
Mathematics of Deep Learning
CDC Tutorial, Melbourne, Australia, December 15th, 2017 

 
Raja Giryes (Tel Aviv University), Pratik Chaudhari (UCLA), René Vidal (Hopkins)



CDC 2017 Tutorial Schedule
• 10.00-10.20: René Vidal Introduction to Deep Learning 

• 10.20-10.40: René Vidal Global Optimality in Deep Learning 

• 10.40-11.00: René Vidal Analysis of Dropout for Factorization 

• 11.00-11.20: Pratik Chaudhari A Picture of the Energy 
Landscape of Deep Neural Networks 

• 11.20-11.40: Raja Giryes Generalization Error for Deep 
Learning 

• 11.40-12.00: Raja Giryes Data Structure Based Theory for 
Deep Learning



More Information
• Slides 

– http://vision.jhu.edu/tutorials/CDC17-Tutorial-Math-Deep-Learning.htm 

• Paper 
– https://arxiv.org/abs/1712.04741

Mathematics of Deep Learning

René Vidal Joan Bruna Raja Giryes Stefano Soatto

Abstract— Recently there has been a dramatic increase in the
performance of recognition systems due to the introduction of
deep architectures for representation learning and classification.
However, the mathematical reasons for this success remain
elusive. This tutorial will review recent work that aims to
provide a mathematical justification for several properties of
deep networks, such as global optimality, geometric stability,
and invariance of the learned representations.

I. INTRODUCTION

Deep networks [1] are parametric models that perform se-
quential operations on their input data. Each such operation,
colloquially called a “layer”, consists of a linear transfor-
mation, say, a convolution of its input, followed by a point-
wise nonlinear “activation function”, e.g., a sigmoid. Deep
networks have recently led to dramatic improvements in
classification performance in various applications in speech
and natural language processing, and computer vision. The
crucial property of deep networks that is believed to be the
root of their performance is that they have a large number of
layers as compared to classical neural networks; but there are
other architectural modifications such as rectified linear acti-
vations (ReLUs) [2] and residual “shortcut” connections [3].
Other major factors in their success is the availability of
massive datasets, say, millions of images in datasets like
ImageNet [4], and efficient GPU computing hardware for
solving the resultant high-dimensional optimization problem
which may have up to 100 million parameters.

The empirical success of deep learning, especially con-
volutional neural networks (CNNs) for image-based tasks,
presents numerous puzzles to theoreticians. In particular,
there are three key factors in deep learning, namely the
architectures, regularization techniques and optimization al-
gorithms, which are critical to train well-performing deep
networks and understanding their necessity and interplay is
essential if we are to unravel the secrets of their success.

A. Approximation, depth, width and invariance properties

An important property in the design of a neural network
architecture is its ability to approximate arbitrary functions
of the input. But how does this ability depend on parameters
of the architecture, such as its depth and width? Earlier work
shows that neural networks with a single hidden layer and
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sigmoidal activations are universal function approximators
[5], [6], [7], [8]. However, the capacity of a wide and shallow
network can be replicated by a deep network with significant
improvements in performance. One possible explanation is
that deeper architectures are able to better capture invariant
properties of the data compared to their shallow counterparts.
In computer vision, for example, the category of an object
is invariant to changes in viewpoint, illumination, etc. While
a mathematical analysis of why deep networks are able to
capture such invariances remains elusive, recent progress has
shed some light on this issue for certain sub-classes of deep
networks. In particular, scattering networks [9] are a class of
convolutional networks whose convolutional filter banks are
given by complex, multi-resolution wavelet families. As a
result of this extra structure, they are provably stable and lo-
cally invariant signal representations, and yield state-of-the-
art classification results on several pattern and texture recog-
nition problems where training examples may be limited.
The reasons for such success lie on the ability to preserve
discriminative information while generating stability with
respect to high-dimensional deformations. This tutorial will
overview recent work that explores discriminative aspects of
the representation and gives conditions under which signals
can be recovered from their scattering coefficients.

