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Data segmentation and clustering
• Given a set of points, separate them into multiple groups

• Discriminative methods: learn boundary
• Generative methods: learn mixture model, using, e.g.

Expectation Maximization



Dimensionality reduction and clustering
• In many problems data is high-dimensional: can reduce

dimensionality using, e.g. Principal Component Analysis

• Image compression
• Recognition

– Faces (Eigenfaces)
• Image segmentation

– Intensity (black-white)
– Texture



Segmentation problems in dynamic vision
• Segmentation of video and dynamic textures

• Segmentation of rigid-body motions



Segmentation problems in dynamic vision
• Segmentation of rigid-body motions from dynamic textures



Clustering data on non Euclidean spaces
• Clustering data on non Euclidean spaces

– Mixtures of linear spaces
– Mixtures of algebraic varieties
– Mixtures of Lie groups

• “Chicken-and-egg” problems
– Given segmentation, estimate models
– Given models, segment the data
– Initialization?

• Need to combine
– Algebra/geometry, dynamics and statistics



Outline of the tutorial
• Part I: Theory (8.30-10.00)

– Introduction to GPCA (8.30-8.40)

– Basic GPCA theory and algorithms (8.40-9.20)

– Advanced statistical and algebraic methods for GPCA (9.30-10.20)

• Break (10.00-10.30)

• Part II: Applications (10.30-12.10)

– Applications to motion and video segmentation (10.30-11.20)

– Applications to image representation & segmentation (11.20-12.10)

• Questions (12.10-12.30)



Part I: Theory
• Introduction to GPCA (8.30-8.40)

• Basic GPCA theory and algorithms (8.40-9.20)
– Review of PCA and extensions
– Introductory cases: line, plane and hyperplane segmentation
– Segmentation of a known number of subspaces
– Segmentation of an unknown number of subspaces

• Advanced statistical and algebraic methods for GPCA
(9.20-10.00)
– Model selection for subspace arrangements
– Robust sampling techniques for subspace segmentation
– Voting techniques for subspace segmentation



Part II: Applications in computer vision
• Applications to motion & video segmentation (10.30-11.20)

– 2-D and 3-D motion segmentation
– Temporal video segmentation
– Dynamic texture segmentation

• Applications to image representation and segmentation
(11.20-12.10)
– Multi-scale hybrid linear models for sparse

image representation
– Hybrid linear models for image segmentation



References: Springer-Verlag 1998



Slides, MATLAB code, papers
http://perception.csl.uiuc.edu/gpca
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Generalized Principal Component Analysis
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Principal Component Analysis (PCA)
• Given a set of points x1, x2, …, xN

– Geometric PCA: find a subspace S passing through them
– Statistical PCA: find projection directions that maximize the variance

• Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36)

• Applications: data compression, regression, computer
vision (eigenfaces), pattern recognition, genomics

Basis for S



Extensions of PCA
• Probabilistic PCA (Tipping-Bishop ’99)

– Identify subspace from noisy data
– Gaussian noise: standard PCA
– Noise in exponential family (Collins et al.’01)

• Nonlinear dimensionality reduction
– Multidimensional scaling (Torgerson’58)
– Locally linear embedding (Roweis-Saul ’00)
– Isomap (Tenenbaum ’00)

• Nonlinear PCA (Scholkopf-Smola-Muller ’98)
– Identify a nonlinear manifold from

sample points
– Apply PCA to data embedded into higher

dimensional space
– What embedding should be used?



Generalized Principal Component Analysis
• Given a set of points lying in multiple subspaces, identify

– The number of subspaces and their dimensions
– A basis for each subspace
– The segmentation of the data points

• “Chicken-and-egg” problem
– Given segmentation, estimate subspaces
– Given subspaces, segment the data



Prior work on subspace clustering
• Iterative algorithms:

– K-subspace (Ho et al. ’03),
– RANSAC, subspace selection and growing (Leonardis et al. ’02)

• Probabilistic approaches: learn the parameters of a mixture
model using e.g. EM
– Mixtures of PPCA: (Tipping-Bishop ‘99):
– Multi-Stage Learning (Kanatani’04)

• Initialization
– Geometric approaches: 2 planes in R3 (Shizawa-Maze ’91)
– Factorization approaches: independent subspaces of equal

dimension (Boult-Brown ‘91, Costeira-Kanade ‘98, Kanatani ’01)
– Spectral clustering based approaches: (Yan-Pollefeys’06)



Basic ideas behind GPCA
• Towards an analytic solution to subspace clustering

– Can we estimate ALL models simultaneously using ALL data?
– When can we do so analytically? In closed form?
– Is there a formula for the number of models?

