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Principal Component Analysis (PCA)

• Given a set of points x1, x2, …, xN

– Geometric PCA: find a subspace S passing through them

– Statistical PCA: find projection directions that maximize the variance

• Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36)

• Applications: data compression, regression, computer
vision (eigenfaces), pattern recognition, genomics

Basis for S



Extensions of PCA

• Higher order SVD (Tucker’66, Davis’02)

• Independent Component Analysis (Common ‘94)

• Probabilistic PCA (Tipping-Bishop ’99)

– Identify subspace from noisy data

– Gaussian noise: standard PCA

– Noise in exponential family (Collins et al.’01)

• Nonlinear dimensionality reduction

– Multidimensional scaling (Torgerson’58)

– Locally linear embedding (Roweis-Saul ’00)

– Isomap (Tenenbaum ’00)

• Nonlinear PCA (Scholkopf-Smola-Muller ’98)

– Identify nonlinear manifold by applying PCA to
data embedded in high-dimensional space

• Principal Curves and Principal Geodesic Analysis
(Hastie-Stuetzle’89, Tishbirany ‘92, Fletcher ‘04)



Generalized Principal Component Analysis

• Given a set of points lying in multiple subspaces, identify

– The number of subspaces and their dimensions

– A basis for each subspace

– The segmentation of the data points

• “Chicken-and-egg” problem

– Given segmentation, estimate subspaces

– Given subspaces, segment the data



Prior work on subspace clustering

• Iterative algorithms:

– K-subspace (Ho et al. ’03),

– RANSAC, subspace selection and growing (Leonardis et al. ’02)

• Probabilistic approaches: learn the parameters of a mixture

model using e.g. EM

– Mixtures of PPCA: (Tipping-Bishop ‘99):

– Multi-Stage Learning (Kanatani’04)

• Initialization

– Geometric approaches: 2 planes in R3 (Shizawa-Maze ’91)

– Factorization approaches: independent subspaces of equal

dimension (Boult-Brown ‘91, Costeira-Kanade ‘98, Kanatani ’01)

– Spectral clustering based approaches: (Yan-Pollefeys’06)



Basic ideas behind GPCA

• Towards an analytic solution to subspace clustering

– Can we estimate ALL models simultaneously using ALL data?

– When can we do so analytically? In closed form?

– Is there a formula for the number of models?

• Will consider the most general case

– Subspaces of unknown and possibly different dimensions

– Subspaces may intersect arbitrarily (not only at the origin)

• GPCA is an algebraic geometric approach to data segmentation

– Number of subspaces = degree of a polynomial

– Subspace basis = derivatives of a polynomial

– Subspace clustering is algebraically equivalent to

• Polynomial fitting

• Polynomial differentiation



Applications of GPCA in computer vision

• Geometry

– Vanishing points

• Image compression

• Segmentation

– Intensity (black-white)

– Texture

– Motion (2-D, 3-D)

– Video (host-guest)

• Recognition

– Faces (Eigenfaces)

• Man - Woman

– Human Gaits

– Dynamic Textures

• Water-bird

• Biomedical imaging

• Hybrid systems identification



Introductory example: algebraic clustering in 1D

• Number of groups?



Introductory example: algebraic clustering in 1D

• How to compute n, c, b’s?

– Number of clusters

– Cluster centers

– Solution is unique if

– Solution is closed form if



Introductory example: algebraic clustering in 2D

• What about dimension 2?

• What about higher dimensions?

– Complex numbers in higher dimensions?

– How to find roots of a polynomial of quaternions?

• Instead

– Project data onto one or two dimensional space

– Apply same algorithm to projected data



Representing one subspace

• One plane

• One line

• One subspace can be represented with

– Set of linear equations

– Set of polynomials of degree 1



De Morgan’s rule

Representing n subspaces

• Two planes

• One plane and one line

– Plane:

– Line:

• A union of n subspaces can be represented with a set of

homogeneous polynomials of degree n



Veronese map

Fitting polynomials to data points

• Polynomials can be written linearly in terms of the vector of coefficients
by using polynomial embedding

• Coefficients of the polynomials can be computed from nullspace of
embedded data

– Solve using least squares

– N = #data points



Finding a basis for each subspace

• Case of hyperplanes:

– Only one polynomial

– Number of subspaces

– Basis are normal vectors

• Problems

– Computing roots may be sensitive to noise

– The estimated polynomial may not perfectly factor with noisy

– Cannot be applied to subspaces of different dimensions

• Polynomials are estimated up to change of basis, hence they may not factor,

even with perfect data

Polynomial Factorization (GPCA-PFA) [CVPR 2003]
• Find roots of polynomial of degree     in one variable

• Solve               linear systems in     variables

• Solution obtained in closed form for



Finding a basis for each subspace

• To learn a mixture of subspaces we just need one positive
example per class

Polynomial Differentiation (GPCA-PDA) [CVPR’04]



Choosing one point per subspace

• With noise and outliers

– Polynomials may not be a perfect union of subspaces

– Normals can estimated correctly by choosing points optimally

• Distance to closest subspace without knowing

segmentation?



