sign of its determinant sign(det(S)), so that det(S) > 0 from now on. Given such an S one can
factor it as S = KKT using Choleski decomposition, because K is upper triangular. Notice
that the scale of K is not correct, because S was computed up to scale only. So we obtain the
correct K by dividing by K3,3 so that K3,3 = 1. Once K is known, we get R = K−1HK.

3. (20 points) 3-D Reconstruction from Multiple Calibrated Orthographic Views. Let
xfp ∈ R2 be the a known measurement for the orthographic projection of an unknown point Xp ∈ R3

in frame f = 1, . . . , F , where p = 1, . . . , P . That is, xfp = MfXp + Vf , where

[
Mf Vf

]
=

[
1 0 0
0 1 0

] [
Rf Tf

]
(10)

is the projection matrix associated with frame f and (Rf , Tf ) ∈ SE(3) is the unknown pose of the
camera at frame f relative to some fixed world coordinate frame.

(a) (4 points) Show that the optimal solution for the 2-D translation Vf ∈ R2 in the sense of
minimizing the reprojection error is

Vf = x̄f =
1
P

P∑
p=1

xfp f = 1, . . . , F. (11)

Hint: show that one can assume that X̄ = 1
P

∑P
p=1 Xp = 0 without loss of generality.

The optimal solution for {Vf}F
f=1 is obtained by minimizing the reprojection error

P∑
p=1

F∑

f=1

‖xfp −MfXp − Vf‖2. (12)

After setting the partial derivative with respect to Vf to zero we get

P∑
p=1

2(xfp −MfXp − Vf )(−1) = −2P (x̄f −MfX̄ − Vf ) = 0, (13)
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from which it follows that Vf = x̄f −MfX̄. Now, in solving the reconstruction problem we
always have the choice of a reference frame. Typically, one chooses the reference frame to
coincide with the coordinate frame of the first camera, i.e. R1 = I and T1 = 0. Alternatively,
we may choose the origin of the reference frame to coincide with the center of gravity of the
points in 3D space, i.e. X̄ = 0. This has the advantage of allowing us to estimate camera
translation Vf without knowing camera rotation Mf .

(b) (8 points) Let wfp = xfp − x̄f be the mean subtracted point correspondences and define a
data matrix

W =




w11 · · · w1P

...
...

wF1 · · · wFP


 ∈ R2F×P . (14)

Show that the measurement matrix W factors as W = MS, where M =




M1

...
MF


 ∈ R2F×3

and S =
[
X1 X2 · · · XP

] ∈ R3×P are the so-called motion and structure matrices,
respectively. Show that rank(W ) ≤ 3 and rank(M) ≥ 2 and derive conditions on the camera
motion and the 3D structure such that rank(W ) = 3. Under such conditions, propose an
algorithm for computing the motion and structure matrices M = M̃K and S = K−1S̃ up to
an unknown invertible matrix K ∈ R3×3.
Note that by construction wfp = MfSp, hence we immediately obtain that W = MS. Since
M has 3 columns, it is obvious that rank(W ) ≤ 3. Since the rows of Mf are rows of a
rotation matrix, such rows are orthogonal, hence it is obvious that rank(M) ≥ rank(Mf ) ≥ 2.
Furthermore, rank(M) = 2 if and only if the rows of Mf span the same subspace as the rows
of M1 for all f = 2, . . . , F . Since the rows of Mf are rows of a rotation, notice that this only
happens when all rotation matrices {Rf} have a common third row. Also, notice rank(S) = 1
if the 3D structure is a line, rank(S) = 2 if the 3D structure is a plane, and rank(S) = 3 for a
general 3D structure. Therefore, in order to have rank(W ) = 3 we need the camera rotations
to have different third rows, and the 3D structure not to be contained on a plane. Under such
conditions, we can compute the SVD of W = UΣV T , and then set M̃ = U1:3 and S̃ = ΣV T

1:3.
Notice that this factorization process does not give M and S exactly, because for any invertible
3× 3 matrix K we have W = MS = M̃KK−1S̃.

(c) (8 points) Let Q = KKT ∈ R3×3. Show that the sub-matrix of M̃ consisting of rows 2f − 1
and 2f , M̃2f−1:2f ∈ R2×3, is such that

M̃2f−1:2fQM̃T
2f−1:2f = I f = 1, . . . , F. (15)

Propose a linear algorithm to compute Q. What is the minimum number of frames needed?
Given Q, show how to compute K up to a rotation. Given such a K show how to compute
M , S, Rf and Tf . Is there any ambiguity in the reconstruction?
Recall that M = M̃K, thus Mf = M̃2f−1:2fK. Since the two rows of Mf are rows of a
rotation matrix, we have MfMT

f = M̃2f−1:2fQM̃T
2f−1:2f = I. This gives 3 linearly independent

equations per frame on the 6 unknowns in Q. From the equation 3F ≥ 6, the minimum number
of frames needed to compute Q is F = 2. Given Q = KKT , one can solve for K = K̃R using
the QR decomposition up to an unknown rotation matrix R. From the equation M = M̃K,
note that R rotates all matrices Mf equally. Therefore, we can choose R arbitrarily, as it
corresponds to the choice of the rotational part of the reference frame. Thus one way of fix R
is by choosing R1 = I. Given K, the motion and structure parameters are given by M = M̃K
and S = K−1S̃. From Mf we immediately know the first two rows of each Rf , thus we can
obtain the third row from the cross product of the first two. Finally, we already know the first
two entries of Tf from Vf , which was computed in part a). Note that the third entry of each
Tf does not show up in the equations, and so we can not recover it.

4


