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DEEP LEARNING IMPACT

Imagenet dataset
1,400,000 images
1000 categories
150000 for testing,
50000 for validation

' Model | Top-1(val) | Top-5 (val) | Top-5 (test)
SIFT + FVs [7]
| ICNN |

1 CNN
5 CNNs
1 CNN*

40.7% 18.2%
38.1% 16.4%
39.0% 16.6%

36.7% | 154%

Today we get 3.5% by 152 layers

rate on Swachboard
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DL: Impact

Speech Recognition
According to Microsoft’s
weech group



CUTTING EDGE PERFORMANCE
N MANY OTHER APPLICATIONS

Disease diagnosis

Language translation
Video classification
Handwriting recognition
Sentiment classification
Image denoising

Depth Reconstruction
Super-resolution

Error correcting codes

many other applications...



CLASS AWARE DENOISING

Agnostic
denoising

Class aware
denoising g




DEEP NEURAL NETWORKS (DNN)

* One layer of a neural net

Xis alinear Yis a non-linear
operation function

* Concatenation of the layers creates the whole net
SWTL,WT2,...WTK))=yp(WTK ..0o(WT2 Y(WT1
29)),
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CONVOLUTIONAL NEURAL NETWORKS (CNN)

XeR7d ,-ﬂ)-_) Y(WX)ER Im

W is a linear Fis a non-linear
operation function

* In many cases, /'is selected to be a convolution.
* This operator is shift invariant.

* CNN are commonly used with images as they
are typically shift invariant.



THE NON-LINEAR PART

 Usually y=gof. 00— F—

* fis the (point-wise) activation function

RelLU : Sigmoid ~ Hyperbolic
J/(x)=max(x,0) - f()=1/14+el—x tangent

| f(x)=tanh(z)
* gisapooling or an aggregation operator.

Max pooling / WMead poaling [lp pooling
1 r
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. Generalization
Deep learning error depends

can be viewed on the DNN
as a metric input margin
learning.




Generalization
error depends
on the DNN

input margin




ASSUMPTIONS

Y ¥ 7
wrt wrt wt
1 l K
Two SOﬁ:maX/
Classes  €¥  ganeral non-linearity linear w

(RelLU, pooling,...) Classifier




GENERALIZATION ERROR (GE)

* In training, we reduce the classification error
£ Jtraining of the training data as the number of
training examples Z increases.

* However, we are interested to reduce the error
?Jltest of the (unknown) testing data as Z
InCreases.

e The difference between the two is the
generalization error

GE= ¢/training —¥ /test

-!It is important to understand the GE of DNN
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ESTIMATION ERROR

* The estimation error of a function f by a neural
networks scales as
Input

O/ )+ O(Nd/LYog (L))

function

Number of Number of

neurons in the training
DNN ENJES
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REGULARIZATION TECHNIQUES

Weight decay — penalizing DNN weights

Dropout - randomly drop units (along with their connections)
from the neural network during training

DropConnect — dropout extension
Batch normalization
Stochastic gradient descent (SGD)

Path-SGD
And more

13



A SAMPLE OF GE BOUNDS

e Using the VC dimension it can be shown that

GE<O(VDNN params-A-log(Z) /L )

* The GE was bounded also by the DNN weights

* Note that in both cases the GE grows with the depth

14



RETHINKING GENERALIZATION

* Networks with the same architecture may generalize
well with structured data but overfit if the data is
given with random labels

* This phenomena is affected by explicit regularization.

* This shows that taking into account only the network
structure for bouding the generalization error is
misleading

e We need to seek an alternative to the Rademacher
Complexity and VC-dimension based bounds

15



DNN INPUT MARGIN

* Theorem 6: If for every input margin pdin (
XTi)>y

then GCE<VNIy/2 (Y) /VL
« My/2 (Y) is the covering number of the data Y.
« Mly/2 (Y) gets smaller as y gets larger.
* Bound is independent of depth.

