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CDC 2017 Tutorial Schedule

* 10.00-10.20: René Vidal Introduction to Deep Learning

10.20-10.40: René Vidal Global Optimality in Deep Learning
* 10.40-11.00: René Vidal Analysis of Dropout for Factorization

* 11.00-11.20: Pratik Chaudhari A Picture of the Energy
Landscape of Deep Neural Networks

* 11.20-11.40: Raja Giryes Generalization Error for Deep
Learning

* 11.40-12.00: Raja Giryes Data Structure Based Theory for
Deep Learning
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More Information

v

Slides

— http://vision.jhu.edu/tutorials/CDC17-Tutorial-Math-Deep-Learning.htm

Paper

— https://arxiv.org/abs/1712.04741

Mathematics of Deep Learning

René Vidal Joan Bruna

Abstract— Recently there has been a dramatic increase in the
performance of recognition systems due to the introduction of
deep architectures for representation learning and classification.
However, the mathematical reasons for this success remain
elusive. This tutorial will review recent work that aims to
provide a mathematical justification for several properties of
deep networks, such as global optimality, geometric stability,
and invariance of the learned representations.
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sigmoidal activations are universal function approximators
[5], [6], [7], [8]. However, the capacity of a wide and shallow
network can be replicated by a deep network with significant
improvements in performance. One possible explanation is
that deeper architectures are able to better capture invariant
properties of the data compared to their shallow counterparts.
In computer vision, for example, the category of an object
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Brief History of Neural Networks
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* Deep learning glves ~ 10% |mprovement on ImageNet
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— 1.2M images
1000 categories

— 60 million
parameters

JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE

SN
NER=N
/il[l/Vh.

il |

[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using

convolutional networks. ICLR’14.
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic

visual recognition. ICML’14.

[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12. -
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Impact of Deep Learning in Computer Vision

- 2012-2014 classification results in ImageNet CNN

« 2015 results: ResNet under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna
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Impact of Deep Learning in Speech Recognition
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speech group:
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Impact of Deep Learning in Game Playing

« AlphaGo: the first computer program to ever beat a
professional player at the game of Go [1]
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« Similar deep reinforcement learning strategies
developed to play Atari Breakout, Super Mario

Silver et al. Mastering the game of Go with deep neural networks and tree search, Nature 2016

%—ﬁy JOHNS HOPKINS Artificial intelligence learns Mario level in just 34 attempts, 5
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https://www.engadget.com/2015/06/17/super-mario-world-self-learning-ai/
https://github.com/aleju/mario-ai

Great Performance in Many Applications

* Disease diagnosis [Zhou, Greenspan & Shen, 2016].
« Language translation [Sutskever et al., 2014]

* Video classification [Karpathy et al., 2014].

» Face detection [Schroff et al., 2015].

* Handwriting recognition [Poznanski & Wolf, 2016].

« Sentiment classification [Socher et al., 2013].

« Image denoising [Burger et al., 2012].

« Super-resolution [Kim et al., 2016], [Bruna et al., 2016].
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Why These Improvements in Performance?

 Features are learned rather than hand-crafted
mean AP

* More layers capture more invariances [1]

0.8 ' ‘ ]
. More data to train deeper networks zij“/—/f
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« More computing (GPUSs) 57 11 15 18

* Better regularization: Dropout

* New nonlinearities
— Max pooling, Rectified linear units (ReLU) [2]

0

* Theoretical understanding of deep networks remains shallow

—— [1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for
J()HNS HOPKINS Recognition. CVPRW'14.
@i‘:" [2] Hahnloser, Sarpeshkar, Mahowald, Douglas, Seung. Digital selection and analogue amplification
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Control Systems vs Neural Networks

Input
K T e
e Control System  Neural Network
— Input: u — Input: image, audio, data
— State: x — State: neuronal responses
— Output: y — Output: label, label sequence
— System: (A,B,C,D), f(x,u), h() — System: weights, activations
Control System Neural Network
Openloop system Feedforward network
Closedloop system Recurrent neural network
State estimation Inference of hidden variables
System identification Parameter learning
Prediction error Loss or risk

f@?‘ﬁy JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE




Notation: Single Neuron Architecture

output
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Notation: Multilayer Network Architecture
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Notation: Expected and Empirical Loss

