June15, 2005

Multi-Scale Hybrid Linear Models for Lossy Image Representation Wei Hong, John Wright, Yi Ma Control Group, Coordinated Science Laboratory

Image Formation & Processing Group, Beckman Department of Electrical & Computer Engineering

University of Illinois at Urbana-Champaign

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

Introduction – Image Representation via Linear Transformations

pixel-based representation

three matrixes of RGB-values

Introduction

Fixed Orthogonal Bases (representation, approximation, compression)

- Discrete Fourier transform (DFT) or discrete cosine transform (DCT) (Ahmed '74): JPEG.
- Wavelets (multi-resolution) (Daubechies'88, Mallat'92): JPEG-2000.
- Curvelets and contourlets (Candes & Donoho'99, Do & Veterlli'00)

Unorthogonal Bases (for redundant representations)

- Extended lapped transforms, frames, sparse representations (L^p geometry)...

$$\mathsf{min}\,|x|,\;\mathsf{s.t}\;\;y=Ax,\;A\in\Re^{n imes m},m>n$$

Introduction

Adaptive Bases (optimal if imagery data are uni-modal)

 Karhunen-Loeve transform (KLT), also known as PCA (Pearson'1901, Hotelling'33, Jolliffe'86)

Introduction – Principal Component Analysis (PCA)

Dimensionality Reduction

Find a low-dimensional representation (model) for high-dimensional data.

Principal Component Analysis (Pearson'1901, Hotelling'1933, Eckart & Young'1936) or Karhunen-Loeve transform (KLT).

Variations of PCA

- Nonlinear Kernel PCA (Scholkopf-Smola-Muller'98)
- Probabilistic PCA (Tipping-Bishop'99, Collins et.al'01)
- Higher-Order SVD (HOSVD) (Tucker'66, Davis'02)
- Independent Component Analysis (Hyvarinen-Karhunen-Oja'01)

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

Hybrid Linear Models – Multi-Modal Characteristics

Distribution of the first three principal components of the Baboon image: A clear multi-modal distribution

Hybrid Linear Models – Multi-Modal Characteristics

Vector Quantization (VQ)

- multiple 0-dimensional affine subspaces (i.e. cluster means)
- existing clustering algorithms are iterative (EM, K-means)

Hybrid Linear Models – Characteristics of Natural Images

	Multiv 1D	variate 2D	Hybrid (multi-modal)	Hierarchical (multi-scale)	High-dimension (vector-valued)
Fourier (DCT)	Х	x			
Wavelets	Х			X	
Curvelets		Х			
Random fields		Х	X	X	
PCA/KLT	X	x			X
VQ	X	x	Х		X
Hybrid linear	X	X	X	X	X

We need a new & simple paradigm to effectively account for all these characteristics simultaneously.

Hybrid Linear Models – Subspace Estimation and Segmentation

Hybrid Linear Models (or Subspace Arrangements)

- the number of subspaces is unknown
- the dimensions of the subspaces are unknown
- the basis of the subspaces are unknown
- the segmentation of the data points is unknown

"Chicken-and-Egg" Coupling

- Given segmentation, estimate subspaces
- Given subspaces, segment the data

<u>Hybrid Linear Models – Some Related Literature</u>

- Heuristic Approaches (Boult et.al, Costeira et.al, Kanatani,...)
 - Segment data using similarity matrices + clustering
 - Eigenvector (spectral) segmentation (..., Vempala-Wang'02)
- Iterative Approaches
 - Generative model: data membership + mixture model
 - Identify subspaces using Expectation Maximization
 - E-step: estimate membership given model parameters
 - M-step: estimate model parameters given membership
 - Probabilistic PCA (Tipping-Bishop'99), K-subspaces (Ho et. al'03), subspace growing and selection (Leonardis et. al'02)

Is there a non-iterative solution to the subspace estimation & segmentation problem?