* OQur theory relies on the
robustness framework




INPUT MARGIN BOUND

 Maximizing the input margin directly is hard

* Our strategy: relate the input margm to the output
margin ydout (XTi ) and othe % Class 1

* Class 2

* Theorem 7:
viin (XTi )=zylout (XTi)/s
J(X)[[42

>ydout (XT7)/[[1
>ydout (XT7)/[[1




OUTPUT MARGIN

* Theorem 7: wlin (XTi )=ylout (XTi )/
sup—VeY [[X/|[X|[{2 J(X)[[{2 =plout (XTi)/

* Output margin is easier to
maximize — SVM problem

* Maximized by many cost
functions, e.g., hinge loss.




GE AND WEIGHT DECAY

* Theorem 7: ylin (X T )=ylout (X Tz')/supv-VEY [/

*x Class 1
* Class 2

* Bounding the weights
increases the input margin

* Weight decay regularization
decreases the GE

* Related to regularization used
by




JACOBIAN BASED REGULARIZATION

* Theorem 7: wplin (XTi )=ylout (XTi)/sup—VEY [

* /(X)is the Jacobian of the
DNN at point .

* /(*)is piecewise constant.

e Using the Jacobian of the
DNN leads to a better bound.

éNew regularization technique. §




RESULTS

e Better performance with less training samples

MNIST
Dataset

loss

hinge
hinge
CCE
CCE

256 samples

# layers noreg. WD

2

3
2
3

88.37 89.88
87.22 8931
88.45 88.45
89.05 89.05

512 samples

noreg. WD

93.99 94.62
93.41 93.97
9229 93.14
91.81 93.02

LM

95.49
95.76
95.25
95.32

e CCE: the categorical cross entropy.

 WD: weight decay regularization.

e LM: Jacobian based regularization for large margin.

* Note that hinge loss generalizes better than CCE and
that LM is better than WD as predicted by our theory.

1024 samples
noreg. WD LM

95.79 96.57 97.45
9546 96.45 97.60
9538 95.79 96.89
95.11 95.86 97.14
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INVARIANCE

* Our theory extends also to study of the relation
between invariance in the data and invariance in
the network

 We have proposed also a new strategy to enforce
invariance in the network

22



INVARIANCE SLICE

e Use transformations 741 ,...,.TUN to transform the
input [Dieleman et al., 2016]

* Average the features before the soft-max layer

R --R

.

bt
Machine Learning Coi'se, Dr. Raja Giryes K



INVARIANCE BY REGULARIZATION

e Use transformations 741 ,...,.TUN to transform the

input [Sokolic et al., 2017]
 Force features to be similar

5'?‘“




INVARIANCE

* Designing invariant DNN reduce the GE

Table 1: Classification accuracy (%] on CIFAR-10.

number of training samples

2500 5000 10000 20000 50000
No reg. 68.71 76.74 85.17 87.15 93.65

Inv. Reg. 69.32 79.08 86.69 88.14 94.50

Noreg. 7059 7840 86.05 88.13 94.26
+ avg.

lov. Reg. 7071 79.65 86.96 88.98 94.78
+ avg.

August. 16, 2017 25



DNN keep Gaussian mean

the width is a good
important measure for the
information complexity of
of the data. the data.

Important goal Random

of training: Gaussian
Classify the weights are
boundary points good for

between the
different classes

in the data.
< A
Deep learning
can be viewed
K as a metric

learning.

e

classifying the
average points

in the data.

(
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GAUSSIAN MEAN WIDTH

e Gaussian mean width:
w(Y)=FEsuprXz7€y (X—-2g),
g~N0,1).

The width of
the set rin
the direction

Ofg: 7




MEASURE FOR LOW DIMENSIONALITY

e Gaussian mean width:
w(Y)=Esup-X2cYy (X—2Zg),
g""/V(O,I).

* wT2 (Y)is a measure for the dimensionality of
the data.




