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What do we know about the energy landscape?
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generalize poorly

variance reduction

paradox between a “benign” energy landscape
and delicate training algorithms



Motivation from the Hessian
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How do we exploit this?

Magnify the energy landscape and smooth with a kernel

w” = argmin f(w)
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A physics interpretation

Our new loss is “local entropy”
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Minimizing local entropy

- Solve

w* = argmin f,(w, y)
w

> Gradient of local entropy

Ve (w,y) =y (w—(w))
N

denotes an expectation over
a local Gibbs distribution

(W)= Z(w,y)! f w’ exp (—f(w’) — 21—)/ lw —w/|I*] dw’
- Estimate the gradient using MCMC

can be applied to general deep networks



Medium-scale CNN

> All-CNN-BN on CIFAR-10

- Do not see much plateauing of training or validation loss
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A PDE interpretation

> Local entropy is the solution of a Hamilton-Jacobi equation

T 1
Ut:_i |VU|2+§AU

u(w,0) = f(w)
original loss as the initial condition
f(w) = u(w,y)
» Stochastic control interpretation

dw =—-a(s)ds+dB(s), t< s< T

w(t) = w.

C(w(:), a(-)) = E [f(w(T)) + % ftT”a(S,ﬂlz ds]

quadratic penalty for
a(w,t)=Vu(w,t) greedy gradient descent



New PDEs

> Use the non-viscous HJ equation

0

1 1
Uug = —E |VU|2 +?/L;

> Hopf-Lax formula gives the solution “inf-convolution”
/ or Moreau envelope

1
ulw,t) = |vrlf {f(w’) + ZHW — W’||2}

> Simple formula for the gradient (proximal point iteration)

Vu(w,t)=p"
p*=Vf(w—tp’)

> This has a few magical properties...
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Smoothing using PDEs
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Distributed training algorithms

- Elastic-SGD

p

1
- E : 1k 1k
argmin r(w + — ||V —W

w, w WP 1

> A continuous-time view of local entropy

dw = -y "(w—-w’)ds
fast variable
1 1
\dw' = [Vf(w’) + ” (w' — W)]

ds +

2

% dB(s)

- If w(s) is very fast, w(s) only sees its average

Ve (w.y) =y (w—(w"))

dw = -y (W= (w'))ds

0 / / 1 /
p=(w'; w) o exp (—f(w)— ZHW — wl|?

“homogenized” dynamics
) as e—0
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Wide-ResNet on CIFAR-10/100
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WTH is implicit regularization?

Many, many variants

AdaGrad, SVRG,
SAG, rmsprop,
Adam, Eve,

APPA, Catalyst,
Natasha, Katyusha...

Why is SGD

so special?
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» Stochastic differential equation

dw

~VF(w) _dt_+y2671D(w) dB(t)

L _ n
n 131:%

» Fokker-Planck equation and optimal transportation

p* = argmin f d(w) p(w)dw + B~ flogp dp.
0

15 20 25 30 5 40
Operations [G-Ops)

Information bottleneck,
Bayesian inference,

large batch-sizes,
sampling techniques,
hyper-parameter choices,
neural architecture search,
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SGD does not minimize f(w), what is ¢(w)?

» Deep networks induce highly non-isotropic noise

N

frequency
o

0

» Leads to deterministic, Hamiltonian dynamics in SGD ™
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Most likely trajectories of

SGD are closed loops A(D)=0.27+0.84

rank(D) = 0.34%

saddle-point

p*(W) 96 e_:Bf(W)
o o BP(W)

» Deep networks have out-of-equilibrium distribution // =

15



Summary

> Techniques from control and physics are interpretable, also lead
to state-of-the-art algorithms

PDEs, stochastic control, stability of limit cycles, Fokker-Planck equations,
continuous-time analysis...

> Control has powerful tools to make inroads into understanding
and improving deep networks

input-output stability, reinforcement learning & optimal control

> Deep learning is powerful, and quite “easy” to get into

even the fundamentals are unknown and debated upon
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