Hybrid Linear Models – Generalized Principal Component Analysis

Generalized PCA (Vidal-Ma-Sastry'03,04) – Sketch:

- Fit all data points with a set of polynomials of the lowest degree
- Select one representative point on each subspace
- Derivatives of the polynomials at the point are normal vectors to the subspace
- Segment the data points into different subspaces

In the absence of noise,

- the solution is closed-form (no initialization), and
- the algorithm uses only linear algebraic techniques.

subject to a given error tolerance (or PSNR)

Hybrid Linear Models – Subspaces of the Barbara Image

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

Multi-Scale Implementation – Algorithm Diagram

Diagram for a level-3 implementation of hybrid linear models for image representation

Multi-Scale Implementation – The Baboon Image

Multi-Scale Implementation – Comparison with Other Methods

The Baboon image

Multi-Scale Implementation – Image Approximation

Comparison with level-3 wavelet (7.5% coefficients)

Level-3 bior-4.4 wavelets PSNR=23.94 Level-3 hybrid linear model PSNR=24.64

Multi-Scale Implementation – Other Test Images

Outperform wavelets except for the two:

Reexamine later in wavelet domain

Multi-Scale Implementation – Block Size Effect

The Baboon image

Some problems with the multi-scale hybrid linear model:

- 1. has minor block effect;
- 2. is computationally more costly (than Fourier, wavelets, PCA);
- 3. does not fully exploit spatial smoothness as wavelets.

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

Multi-Scale Implementation – The Wavelet Domain

The Baboon image

Multi-Scale Implementation – Wavelets v.s. Hybrid Linear Wavelets

The Baboon image

Advantages of the hybrid linear model in wavelet domain:

- 1. eliminates block effect;
- 2. is computationally less costly (than in the spatial domain);
- 3. achieves higher PSNR.

Multi-Scale Implementation – Visual Comparison

Comparison among several models (7.5% coefficients)

Original Image

Wavelets **PSNR=23.94**

Hybrid model in spatial domain PSNR=24.64 Hybrid model in wavelet domain PSNR=24.88

Multi-Scale Implementation – Wavelets v.s. Hybrid Linear Wavelets

30 28

26

24 L

2

4

6

Ratio of Coefficients Kept (%)

The Lena image

The Monarch image

── Level-4 Bior-4.4 Wavelets →→ Level-4 Multi-scale Hybrid Linear Model in Wavelet Domain

8

10

12

14

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

Other Applications – Image Segmentation stack \Re^K $l \times l$ \mathbf{x} init

Other Applications – Sparse Representation of Image Ensemble

INTRODUCTION

HYBRID LINEAR MODELS

MULTI-SCALE IMPLEMENTATION

- IMAGE SPACE DOMAIN
- WAVELET DOMAIN

OTHER APPLICATIONS

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions

- Most imagery data are high-dimensional, statistically or geometrically heterogeneous, and have multi-scale structures.
- Imagery data require hybrid models that can adaptively represent different subsets of the data with different (sparse) linear models.
- Mathematically, it is possible to estimate and segment hybrid (linear) models non-iteratively. GPCA offers one such method.
- Hybrid models lead to new paradigms, new principles, and new applications for image representation, approximation, and compression.

Future Directions

Mathematical Theory

- Subspace arrangements (algebraic properties).
- Extension of GPCA to more complex algebraic varieties (e.g., hybrid multilinear, high-order tensors).
- Representation & approximation of vector-valued functions.
- Computation & Algorithm Development
 - Efficiency, noise sensitivity, outlier elimination.
 - Other ways to combine with wavelets and curvelets.
- Applications to Other Data
 - Medical imaging (ultra-sonic, MRI, diffusion tensor...)
 - Satellite hyper-spectral imaging.
 - Audio and video.
 - Sensor networks (location, temperature, pressure, RFID...)
 - Bioinformatics (gene expression data...)

Acknowledgement

- People
 - Wei Hong, John Wright, Shankar Rao, Andrew Wagner, Allen Young
 - Robert Fossum of Mathematics Dept., UIUC
 - Rene Vidal of Biomedical Engineering Dept., Johns Hopkins University
 - Kun Huang of Biomedical & Informatics Science Dept., Ohio-State University
 - Shankar Sastry of EECS Dept. University of California at Berkeley

Funding

- Research Board, University of Illinois at Urbana-Champaign
- National Science Foundation (NSF CAREER IIS-0347456)
- Office of Naval Research (ONR YIP N000140510633)
- National Science Foundation (NSF CRS-EHS0509151)
- National Science Foundation (NSF CCF-TF0514955)

May 19, 2005

Multi-Scale Hybrid Linear Models for Lossy Image Representation Yi Ma Thank You!