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This Talk: Analysis of Optimization

* What properties of the Architecture
network architecture
facilitate optimization?

— Positive homogeneity

— Parallel subnetwork
structure
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» What properties of the Regularization
regularization function -
facilitate optimization?  °_ °, - -

— Positive homogeneity =~ ¢ ° '

— Adapt network Y .
structure to the data [1] ° o ° o
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Main Results

Optimization Theorem 1:

A local minimum such
that all the weights from
one subnetwork are zero
IS a global minimum
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Main Results

Optimization

Non-Convex Function
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Theorem 2:

If the size of the network
IS large enough, local
descent can reach a
global minimizer from
any initialization

Today’s Framework




e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers
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Key Property #1: Positive Homogeneity

e Start with a network
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« Scale the weights by N2

a >0 aWt aW? aW?

* Qutput is scaled by o, where p = degree of homogeneity
WL W2 W3 =Y
1 2 3y — AP
O(aW, aW=, aW?) = a?Y
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Examples of Positively Homogeneous Maps

 Example 1: Rectified Linear Units (ReLU)
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5 Does not change

rectification

« Linear + RelLU layer is positively homogeneous of degree 1
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Examples of Positively Homogeneous Maps

 Example 2: Simple networks with convolutional layers, RelLU,
max pooling and fully connected layers

max{a’zy, a2}

aWlt aW? a W3

« Typically each weight layer increases degree of homogeneity
by 1
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Examples of Positively Homogeneous Maps

« Some Common Positively Homogeneous Layers

Fully Connected + ReLU
Convolution + RelLU
Max Pooling

Linear Layers

Mean Pooling

Max Out

Many possibilities...
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers
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Key Property #2. Parallel Subnetworks

« Subnetworks with identical structure connected in parallel
« Simple example: single hidden network
Subnetwork:

one RelLU
hidden unit
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* Any positively homogeneous network can be used
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Key Property #2. Parallel Subnetworks

« Example: Parallel AlexNets [1]

Subnetwork:
AlexNet

1 k@ N\
192 128
13 13
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192

1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks."
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers
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Basic Regularization: Weight Decay
OW, W, W?) = [WH|p + W2z + [[W?[|%
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* Proposition non-matching degrees => spurious local minima
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Regularizer Adapted to Network Size

« Start with a positively homogeneous network with parallel
structure
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Regularizer Adapted to Network Size

» Take weights of one subnetwork

» Define a regularizer Q(Wll, W127 W13> W147 W15)

* Positive semi-definite
» Positively homogeneous with
the same degree as network

S (aW) =a"®(W)
0(aW) =la?P(W)
« Example: product of norms
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Regularizer Adapted to Network Size

« Sum over all subnetworks

O(W) = ZH(W@')
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r = # subnets

* Allow r to vary

* Adding a subnetwork is
penalized by an additional
term in the sum

* Regqularizer constraints
number of subnetworks
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e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers
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Main Results: Matrix Factorization

e Convex formulations: Factorized formulations
min (Y, X) + A| X[ min(Y, UV +X0(U,V)

» Variational form of the nuclear norm [1 2]

(I )= min vl uvu2 ot UV =X
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° @%%Hﬁ]rarl g?a‘né’ﬁe(lég)ion Is the projective tensor norm [3,4]
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Main Results: Matrix Factorization

« Theorem 1: Assume / is convex and once differentiable in _X.
A local minimizer (U, V') of the non-convex factorized problem
(A
: T
il UV + 22 IU:llVill,
1=

such that for some i U; = V; = 0, is a global minimizer.
Moreover, UV ' is a global minimizer of the convex problem

n}}nﬁ(Y, X) 4+ A X w0
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Main Results: Matrix Factorization

 Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

 Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u| V|V v

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Main Results: Tensor Fact. & Deep Learning

* In matrix factorization we had “generalized nuclear norm”
T

1Zlee = gnin 3 NUullVillo st UVT =2
1=
* By analogy we define “nuclear deep net regularizer”

T

Qy.0(Z) = min oWl . WEY st oW W)Y =27
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Whhri

where 0 is positively homogeneous of the same degree as ¢
+ Proposition: {149 is convex

e Intuition: regularizer © “comes from a convex function”

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE




Main Results: Tensor Fact. & Deep Learning

{ Hkl%n (Y, (X, W .. WE) oW, L R
WrE_,

e Assumptions:
- Z(Y, Z): convex and once differentiable in /
— ® and ©: sums of positively homogeneous functions of same degree

p(aWlh, ..., aWH) =aPop(Wl, ...,W5) Va >0

e Theorem 1: A local minimizer such that for some j and all k
Wik — ()is a global minimizer

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

X [1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and
JOHNS HOPKINS Applications to Image Processing, ICML 14
@i‘:" [2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15

MATHEMATICAL INSTITUTE [3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
for DATA SCIENCE




Conclusions and Future Directions

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

e Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers
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More Information,

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Thank You!

@ JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE




