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Principal Component Analysis (PCA)

» Given a set of points Xy, X,, ..., Xy
— Geometric PCA: find a subspace S passing through them
— Statistical PCA: find projection directions that maximize the variance

.,’L‘N

e Solution (Beltrami’1873, Jordan’1874, Hotelling’33, Eckart-Householder-Young’36)

@ > v = [x1,x>,...¢cN] € REXN
@sis for Sj dim(S) = rank(U)

* Applications: data compression, regression, computer
vision (eigenfaces), pattern recognition, genomics




Extensions of PCA

Higher order SVD (Tucker'66, Davis'02)

Independent Component Analysis (Common ‘94) ? €T

Probabilistic PCA (Tipping-Bishop '99) J ~
— ldentify subspace from noisy data £
— Gaussian noise: standard PCA

— Noise in exponential family (Collins et al.’01) €T ;’E-|- noise

Nonlinear PCA (Scholkopf-Smola-Muller '98)

— ldentify nonlinear manifold by applying PCA to
data embedded in high-dimensional space

Nonlinear dimensionality reduction
— Multidimensional scaling (Torgerson’58) ° o
. . . o
— Locally linear embedding (Roweis-Saul '00) — ’.. °
— Isomap (Tenenbaum '00)
~ ="

Principal Curves and Principal Geodesic Analysis
(Hastie-Stuetzle'89, Tishbirany ‘92, Fletcher ‘04)



Generalized Principal Component Analysis

e Given a set of points lying in multiple subspaces, identify
— The number of subspaces and their dimensions
— A basis for each subspace
— The segmentation of the data points

e “Chicken-and-egg” problem
— Gliven segmentation, estimate subspaces
— Given subspaces, segment the data




Prior work on subspace clustering

 Iterative algorithms:
— K-subspace (Ho et al. '03),
— RANSAC, subspace selection and growing (Leonardis et al. '02)

* Probabillistic approaches: learn the parameters of a mixture
model using e.g. EM b7z =0
— Mixtures of PPCA: (Tipping-Bishop ‘99): .
— Multi-Stage Learning (Kanatani’'04)

blx =0

 |nitialization
— Geometric approaches: 2 planes in R3 (Shizawa-Maze '91)

— Factorization approaches: independent subspaces of equal
dimension (Boult-Brown ‘91, Costeira-Kanade ‘98, Kanatani '01)

— Spectral clustering based approaches: (Yan-Pollefeys’06)



Basic ideas behind GPCA

e Towards an analytic solution to subspace clustering
— Can we estimate ALL models simultaneously using ALL data?
— When can we do so analytically? In closed form?
— Is there a formula for the number of models?

* Will consider the most general case
— Subspaces of unknown and possibly different dimensions
— Subspaces may intersect arbitrarily (not only at the origin)

« GPCA is an algebraic geometric approach to data segmentation
— Number of subspaces = degree of a polynomial
— Subspace basis = derivatives of a polynomial

— Subspace clustering is algebraically equivalent to
» Polynomial fitting
» Polynomial differentiation



Geometry
— Vanishing points

Image compression

Segmentation

— Intensity (black-white)
— Texture

— Motion (2-D, 3-D)

— Video (host-guest)

Recognition

— Faces (Eigenfaces)
e Man - Woman

— Human Gaits

— Dynamic Textures
» Water-bird

Biomedical imaging
Hybrid systems identification
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Introductory example: algebraic clustering in 1D

22 — (by 4+ b2)x + b1by =0

x =01 Or x = by

N

(z —b1)(x —b2) =0

_:132 T 1-
% 1

x5 xp 1

2

ZEN].'