GPCA for hyperplane segmentation

• Coefficients of the polynomial can be computed from null

space of embedded data matrix

– Solve using least squares

– N = #data points

• Number of subspaces can be computed from the rank of

embedded data matrix

• Normal to the subspaces     can be computed

from the derivatives of the polynomial



GPCA for subspaces of different dimensions

• There are multiple polynomials

fitting the data

• The derivative of each

polynomial gives a different

normal vector

• Can obtain a basis for the

subspace by applying PCA to

normal vectors



GPCA for subspaces of different dimensions

• Apply polynomial embedding to projected data

• Obtain multiple subspace model by polynomial fitting

– Solve to obtain

– Need to know number of subspaces

• Obtain bases & dimensions by polynomial differentiation

• Optimally choose one point per subspace using distance



An example

• Given data lying in the union

of the two subspaces

• We can write the union as

• Therefore, the union can be represented with the two

polynomials



An example

• Can compute polynomials from

• Can compute normals from



Dealing with high-dimensional data

• Minimum number of points

– K = dimension of ambient space

– n = number of subspaces

• In practice the dimension of
each subspace ki is much
smaller than K

– Number and dimension of the
subspaces is preserved by a
linear projection onto a
subspace of dimension

– Can remove outliers by robustly
fitting the subspace

• Open problem: how to choose
projection?

– PCA?

Subspace 1

Subspace 2



GPCA with spectral clustering

• Spectral clustering

– Build a similarity matrix between pairs of points

– Use eigenvectors to cluster data

• How to define a similarity for subspaces?

– Want points in the same subspace to be close

– Want points in different subspace to be far

• Use GPCA to get basis

• Distance: subspace angles



Comparison of PFA, PDA, K-sub, EM
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Dealing with outliers

• GPCA with perfect data

• GPCA with outliers

• GPCA fails because PCA fails       seek a robust estimate
of where



Three approaches to tackle outliers

• Probability-based: small-probability samples

– Probability plots: [Healy 1968, Cox 1968]

– PCs: [Rao 1964, Ganadesikan & Kettenring 1972]

– M-estimators: [Huber 1981, Camplbell 1980]

– Multivariate-trimming (MVT):
[Ganadesikan & Kettenring 1972]

• Influence-based: large influence on model parameters

– Parameter difference with and without a sample:
[Hampel et al. 1986, Critchley 1985]

• Consensus-based: not consistent with models of high consensus.

– Hough: [Ballard 1981, Lowe 1999]

– RANSAC: [Fischler & Bolles 1981, Torr 1997]

– Least Median Estimate (LME):
[Rousseeuw 1984, Steward 1999]



Robust GPCA



Robust GPCA

Simulation on Robust GPCA (parameters fixed at       = 0.3rad and      = 0.4

• RGPCA – Influence

• RGPCA - MVT

(e) 12% (f) 32% (g) 48% (h) 12% (i) 32% (j) 48%

(k) 12% (l) 32% (m) 48% (n) 12% (o) 32% (p) 48%



Robust GPCA

Comparison with RANSAC

• Accuracy

• Speed

(q) (2,2,1) in     3 (s) (5,5,5) in     6(r) (4,2,2,1) in     5

Arrangement (2,2,1) in     3 (4,2,2,1) in     5 (5,5,5) in      6

RANSAC 44s 5.1min 3.4min

MVT 46s 23min 8min

Influence 3min 58min 146min

Table: Average time of RANSAC and RGPCA with 24% outliers. 



Summary

• GPCA: algorithm for clustering subspaces

– Deals with unknown and possibly different dimensions

– Deals with arbitrary intersections among the subspaces

• Our approach is based on

– Projecting data onto a low-dimensional subspace

– Fitting polynomials to projected subspaces

– Differentiating polynomials to obtain a basis

• Applications in image processing and computer vision

– Image segmentation: intensity and texture

– Image compression

– Face recognition under varying illumination
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Vision, Dynamics and Learning Lab

@

Johns Hopkins University

Thank You!Thank You!