B. Generalization and regularization properties

Another critical property of a neural network architecture
is its ability to generalize from a small number of training
examples. Traditional results from statistical learning theory
[10] show that the number of training examples needed to
achieve good generalization grows polynomially with the
size of the network. In practice, however, deep networks are
trained with much fewer data than the number of parameters
(N ⌧ D regime) and yet they can be prevented from over-
fitting using very simple (and seemingly counter-productive)
regularization techniques like Dropout [11], which simply
freezes a random subset of the parameters at each iteration.

One possible explanation for this conundrum is that deeper
architectures produce an embedding of the input data that
approximately preserves the distance between data points
in the same class, while increasing the separation between
classes. This tutorial will overview the recent work of [12],
which uses tools from compressed sensing and dictionary
learning to prove that deep networks with random Gaussian
weights perform a distance-preserving embedding of the data
in which similar inputs are likely to have a similar output.
These results provide insights into the metric learning prop-
erties of the network and lead to bounds on the generalization
error that are informed by the structure of the input data.

http://vision.jhu.edu/tutorials/CDC17-Tutorial-Math-Deep-Learning.htm
https://arxiv.org/abs/1712.04741
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Impact of Deep Learning in Computer Vision
• Deep learning gives ~ 10% improvement on ImageNet 

– 1.2M images 
– 1000 categories 
– 60 million 

parameters

[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12. 
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using 
convolutional networks. ICLR’14. 
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic 
visual recognition. ICML’14.



Impact of Deep Learning in Computer Vision
• 2012-2014 classification results in ImageNet 

• 2015 results: ResNet under 3.5% error using 150 layers!

CNN 
non-CNN

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna



Impact of Deep Learning in Speech Recognition

LSTMs
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Impact of Deep Learning in Game Playing
• AlphaGo: the first computer program to ever beat a 

professional player at the game of Go [1] 

• Similar deep reinforcement learning strategies  
developed to play Atari Breakout, Super Mario

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016 
Artificial intelligence learns Mario level in just 34 attempts, https://www.engadget.com/2015/06/17/super-
mario-world-self-learning-ai/,  https://github.com/aleju/mario-ai

https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai


Great Performance in Many Applications
• Disease diagnosis [Zhou,  Greenspan & Shen, 2016]. 

• Language translation [Sutskever et al., 2014] 

• Video classification [Karpathy et al., 2014]. 

• Face detection [Schroff et al., 2015]. 

• Handwriting recognition [Poznanski & Wolf, 2016]. 

• Sentiment classification [Socher et al., 2013]. 

• Image denoising [Burger et al., 2012]. 

• Super-resolution [Kim et al., 2016], [Bruna et al., 2016].



Why These Improvements in Performance?
• Features are learned rather than hand-crafted 

• More layers capture more invariances [1]  

• More data to train deeper networks 

• More computing (GPUs) 

• Better regularization: Dropout 

• New nonlinearities 
– Max pooling, Rectified linear units (ReLU) [2]  

• Theoretical understanding of deep networks remains shallow

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for 
Recognition. CVPRW’14. 
[2] Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung. Digital selection and analogue amplification 
coexist in a cortex-inspired silicon circuit. Nature, 405(6789):947–951, 2000.



• Neural Network 
– Input: image, audio, data 
– State: neuronal responses 
– Output: label, label sequence 
– System: weights, activations

Control Systems vs Neural Networks

• Control System 
– Input: u 
– State: x 
– Output: y  
– System: (A,B,C,D), f(x,u), h()

Neural 
Network Trump

Control System Neural Network
Openloop system Feedforward network
Closedloop system Recurrent neural network
State estimation Inference of hidden variables
System identification Parameter learning
Prediction error Loss or risk



Notation: Single Neuron Architecture

X
 

x1

x2

x3
w3

w2

w1

input

weights
activation  
function

y

output

sigmoid:  (x) =

1

1 + exp(�x)

ReLU:  (x) = max(x, 0)



Notation: Multilayer Network Architecture

input weightsactivation

XW 1 W 2 1( ) 2( )�(X,W 1, . . . ,WK) =  K(· · · · · ·WK)

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity

W 1 W 2 W 3

X Y

output



Notation: Expected and Empirical Loss
• Assume                       . Find W that minimizes expected loss 

• Since joint distribution of (X,Y) is unknown, find W that 
minimizes empirical loss 

• Approximation error: 

• Generalization error: 

• Optimization error: 

W ⇤ = argmin
W

f(W ) = E(X,Y )[`(Y,�(X,W ))]

W ⇤
N = argmin

W
fN (W ) =

1

N

NX

i=1

`(Yi,�(Xi,W ))

GE = f(W ⇤
N )� f(W ⇤)

OE = f(WN )� f(W ⇤
N )

AE = f(W ⇤)� f(�⇤)

Y = �⇤(X)



Notation: Regularized Loss

• Given training examples (X,Y), find model parameters W that 
minimize regularized loss (classification error) 

• Architecture     designed to control approximation error 

• Regularizer       designed to control generalization error 

• Optimizer          designed to control optimization error 

output (labels)

regularization functionloss function

input (data)

Neural 
Network Trump

�

⇥

prediction function

min
W

`(Y,�(X,W )) + �⇥(W )



Key Theoretical Questions
Questions in Deep Learning

Architecture Design Optimization Generalization

Slide courtesy of Ben Haeffele



Key Theoretical Questions: Architecture
• Are there principled ways to design networks? 

– How many layers? 

– Size of layers? 

– Choice of layer types? 

– What classes of functions  
can be approximated by a  
feedforward neural network? 

– How does the architecture  
impact expressiveness? [1]

Questions in Deep Learning
Are there principled ways to design networks?

• How many layers?

• Size of layers?

• Choice of layer types?

• How does architecture impact expressiveness? [1]

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016)

Slide courtesy of Ben Haeffele 

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016) 



Key Theoretical Questions: Architecture
• Approximation, depth, width and invariance: earlier work 

– Perceptrons and multilayer feedforward networks are universal 
approximators [Cybenko ’89, Hornik ’89, Hornik ’91, Barron ’93] 

• Approximation, depth, width and invariance: recent work 
– Gaps between deep and shallow networks [Montufar’14, Mhaskar’16] 
– Deep Boltzmann machines are universal approximators [Montufar’15] 
– Design of CNNs via hierarchical tensor decompositions [Cohen ’17] 
– Scattering networks are deformation stable for Lipschitz non-linearities 

[Bruna-Mallat ’13, Wiatowski ’15, Mallat ’16] 
– Exponential # of units needed to approximate deep net [Telgarsky’16] 
– Memory-optimal neural network approximation [Bölcskei ’17]

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 
(4), 303-314, 1989. 
[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 
2(3), 359-366, 1989. 
[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251–257, 1991. 
[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on 
Information Theory, 39(3):930–945, 1993. 
[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint 
arXiv:1705.02302 
[6] Montúfar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS, 2014 
[7] Mhaskar, Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 2016.  
[8] Montúfar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3  
[9] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872–1886, 2013.  
[10] Wiatowski, Bölcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv2015. 
[11] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016. 
[12] Telgarsky, Benefits of depth in neural networks. COLT 2016.  
[13] Bölcskei, Grohs, Kutyniok, Petersen. Memory-optimal neural network approximation. Wavelets and Sparsity 2017.



Key Theoretical Questions: Optimization
• How to train neural networks? 

– Problem is non-convex 

– What does the error surface  
look like? 

– How to guarantee optimality?  

– When does local descent succeed? 

Questions in Deep Learning

• Problem is non-convex.

• What does the loss surface look like? [1]

• Any guarantees for network training? [2]

• How to guarantee optimality?

• When will local descent succeed?

How to train neural networks?

X

[1] Choromanska, et al., "The loss surfaces of multilayer networks." Artificial Intelligence and Statistics. (2015)
[2] Janzamin, et al., "Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods." arXiv (2015).