"

P

1
—(b1 +b2)| =0
biby
C =0

 Number of groups?
rank(P) = 1: one group only
rank(P) = 2: two groups
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Introductory example: algebraic clustering in 1D

e How to compute n, c, b’s?
— Number of clusters

&3 83

=byorz=10by - z=0bn

n = min{i : rank(P;) = i}

pn(x) = (x—b1) - (z—bp) =0 — Cluster centers
Roots of pn(x)

pn(z) =2+ 2™+ =0

pn(x) = [xn R 1] c—=0 — Solution is unique if
- _ N. points > Ngroups
ZE? . .. ‘/L.l 1 | | |
7SR 2 | — Solution is closed form if
Pnec = :2 : : c=20 Ngroups < 4
_$?V o oo :UN 1-
PnERﬁX (n+1




Introductory example: algebraic clustering in 2D

 What about dimension 2?

oooO —Z,ib <1 1-
ooooO . Zn 2D 1
z=x+ iy € C 2 : c=0
:.o. \_Z% ZN 1_J
Pne(CNX(’n-l-l)

 What about higher dimensions?
— Complex numbers in higher dimensions?
— How to find roots of a polynomial of quaternions?

e Instead
— Project data onto one or two dimensional space
— Apply same algorithm to projected data



Representing one subspace

 One plane b
bT$:b1$1+b2x2+b3x3:O /o o 007

e One line b1

b{il: = bi1x1 + boxo + b33 = O

bgaz = bgx1 + bgxo + bgr3z = 0

* One subspace can be represented with

— Set of linear equations e T Y
— Set of polynomials of degree 1 S={z: Bz =0;
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Representing n subspaces

 Two planes

(b{az = 0)or (bgw = 0)

pa(x) = (bl x)(bdx) =0

 One plane and one line
— Plane: S1={x: blx = O}

— Line: So = {x :bix =>blx =0}

SlL_JSQ:{CCZ(bTa}:O)

De Morgan’s rule

or| (bix = blx = 0}

I

51085 = {a :|(Tz) (b]z) = 0

and| (b7 ) (b5 ) = 0O}

* A union of n subspaces can be represented with a set of
homogeneous polynomials of degree n
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Fitting polynomials to data points

* Polynomials can be written linearly in terms of the vector of coefficients
by using polynomial embedding

(b{w)(bgw) = cla:% + cox1o + 0333% =clvp(x) =0

| RE  Veronese map ¢= Sym(b1®bo®bs3)
* . . . . Sl M
. > RMn
b2 -, S.g. .0 - . . I K M .T. () @ @ .0
T S B Un . R™ — R™77 /. e ©9° o
R 2 vn ()

Zz
: 1
. L1
.V ( ) = | 127 i = B — 1L
» b3 blx 2 w% o = ( n

 Coefficients of the polynomials can be computed from nullspace of

embedded data v ()T
— Solve using least squares Lpec = : c=20
— N = #data points Vn(iBN)T




Finding a basis for each subspace

by

Case of hyperplanes:
— Only one polynomial

— Number of subspaces

c'vp(x) = (bi) - - (b x)
n = min{i : rank(L;)=M;—1}

— Computing roots may be sensitive to noise
— The estimated polynomial may not perfectly factor with noisy

— Cannot be applied to subspaces of different dimensions
» Polynomials are estimated up to change of basis, hence they may not factor,

even with perfect data

— Basis are normal vectors b1,b>,---bp,
M § h
c € RVn Polynomial Factorization (GPCA-PFA) [CVPR 2003]
M\L * Find roots of polynomial of degree 7, in one variable
e Solve K — 2 linear systems in71 variables
bo e bn, * Solution obtained in closed form forn, < 4
G J
Problems



Finding a basis for each subspace

C C RMn Polynomial Differentiation (GPCA-PDA) [CVPR’'04]
blAbﬁz}‘ B bi = Dpn(®)|p—y, ¥Yi € Si

/ by ~ Dpn(y2)

L b1 ~ Dpn(y1)

« To learn a mixture of subspaces we just need one positive
example per class
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Choosing one point per subspace

* With noise and outliers
— Polynomials may not be a perfect union of subspaces

bilx =0
by ~ Dpp(y2)

by ~ Dpn(yl)

pn(x) =0

blx =0
— Normals can estimated correctly by choosing points optimally

» Distance to closest subspace without knowing
segmentation?

