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This Talk: Analysis of Optimization
• What properties of the 

network architecture 
facilitate optimization?  
– Positive homogeneity 
– Parallel subnetwork 

structure 

• What properties of the 
regularization function 
facilitate optimization?  
– Positive homogeneity 
– Adapt network 

structure to the data [1]

Today’s Talk: The Questions
• Are there properties of the network 

architecture that allow efficient 
optimization?

• Positive Homogeneity
• Parallel Subnetwork Structure

• Are there properties of the 
regularization that allow efficient 
optimization?

• Positive Homogeneity
• Adapt network architecture to data [1]

Optimization
Generalization/
Regularization

Architecture

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)Picture courtesy of Ben Haeffele 

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)  



Main ResultsToday’s Talk: The Results
Optimization

• A local minimum such that 
one subnetwork is all zero is 
a global minimum. 

Theorem 1:  
A local minimum such 
that all the weights from 
one subnetwork are zero 
is a global minimum 

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and 
Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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• Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.
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Theorem 2: 
If the size of the network 
is large enough, local 
descent can reach a 
global minimizer from 
any initialization

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and 
Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and 
Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Key Property #1: Positive Homogeneity
• Start with a network 

• Scale the weights by 

• Output is scaled by        , where p = degree of homogeneity

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity
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Examples of Positively Homogeneous Maps
• Example 1: Rectified Linear Units (ReLU) 

• Linear + ReLU layer is positively homogeneous of degree 1

Most Modern Networks Are Positively Homogeneous

• Example: Rectified Linear Units (ReLUs)
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Examples of Positively Homogeneous Maps
• Example 2: Simple networks with convolutional layers, ReLU, 

max pooling and fully connected layers 

• Typically each weight layer increases degree of homogeneity 
by 1

Most Modern Networks Are Positively Homogeneous
• Simple Network

Input
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Examples of Positively Homogeneous Maps
• Some Common Positively Homogeneous Layers  

– ︎Fully Connected + ReLU 

– Convolution + ReLU 

– Max Pooling 

– Linear Layers 

– Mean Pooling 

– Max Out 

– Many possibilities... 

Most Modern Networks Are Positively Homogeneous

Some Common Positively Homogeneous Layers
9Fully Connected + ReLU
9Convolution + ReLU
9Max Pooling
9Linear Layers
9Mean Pooling
9Max Out
9Many possibilities…

X Not Sigmoids
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Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and 
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[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Key Property #2: Parallel Subnetworks
• Subnetworks with identical structure connected in parallel 

• Simple example: single hidden network

Key Property 2: Parallel Subnetworks
• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unit

Key Property 2: Parallel Subnetworks
• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unitSubnetwork: 
one ReLU 
hidden unit



Key Property #2: Parallel Subnetworks
• Any positively homogeneous network can be used

Subnetwork: 
multiple  

ReLU layers

Key Property 2: Parallel Subnetworks

• Subnetwork: Multiple ReLU layers

• Any positively homogeneous subnetwork can be used

Key Property 2: Parallel Subnetworks

• Subnetwork: Multiple ReLU layers

• Any positively homogeneous subnetwork can be used



Key Property #2: Parallel Subnetworks
• Example: Parallel AlexNets [1]

Subnetwork: 
AlexNet
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• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]
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AlexNet
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AlexNet

Input Output

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.

Key Property 2: Parallel Subnetworks

• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]
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[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." 
NIPS, 2012 



Outline
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Basic Regularization: Weight Decay

• Proposition non-matching degrees => spurious local minima

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity
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Regularizer Adapted to Network Size
• Start with a positively homogeneous network with parallel 

structure

Adapting the size of the network via regularization
• Start with a positively homogeneous network with parallel structure



Regularizer Adapted to Network Size
• Take weights of one subnetwork 

• Define a regularizer

Adapting the size of the network via regularization
• Take the weights of one subnetwork.

• Positive semi-definite 
• Positively homogeneous with 

the same degree as network

• Example: product of norms
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Regularizer Adapted to Network Size
• Sum over all subnetworks

Adapting the size of the network via regularization
• Start with a positively homogeneous network with parallel structure

• Allow r to vary 

• Adding a subnetwork is 
penalized by an additional 
term in the sum 

• Regularizer constraints 
number of subnetworks

⇥(W ) =
rX

i=1

✓(W i)

r = # subnets
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Main Results: Matrix Factorization
• Convex formulations:               Factorized formulations 

• Variational form of the nuclear norm [1,2] 

• A natural generalization is the projective tensor norm [3,4]

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

[1] Burer, Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 2005. 
[2] Cabral, De la Torre, Costeira, Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank 
matrix decomposition,” CVPR, 2013, pp. 2488–2495. 
[3] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[4] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.
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Main Results: Matrix Factorization
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer            of the non-convex factorized problem 
 
 
 
 
such that for some i                      , is a global minimizer. 
Moreover,           is a global minimizer of the convex problem

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and 
Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Main Results: Matrix Factorization
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size of factorization and find descent direction (u,v)

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Main Results: Tensor Fact. & Deep Learning
• In matrix factorization we had “generalized nuclear norm” 

• By analogy we define “nuclear deep net regularizer” 
 
 
 
 
where     is positively homogeneous of the same degree as 

• Proposition:                is convex 

• Intuition: regularizer      “comes from a convex function”
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Main Results: Tensor Fact. & Deep Learning

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Theorem 1: A local minimizer such that for some i and all k  
                is a global minimizer 

• Theorem 2: If the size of the network is large enough, local 
descent can reach a global minimizer from any initialization 

� ⇥

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and 
Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Conclusions and Future Directions
• Size matters 

– Optimize not only the network weights, but also the network size 
– Today: size = number of neurons or number of parallel networks 
– Tomorrow: size = number of layers + number of neurons per layer 

• Regularization matters 
– Use “positively homogeneous regularizer” of same degree as network 
– How to build a regularizer that controls number of layers + number of 

neurons per layer 

• Not done yet 
– Checking if we are at a local minimum or finding a descent direction 

can be NP hard 
– Need “computationally tractable” regularizers



More Information,

Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 

Center for Imaging Science @ Johns Hopkins University 
http://www.cis.jhu.edu 

Thank You!