Slide courtesy of Ben Haeffele



Key Theoretical Questions: Optimization
• Optimization theory: earlier work 

– No spurious local minima for linear networks [Baldi-Hornik ’89] 
– Backprop fails to converge for nonlinear networks [Brady’89], converges 

for linearly separable data [Gori-Tesi’91-’92], or it gets stuck [Frasconi’97] 
– Local minima and plateaus in multilayer perceptrons [Fukumizu-Amari’00] 

• Optimization theory: recent work 
– Convex neural networks in infinite number of variables [Bengio ’05] 
– Networks with many hidden units can learn polynomials [Andoni ’14] 
– The loss surface of multilayer networks [Choromanska ’15] 
– Attacking the saddle point problem [Dauphin ’14] 
– Effect of gradient noise on the energy landscape: [Chaudhari ‘15] 
– Entropy-SGD is biased toward wide valleys: [Chaudhari ‘17] 
– Deep relaxation: PDEs for optimizing deep nets [Chaudhari ‘17] 
– Guaranteed training of NNs using tensor methods [Janzamin ’15] 
– No spurious local minima for large networks [Haeffele-Vidal’15 Soudry’16] 



Key Theoretical Questions: Generalization
• Classification performance guarantees?  

– How well do deep networks generalize? 

– How should networks be regularized? 

– How to prevent under or over fitting? 

Questions in Deep Learning
Performance Guarantees?

• How do networks generalize?

• How should networks be regularized?

• How to prevent overfitting?

X Complex9Simple

Questions in Deep Learning
Performance Guarantees?

• How do networks generalize?

• How should networks be regularized?

• How to prevent overfitting?

X Complex9Simple

Slide courtesy of Ben Haeffele



Key Theoretical Questions: Generalization
• Generalization and regularization theory: earlier work 

– # training examples grows exponentially with network size [1,2] 

• New regularization methods 
– Early stopping [3]  
– Dropout, Dropconnect, and extensions (adaptive, annealed) [4,5] 

• Generalization and regularization theory: recent work 
– Distance and margin-preserving embeddings [6,7] 
– Path SGD/implicit regularization & generalization bounds [8,9] 
– Product of norms regularization & generalization bounds [10,11] 
– Information theory: info bottleneck, info dropout, Fisher-Rao [12,13,14] 
– Rethinking generalization: [15]

[1] Sontag. VC Dimension of Neural Networks. Neural Networks and Machine Learning, 1998. 
[2] Bartlett, Maass. VC dimension of neural nets. The handbook of brain theory and neural networks, 2003. 
[3] Caruana, Lawrence, Giles. Overfitting in neural nets: Backpropagation, conjugate gradient & early stopping. NIPS01. 
[4] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.  
[5] Wan. Regularization of neural networks using dropconnect. ICML, 2013. 
[6] Giryes, Sapiro, Bronstein. Deep Neural Networks with Random Gaussian Weights. arXiv:1504.08291. 
[7] Sokolic. Margin Preservation of Deep Neural Networks, 2015 
[8] Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015 
[9] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017 
[10] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017. 
[11 Sokolić, Giryes, Sapiro, Rodrigues. Robust Large Margin Deep Neural Networks. IEEE Transactions on Signal Processing, 2017.  
[12] Shwartz-Ziv, Tishby. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017.  
[13] Achille, Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv: 2016. 
[14] Liang, Poggio, Rakhlin, Stokes. Fisher-Rao Metric, Geometry and Complexity of Neural Networks. arXiv: 2017. 
[15] Zhang, Bengio, Hardt, Recht, Vinyals. Understanding deep learning requires rethinking generalization. ICLR 2017. 



Key Theoretical Questions are Interrelated
• Optimization can  

impact  
generalization [1,2] 

• Architecture has  
strong effect on  
generalization [3] 

• Some architectures  
could be easier to  
optimize than others [4]

[1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” 
ICLR workshop. (2015).  
[2] P. Zhou, J. Feng. The Landscape of Deep Learning Algorithms. 1705.07038, 2017 
[3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017). 
[4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization



Toward a Unified Theory?
• Dropout regularization 

is equivalent to 
regularization with 
products of weights [1] 

• Regularization with 
product of weights 
generalizes well [2] 

• No spurious local 
minima for product of 
weight regularizers [3]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, arXiv 2017 
[2] Sokolic ́, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.  
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.

Interrelated Problems

• Optimization can impact 
generalization. [1]

• Architecture has a strong effect on the 
generalization of networks. [2]

• Some architectures could be easier to 
optimize than others.

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015). 
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).

Architecture

Optimization
Generalization/
Regularization
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