~1 ipn ()] | =2
|z — & =\ IDp@ O(||lx — &)
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GPCA for hyperplane segmentation

o Coefficients of the polynomial can be computed from null

space of embedded data matrix ()T
— Solve using least squares Lnpc = ; c=20
— N = #data points vn(xen)T

 Number of subspaces can be computed from the rank of
embedded data matrix

n = min{i : rank(L;)=M;—1}

 Normal to the subspaces b1,b2,---bn can be computed
from the derivatives of the polynomial

c € RMn
/\; bz — Dpn(w)|w=yi Y; € S?,

by bo ... by
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GPCA for subspaces of different dimensions

o There are multiple polynomials
fitting the data

e The derivative of each
polynomial gives a different
normal vector

e Can obtain a basis for the
subspace by applying PCA to
normal vectors

p1(x) = (b' ) (bix) =0
p2(z) = (b' ) (bjx) =0

b= Dp1(y1) = Dp2(y1)

P L

Yo b1 = Dp1(y>)

{B; = PCA(DPn(y;)) ti=1
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GPCA for subspaces of different dimensions

Apply polynomial embedding to projected data

N)]T c RNan

Ly = [vn(zD),. .., vn(x

Obtain multiple subspace model by polynomial fitting
Pn(.’IJ) = [p’nl(w)a ¢« v apn,mn(w)] c R].an

~ Solve Lnc = 0 to obtain {¢,0} -2 € null(Ly),
— Need to know number of subspaces

Obtain bases & dimensions by polynomial differentiation
B; = PCA(DPu(y;)) i=1,....,n
ki = K —rank(DPy(y;)) i=1,...,n

Optimally choose one point per subspace using distance

Ja—&l =1 Pa(@) (DPu (@) DPa()) Pu(@)™+0(ll2—)
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An example

e Given data lying in the union
of the two subspaces

Sl={a::a:1=x2=0} Y2

Sy = { : 23 = 0} S2 /| ba=Dpoyy)
Y1 b1 = Dp1(y1)

* We can write the union as
51U52 ={m . (221 =$2=0)V($3=0)}
={x:(z21=0Va3=0)A(z2=0Vz3=0)}
— {33 . (27151,'3 — 0) N (.’172273 = 0)}

 Therefore, the union can be represented with the two
polynomials

p1(x) = T173 p2(x) = Tox3
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An example

e Can compute polynomials from
2?2 1Ty (T1T3 T3 (Tox3 3| |4 0
0 0 0 0 0 * : :
* * 0 * 0 0 Ce 0

RN e

pi(x) =z123  p2(x) = T273 S1={x:x1y =z, =0}
» Can compute normals from Sz = {x : 23 = 0}
I3 0 51
[Vpi(x) Vpo ()] = | 0 z3| = t
_5171 3:2_ °° o. o.o.oo
1 0 0 0 72
B;=10 1| and Bo= |0 0 Sa bo = Dpo (Y1)
0 0 1 1 Y1 b1 = Dp1(y1)
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Dealing with high-dimensional data

Minimum number of points
— K = dimension of ambient space
— n = number of subspaces

In practice the dimension of
each subspace ki is much
smaller than K

k; << K

— Number and dimension of the
subspaces is preserved by a
linear projection onto a
subspace of dimension

max{k;} +1 << K

— Can remove outliers by robustly
fitting the subspace

Open problem: how to choose
projection?
— PCA?




GPCA with spectral clustering

« Spectral clustering
— Build a similarity matrix between pairs of points
— Use eigenvectors to cluster data

 How to define a similarity for subspaces?
— Want points in the same subspace to be close
— Want points in different subspace to be far

 Use GPCA to get basis
B; = PCA(DPn(y;))
B; = PCA(DPn(y;))

- Distance: subspace angles D;; = (B;, B;)
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Comparison of PFA, PDA, K-sub, EM

Y

—_k
o
T

Error in the normals [degrees]

PFA

K-sub

PDA

EM
PDA+K-sub
PDA+EM

o0

PDA+K—sub+EM |

2 3 4
Noise level [%]
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Dealing with outliers

 GPCA with perfect data
V.