GAUSSIAN MEAN WIDTH IN DNN

andPm »

W:is a linear F'is a non-linear
operation  wWwy¥cR7m function ¢(WX)ERTm

YcRd

Theorem 1: small @72 (¥)/m imply @72 (¥)~ w12
(Y(WX))

Smallany T Smallanwn)

W 1t is sufficient to provide proofs only for a single
layer




ASSUMPTIONS

- B

Gaussian
matrix

» 1S the ReLU

max(x,0)

m=0(61-4 w4 (¥))
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DISTANCE DISTORTION

‘ W wx Y Y(WX)ER Im

|'I'heorem 4: for X, Z€Y

No(WX)—p(W2)[[LT2 =172 [[X
—ZIT2 = [XJIIIZ]|/7 (sin£(X,Z)
—2£(X,Z)cos£(X,2) )<O |

The smaller £(X,2) the
smaller the distance we get
between the points




ANGLE DISTORTION

. X R

Behavior of 2(WW(WX),Yy(WZ))

/7 7

Fheorem 5: for X, Z€Y [, /2]

cosZ(WYW(WX),Yy(WZ)) —cos£(X,Z) —1
7 (sing(X,Z2) —4(X,Z)cos£ (X,2) )<O

32



DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them



ROLE OF TRAINING

* Having a theory for Gaussian weights we test the
behavior of DNN after training.

* We looked at the MINIST, CIFAR-10 and ImageNet
datasets.

 We will present here only the ImageNet results.

* We use a state-of-the-art pre-trained network for
ImageNet

 We compute inter and intra class distances.

34



INTER BOUNDARY POINTS DISTANCE RATIO

V is the output of /and £ the closest
point to // at the output from a
different class.

V'is a random point and
X its closest point from
a different class.

Compute the distance ratio: [V —

4 /////V X/

35



INTRA BOUNDARY POINTS DISTANCE RATIO

l
Let /'be a pointand X

its farthest point from
the same class.

Let /' be the output of /and Z the
farthest point from /' at the output
from the same class

Compute the distance ratio: [V —

4 /////V X/

36



BOUNDARY DISTANCE RATIO

Inter-class Intra-class

S Random
——Trained

W=z |/l[V—4Xj| =2 |l/l[V—Xlf



AVERAGE POINTS DISTANCE RATIO

- / gl dal o

nw—zj

—X|

Class |

Class fl K

Class |

V.X and Z are three V,X and Z are the outputs of /,X and

random points Z respectively.

Compute the distance ratios: [[V =X || /[[V
—X|[, [V—2||/l[V—-Z]



AVERAGE DISTANCE RATIO

Inter-class Intra-class

—Rar_ldom —Random
——Trained ——Trained

W =2ZIll/IvV=21 W =X Jl/IlV=4xif
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ROLE OF TRAINING

* On average distances are preserved in the trained
and random networks.

* The difference is with respect to the boundary
points.

* The inter distances become larger.

* The intra distances shrink.

40



DNN may
solve

optimization
problems




INVERSE PROBLEMS

* We are givenffl'=1;l+<' v\

) _ noise
Given set of linear
measurements operator

Unknown
signal

e Standard technique for recovery
min—+7 [[X—AZ//l2 (=) 4 N

e Unconstrained form e Y ey

minTZ//X_AZ//\ZZ 72 /Zf(? \ dimensional set ¥

Regularization fis a penalty
parameter function

42



£J1 MINIMIZATION CASE

 Unconstrained form
min—Z [[X—AZ|[l27T2 +A//Z]/{1

e Can be solved by proximal gradient, e.g., iterative

shrinkage and thresholding technique (ISTA)
ZTt+1 =yplAdu (ZTt +uAir (X—AZTE))

Soft | « 1S the
thresholdmg_lz step size

operation



ISTA CONVERGENCE

e Reconstruction mean squared error (MSE) as a
function of the number of iterations

700 800 900 1000

44



YAAYY: |

. ISTA
Z1t+1 =l iu (ZTe+udlIT (X—AZ1t))