• Will consider the most general case
– Subspaces of unknown and possibly different dimensions
– Subspaces may intersect arbitrarily (not only at the origin)

• GPCA is an algebraic geometric approach to data segmentation
– Number of subspaces = degree of a polynomial
– Subspace basis = derivatives of a polynomial
– Subspace clustering is algebraically equivalent to

• Polynomial fitting
• Polynomial differentiation



Applications of GPCA in computer vision
• Geometry

– Vanishing points

• Image compression

• Segmentation
– Intensity (black-white)
– Texture
– Motion (2-D, 3-D)
– Video (host-guest)

• Recognition
– Faces (Eigenfaces)

• Man - Woman
– Human Gaits
– Dynamic Textures

• Water-bird

• Biomedical imaging
• Hybrid systems identification



Introductory example: algebraic clustering in 1D

• Number of groups?



Introductory example: algebraic clustering in 1D

• How to compute n, c, b’s?
– Number of clusters

– Cluster centers

– Solution is unique if

– Solution is closed form if



Introductory example: algebraic clustering in 2D

• What about dimension 2?

• What about higher dimensions?
– Complex numbers in higher dimensions?
– How to find roots of a polynomial of quaternions?

• Instead
– Project data onto one or two dimensional space
– Apply same algorithm to projected data



Representing one subspace
• One plane

• One line

• One subspace can be represented with
– Set of linear equations
– Set of polynomials of degree 1



De Morgan’s rule

Representing n subspaces
• Two planes

• One plane and one line
– Plane:
– Line:

• A union of n subspaces can be represented with a set of
homogeneous polynomials of degree n



Veronese map

Fitting polynomials to data points
• Polynomials can be written linearly in terms of the vector of coefficients

by using polynomial embedding

• Coefficients of the polynomials can be computed from nullspace of
embedded data
– Solve using least squares
– N = #data points



Finding a basis for each subspace
• Case of hyperplanes:

– Only one polynomial

– Number of subspaces

– Basis are normal vectors

• Problems
– Computing roots may be sensitive to noise
– The estimated polynomial may not perfectly factor with noisy
– Cannot be applied to subspaces of different dimensions

• Polynomials are estimated up to change of basis, hence they may not factor,
even with perfect data

Polynomial Factorization (GPCA-PFA) [CVPR 2003]
• Find roots of polynomial of degree     in one variable
• Solve               linear systems in     variables
• Solution obtained in closed form for



Finding a basis for each subspace

• To learn a mixture of subspaces we just need one positive
example per class

Polynomial Differentiation (GPCA-PDA) [CVPR’04]



Choosing one point per subspace
• With noise and outliers

– Polynomials may not be a perfect union of subspaces

– Normals can estimated correctly by choosing points optimally

• Distance to closest subspace without knowing
segmentation?



GPCA for hyperplane segmentation
• Coefficients of the polynomial can be computed from null

space of embedded data matrix
– Solve using least squares
– N = #data points

• Number of subspaces can be computed from the rank of
embedded data matrix

• Normal to the subspaces     can be computed
from the derivatives of the polynomial



GPCA for subspaces of different dimensions
• There are multiple polynomials

fitting the data

• The derivative of each
polynomial gives a different
normal vector

• Can obtain a basis for the
subspace by applying PCA to
normal vectors



GPCA for subspaces of different dimensions
• Apply polynomial embedding to projected data

• Obtain multiple subspace model by polynomial fitting

– Solve to obtain
– Need to know number of subspaces

• Obtain bases & dimensions by polynomial differentiation

• Optimally choose one point per subspace using distance



An example
• Given data lying in the union

of the two subspaces

• We can write the union as

• Therefore, the union can be represented with the two
polynomials



An example
• Can compute polynomials from

• Can compute normals from



Dealing with high-dimensional data
• Minimum number of points

– K = dimension of ambient space
– n = number of subspaces

• In practice the dimension of
each subspace ki is much
smaller than K

– Number and dimension of the
subspaces is preserved by a
linear projection onto a
subspace of dimension

– Can remove outliers by robustly
fitting the subspace

• Open problem: how to choose
projection?
– PCA?

Subspace 1

Subspace 2



GPCA with spectral clustering
• Spectral clustering

– Build a similarity matrix between pairs of points
– Use eigenvectors to cluster data

• How to define a similarity for subspaces?
– Want points in the same subspace to be close
– Want points in different subspace to be far

• Use GPCA to get basis

• Distance: subspace angles



Comparison of PFA, PDA, K-sub, EM



Summary
• GPCA: algorithm for clustering subspaces

– Deals with unknown and possibly different dimensions
– Deals with arbitrary intersections among the subspaces

• Our approach is based on
– Projecting data onto a low-dimensional subspace
– Fitting polynomials to projected subspaces
– Differentiating polynomials to obtain a basis

• Applications in image processing and computer vision
– Image segmentation: intensity and texture
– Image compression
– Face recognition under varying illumination



For more information,

Vision, Dynamics and Learning Lab
@

Johns Hopkins University

Thank You!Thank You!