- Assume Y = ®"(X). Find W that minimizes expected loss

W* = argmrfnin fW) =Ex v (Y, (X, W))]

 Since joint distribution of (X,Y) is unknown, find W that
minimizes empirical loss

N
1
W = argmin [y (W) = 5 ) UY:, @(Xi, W)
1=1

- Approximation error:  AE = f(W™) — f(®*)
- Generalization error: GE = f(Wy) — f(W™)

- Optimization error: f(Wyx) — (WN)
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Notation: Regularized Loss

Neural

Network Trump

ﬁ

* Given training examples (X,Y), find model parameters W that
minimize regularized loss (classification error)

output (Iabels)\ / input (data)
min (Y, (X, W)) + \O(W)
Log "

loss function prediction function regularization function

* Architecture ¢ designed to control approximation error
 Regularizer © designed to control generalization error

« Optimizer designed to control optimization error
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Key Theoretical Questions

Architecture Design

Slide courtesy of Ben Haeffele
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Key Theoretical Questions: Architecture

W

Are there principled ways to design networks?
— How many layers?

— Size of layers?

— Choice of layer types?

— What classes of functions
can be approximated by a
feedforward neural network?

— How does the architecture

L ABR

impact expressiveness? [1]

JOHNS HOPKINS e > e

MATHEMATICAL INSTITUTE
for DATA SCIENCE

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016)




Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work
— Perceptrons and multilayer feedforward networks are universal
approximators [Cybenko ‘89, Hornik 89, Hornik '91, Barron 93]
 Approximation, depth, width and invariance: recent work
— Gaps between deep and shallow networks [Montufar’14, Mhaskar’16]
— Deep Boltzmann machines are universal approximators [Montufar’15]
— Design of CNNs via hierarchical tensor decompositions [Cohen '17]

— Scattering networks are deformation stable for Lipschitz non-linearities
[Bruna-Mallat ’13, Wiatowski '15, Mallat 16]

— Exponential # of units needed to approximate deep net [Telgarsky’16]
— Memory-optimal neural network approximation [Bolcskei "17]
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[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2
(4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks,
2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on
Information Theory, 39(3):930-945, 1993.

[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint
arXiv:1705.02302

[6] Montufar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS, 2014

[7] Mhaskar, Poggio. Deep vs. shallow networks: An approximation theory perspective. Analysis and Applications, 2016.
[8] Montufar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3

[9] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872—-1886, 2013.

[10] Wiatowski, Bolcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv2015.
[11] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016.

[12] Telgarsky, Benefits of depth in neural networks. COLT 2016.

[13] Bolcskei, Grohs, Kutyniok, Petersen. Memory-optimal neural network approximation. Wavelets and Sparsity 2017.




Key Theoretical Questions: Optimization

V

How to train neural networks?

— Problem is non-convex

— What does the error surface
look like?

— How to guarantee optimality?

— When does local descent succeed?
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Key Theoretical Questions: Optimization

 Optimization theory: earlier work

No spurious local minima for linear networks [Baldi-Hornik '89]

Backprop fails to converge for nonlinear networks [Brady’89], converges
for linearly separable data [Gori-Tesi’'91-'92], or it gets stuck [Frasconi’97]

Local minima and plateaus in multilayer perceptrons [Fukumizu-Amari’00]

e Optimization theory: recent work

W
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Convex neural networks in infinite number of variables [Bengio '05]
Networks with many hidden units can learn polynomials [Andoni 14]

The loss surface of multilayer networks [Choromanska '15]

Attacking the saddle point problem [Dauphin '14]

Effect of gradient noise on the energy landscape: [Chaudhari ‘15]
Entropy-SGD is biased toward wide valleys: [Chaudhari ‘17]

Deep relaxation: PDEs for optimizing deep nets [Chaudhari “17]
Guaranteed training of NNs using tensor methods [Janzamin '15]

No spurious local minima for large networks [Haeffele-Vidal’15 Soudry’16]




Key Theoretical Questions: Generalization

 Classification performance guarantees?