* Rewriting ISTA:
ZTt+-1 =iy (I—pATT A)ZTt +uATT X)

e Learned ISTA (LISTA):
ZTt+1 =il (WZTt+5X)

Learned
operators



LISTA CONVERGENCE

* Replacing /—uAT7 Aand #AT7 in ISTA with the
learned /# and S improves convergence

e Extensions to other models

46



LISTA AS A NEURAL NETWORK

Learned
linear !
operators
) 4
Y=AZ+E Soft

thresholding An estimate

operation of 7
-1 A
[Gregor & LeCun, 2010]




ISTA

Iterative soft :
. u 1S the
thresholding I step size

algorithm (ISTA)

h 4
XecR1d ___)._)‘_)- 57
Soft
Step size xobeys  thresholding
=l operation
A “" Minimizer of

min+Z | X-AZ ||+4)/Z |1
X=AZ+E

[Daubechies, Defrise & Mol, 2004],
[Beck & Teboulle, 2009]
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PROJECTED GRADIENT DESCENT (PGD)
_-4_ /ziSthe
step size

X=AZ+E y projects onto Estimate of ~.

the set r Aim at solving
min+Z [[X—AZ [
st f(Z)<R

[ 2D<R




THEORY FOR PGD

* Theorem 8: Let ZERTd, /:RTd =R a proper
function, f(Z2)<R, Clf (Z) the tangent cone of /

at point Z, AER TmXxd a random Gaussian matrix
and X=A/+ £ Then the estimate of PGD at

iteration ¢, Z T¢, obeys
I1Z Te =Z|I<(xdf p)Te [|Z]],

where p=sup+U,VECLf (Z)NBTd UTT (I—uATT
A)V
and xlf =1 if fis convex and xlf =2 otherwise.



PGD CONVERGENCE RATE

o p=sup+U,VECLS (Z)NBTd UTT ({—uATT A)V is the

convergence rate of PGD.
Let w be the Gaussian mean width of CVf (Z)NBTd .

If u=1/(Vim +vVd )12 =1/d then p=1—-0(m —w/
m+d ).

f u=1/m then p=0(w/vVm ).
~or the A-sparse model w2 =0 (Alog(d))
~or GMM with £ Gaussians w72 =0(k).

How may we cause «w to become smaller for having a
petter convergence rate?




INACCURATE PROJECTION

* PGD iterations projects onto Y={7: /(27 )<R).
_* Smaller Y= Smaller w.

Faster convergence as
0=1—0(Vm —w/m+d ) or O(w/Vn:

* Let us assume that our signal belongs T0 a smaller set
Y={Z:f(Z)<R}with w Kw. v

* |deally, we would like to project
onto Y instead of Y.

* This will lead to faster convergence.
 What if such a projection is not feasible?

4
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INACCURATE PROJECTION

 We will estimate the projection onto Y by

* Alinear projection 7

* Followed by a projection onto

* Assumptions:
* Y (PZ)—Z][<€e

Projection of the target vector 7
onto P and thenonto Y

53



INACCURATE PGD (IPGD)

U is the
step size
\ 4
XeR1d _>-__> > Z
AT
I
X=AZ+E . .
y projects onto Estimate of ~.
the set v Aim at solving

min-Z [[X—AZ ||
st f(Z)<R

54



THEORY FOR IPGD

* Theorem 9: Let ZERTd, /:RTd =R a proper convex*

function, f(2)<A, C lf (Z) the tangent cone of fat
point Z, AER TdXm a random Gaussian matrix and

X=AZ7+F. Then the estimate of IPGD at iteration ¢, £
Tt, obeys
[1Z Tt —Z|I< (PP )Tt +1—(pdP )Tt /1—pIP €)[/Z]],

where pdp =sup+UVeECLf (Z)NBTd UTT P(I—u
ATT A)PV
and e=(24+pIp )e.