M

R ‘P(x} c'x

nx L : ° NuII(L) /
° S
° Rank(L,) = MEN — hy(n

e GPCA fails because PCA falls = seek a robust estimate
of Nul(z ywhere L =[v (x,),...,v (x,)].

n



Three approaches to tackle outliers

* Probability-based: small-probability samples
— Probability plots: [Healy 1968, Cox 1968]
— PCs: [Rao 1964, Ganadesikan & Kettenring 1972] .|
— Me-estimators: [Huber 1981, Camplbell 1980]

— Multivariate-trimming (MVT):
[Ganadesikan & Kettenring 1972]

* Influence-based: large influence on model parameters

— Parameter difference with and without a sample:
[Hampel et al. 1986, Critchley 1985]

« Consensus-based: not consistent with models of high consensus.
— Hough: [Ballard 1981, Lowe 1999]
— RANSAC: [Fischler & Bolles 1981, Torr 1997]

— Least Median Estimate (LME):
[Rousseeuw 1984, Steward 1999]




Robust GPCA

STEP 1: Given the outlier percentage %, robustify PCA:

@ Influence function:

@ Compute null space C = {cy,¢o,...,cn} for L, = [vp(x1) - - - va(xpn)]-
@ For x;, compute C for L) = [u,(x1) - -7 - va(xn)].

Q I(x;) = (C,Ccy.
Q Reject top a% samples with highest influence.

Multivariate-trimming (MVT):
Assuming a Gaussian distribution, samples with large Mahalanobis distance

more likely to be outliers.

[D]
Q@ Compute a robust mean 0. v; = u; — 0. uj,v; € RMn
Initialize 29 = [ .
(2 0 = 1yo1 ylo]

© In kth iteration, sort vq, ..., vy by the Mahalanobis distance: d; = v,-TZk__llv,-.

E E

©Q Update >, from (100 — «)% samples with smallest distances.
© lteration stops when ||[Xx_1 — 2|| is small.



Robust GPCA

Simulation on Robust GPCA (parameters fixed at T =0.3rad and g =0.4
« RGPCA — Influence

(€) 12% (f) 32%

« RGPCA-MVT

(K) 12% (1) 32% (m) 48% (n) 12% (0) 32% (p) 48%

Cemnter for

s C 1 AE(‘{IINQ



Robust GPCA

Comparison with RANSAC

e Accuracy
20 T T T T

40 T T = o =
% —— T o = B0L = 1T e oy
G 30T | == influence ‘.-"" i o =0~ Influence . E
2 - 0" RANSAC - 2 qnp [1 0" RANSAC ’_.._-.-‘“-"'0— N
2 a0t O .. z . =
* ‘p"— ........ [l 7 .o' T
§1D_ - _,.-ﬂ' §2EI- ’ -.‘ 1 ;
& g !E&" o’ Lz o !;_...:----'ﬂ &

0 10 20 an 40 a0 0 10 20 30 40 a0

Qutlier Percentage [%]

(@) (2,2,1) in N 3
Speed

CQutlier Percentage [%]

() (4,2,2,1)in 9 5

=
=

—— T -8
ant -8
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20l [ @ Ranzac ,ﬂ"' |
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10f
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Qutlier Percentage [%]

(s) (5,5,5) in 6

Table: Average time of RANSAC and RGPCA with 24% outliers.

Arrangement

(2,2,1)in 3

(4,2,2,1) in SRS

(5,5,5)in SR ©

RANSAC

44s

5.1min

3.4min

MVT

46s

23min

8min

Influence

3min

58min

146min




 GPCA: algorithm for clustering subspaces
— Deals with unknown and possibly different dimensions
— Deals with arbitrary intersections among the subspaces

e Our approach is based on
— Projecting data onto a low-dimensional subspace
— Fitting polynomials to projected subspaces
— Differentiating polynomials to obtain a basis

e Applications in image processing and computer vision
— Image segmentation: intensity and texture
— Image compression
— Face recognition under varying illumination



For more information,

Vision, Dynamics and Learning Lab

@

Johns Hopkins University
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