— How well do deep networks generalize?
— How should networks be regularized?

— How to prevent under or over fitting?
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Key Theoretical Questions: Generalization

 Generalization and regularization theory: earlier work
— # training examples grows exponentially with network size [1,2]

* New regularization methods
— Early stopping [3]
— Dropout, Dropconnect, and extensions (adaptive, annealed) [4,5]

 Generalization and regularization theory: recent work
— Distance and margin-preserving embeddings [6,7]
— Path SGD/implicit regularization & generalization bounds [8,9]
— Product of norms regularization & generalization bounds [10,11]
— Information theory: info bottleneck, info dropout, Fisher-Rao [12,13,14]
— Rethinking generalization: [15]

1] Sontag. VC Dimension of Neural Networks. Neural Networks and Machine Learning, 1998.

2] Bartlett, Maass. VC dimension of neural nets. The handbook of brain theory and neural networks, 2003.

3] Caruana Lawrence, Giles. Overfitting in neural nets: Backpropagation, conjugate gradient & early stopping. NIPS01.

4] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014.

5] Wan. Regularization of neural networks using dropconnect. ICML, 2013.

6] Giryes, Sapiro, Bronstein. Deep Neural Networks with Random Gaussian Weights. arXiv:1504.08291.

7] Sokolic. Margin Preservation of Deep Neural Networks, 2015

8] Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015

9] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017
10] Sokolic, Giryes, Sapiro, Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017.

XN JOHNS HOPKINS 11 Sokoli¢, Giryes, Sapiro, Rodrigues. Robust Large Margin Deep Neural Networks. IEEE Transactions on Signal Processing, 2017.
12] Shwartz-Ziv, Tishby. Opening the black box of deep neural networks via information. arXiv:1703.00810, 2017.

MATHEMATICAL INSTITUTE 13] Achille, Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv: 2016.

14] Liang, Poggio, Rakhlin, Stokes. Fisher-Rao Metric, Geometry and Complexity of Neural Networks. arXiv: 2017.
for DATA SCIENCE 15] Zhang, Bengio, Hardt, Recht, Vinyals. Understanding deep learning requires rethinking generalization. ICLR 2017.



Key Theoretical Questions are Interrelated

* Optimization can Architecture
Impact
generalization [1,2]
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 Architecture has
strong effect on Generalization/

generalization [3] Regularization

« Some architectures . et

could be easier to c e e
optimize than others [4]

1] Neyshabur et. al. In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.”

[ S ) ICLR workshop. (2015).
@ily JOHNS HOPKINS [2] P. gﬁgu?f;l):e(ng. Tr)le Landscape of Deep Learning Algorithms. 1705.07038, 2017

MATHEMATICAL INSTITUTE [3] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).
for DATA SCIENCE [4] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




Toward a Unified Theory?

W

Dropout regularization Architecture
IS equivalent to
regularization with
products of weights [1]
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Regularization with ~ Generalization/
product of weights Regularization
generalizes well [2] > 9 ©° o 0

No spurious local A
minima for product of '
weight regularizers [3]

[1] Cavazza, Lane, Moreiro, Haeffele, Murino, Vidal. An Analysis of Dropout for Matrix Factorization, arXiv 2017

JOHNS HOPKINS [2] Sokolic’, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization error of Invariant Classifiers. AISTATS, 2017.

[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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CDC 2017 Tutorial Schedule

* 10.00-10.20: René Vidal Introduction to Deep Learning
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* 11.00-11.20: Pratik Chaudhari A Picture of the Energy
Landscape of Deep Neural Networks

* 11.20-11.40: Raja Giryes Generalization Error for Deep
Learning

* 11.40-12.00: Raja Giryes Data Structure Based Theory for
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