*We have a version of this theorem also when f’is non-proper or non-convex function >



CONVERGENCE RATE COMPARISON

* PGD convergence:

()Tt
* IPGD convergence:

(OIP )Tt +1—(pdP )Tt /1—plP (2+plp )e

"~ L(q) (pIP )T+ = D) (pdP )Tt "K o) (p)Tt
(a)e olP

(b) A

(c) Faster convergence as pdP <K p (because wip Kw).



MODEL BASED COMPRESSED SENSING

* Y is the set of sparse vectors with sparsity patterns
that obey a tree structure.

* Projecting onto Y improves convergence .
rate compared to projecting onto the set
of sparse vectors Y . 05 0.5

* The projectiononto Y is more
demanding than onto Y. 025 025 025 025

* Note that the probability of selecting atoms from
lower tree levels is smaller than upper ones.

 Pwill be a projection onto certain tree levels —
zeroing the values at lower levels.

57



MODEL BASED COMPRESSED SENSING

Non-zeros picked
entries has zero mean

random Gaussian
distribution with
variance:

- 1 at first two levels

- 0.52 at the third level
- 0.22 at the rest of the
EVELRS

m— PGD K
w—— PGD tree
e |PGD 1 tree level
107" = ====|PGD 2 tree levels
T == = |PGD 3 tree levels
== = |PGD 4 tree levels
. == =|PGD changing levels |

5 10 15 20 25 30 35

t (Iteration Number)

58



SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in @ 2-times redundant DCT dictionary such that:

* We set Zto be a pooling-like operation that keeps
in each window of size 3 only the largest value.

59



SPECTRAL COMPRESSED SENSING

0

| e PGD |
- =I|PGD -

10

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t (Iteration Number)




SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in a 4-times redundant DCT dictionary such that:

* We set Zto be a pooling-like operation that keeps
in each window of size 5 only the largest value.

61



SPECTRAL COMPRESSED SENSING

e PGD
== |PGD

y
~__-_

150 200 250 300
t (Iteration Number)




LEARNING THE PROJECTION

* If we have no explicit information about Y it might
oe desirable to learn the projection.

* Instead of learning 2, it is possible to replace
P(/—uATT A) and uPATT with two learned
matrices S'and W respectively.

* This leads to a very similar scheme to the one of
LISTA and provides a theoretical foundation for
the success of LISTA.



LEARNED IPGD

Learned
linear
operators
) 4
X=AZ+F y projects onto Estimate of

. the set r Aim at solving
min+Z [[X—AZ [
st f(Z)<R




SUPER RESOLUTION

* A popular super-resolution technique uses a pair of
low-res and high-res dictionaries

* The original work uses OMP with sparsity 3 to decode
the representation of patches in low-res image

* Then the representation is used to reconstruct the
patches of the high-res image

* We replace OMP with LIPGD with 3 levels but higher
target sparsity

* This leads to better reconstruction results (with up to
0.5dB improvement)
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LISTA

Learned
linear
operators
\ 4
XeR1d _>!_> >
» 1S @ proximal , .
X=A7+F .

mapping. E§hmate o. Z.
. Aim at solving

min+Z || X—AZ ||

argmin—ZcR’d [[U-Z || +Af (Z)

+4f(Z)

66



LISTA MIXTURE MODEL

* Approximation of the projection onto %
with one linear projection may not
be accurate enough.

* This requires more LISTA layers/iterations.

* Instead, one may use several LISTA networks,
where each approximates a different part of Y

* Training multiple LISTA networks ﬁ‘*;

accelerate the convergence further.

e

67



LISTA MIXTURE MODEL

——ISTA
—LISTA |-
- — LISTA-MM |

30 40 50 60 70 80 90
t (iteration number)




RELATED WORKS

* In it is shown that a learning
may give a gain due to better preconditioning of A.

° In a relation to the restricted
isometry property (RIP) is drawn

* |n a connection is
drawn to approximate message passing (AMP).

* All these works consider only the sparsity case

69



. Generalization
Deep learning error depends

can be viewed on the DNN
as a metric input margin
learning.
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