

JHU vision lab

Part I

Generalized Principal Component Analysis

René Vidal Center for Imaging Science Institute for Computational Medicine Johns Hopkins University

THE DEPARTMENT OF BIOMEDICAL ENGINEERING The Whitaker Institute at Johns Hopkins

Principal Component Analysis (PCA)

- Given a set of points x_1, x_2, \dots, x_N
 - Geometric PCA: find a subspace S passing through them
 - Statistical PCA: find projection directions that maximize the variance

• Solution (Beltrami'1873, Jordan'1874, Hotelling'33, Eckart-Householder-Young'36)

$$\bigcup \Sigma V^T = [x_1, x_2, \dots x_N] \in \mathbb{R}^{K \times N}$$
Basis for *S*

$$\dim(S) = \operatorname{rank}(U)$$

• Applications: data compression, regression, computer vision (eigenfaces), pattern recognition, genomics

Extensions of PCA

- Higher order SVD (Tucker'66, Davis'02)
- Independent Component Analysis (Common '94)
- Probabilistic PCA (Tipping-Bishop '99)
 - Identify subspace from noisy data
 - Gaussian noise: standard PCA
 - Noise in exponential family (Collins et al.'01)
- Nonlinear dimensionality reduction
 - Multidimensional scaling (Torgerson'58)
 - Locally linear embedding (Roweis-Saul '00)
 - Isomap (Tenenbaum '00)
- Nonlinear PCA (Scholkopf-Smola-Muller '98)
 - Identify nonlinear manifold by applying PCA to data embedded in high-dimensional space
- Principal Curves and Principal Geodesic Analysis (Hastie-Stuetzle'89, Tishbirany '92, Fletcher '04)

 $x = \tilde{x} + \text{noise}$

Generalized Principal Component Analysis

- Given a set of points lying in multiple subspaces, identify
 - The number of subspaces and their dimensions
 - A basis for each subspace
 - The segmentation of the data points
- "Chicken-and-egg" problem
 - Given segmentation, estimate subspaces
 - Given subspaces, segment the data

Prior work on subspace clustering

- Iterative algorithms:
 - K-subspace (Ho et al. '03),
 - RANSAC, subspace selection and growing (Leonardis et al. '02)
- Probabilistic approaches: learn the parameters of a mixture model using e.g. EM $b_1^T x = 0$
 - Mixtures of PPCA: (Tipping-Bishop '99):
 - Multi-Stage Learning (Kanatani'04)

- Initialization
 - Geometric approaches: 2 planes in R³ (Shizawa-Maze '91)
 - Factorization approaches: independent subspaces of equal dimension (Boult-Brown '91, Costeira-Kanade '98, Kanatani '01)
 - Spectral clustering based approaches: (Yan-Pollefeys'06)

Basic ideas behind GPCA

- Towards an analytic solution to subspace clustering
 - Can we estimate ALL models simultaneously using ALL data?
 - When can we do so analytically? In closed form?
 - Is there a formula for the number of models?
- Will consider the most general case
 - Subspaces of unknown and possibly different dimensions
 - Subspaces may intersect arbitrarily (not only at the origin)
- GPCA is an algebraic geometric approach to data segmentation
 - Number of subspaces = degree of a polynomial
 - Subspace basis = derivatives of a polynomial
 - Subspace clustering is algebraically equivalent to
 - Polynomial fitting
 - Polynomial differentiation

Applications of GPCA in computer vision

- Geometry
 - Vanishing points
- Image compression
- Segmentation
 - Intensity (black-white)
 - Texture
 - Motion (2-D, 3-D)
 - Video (host-guest)
- Recognition
 - Faces (Eigenfaces)
 - Man Woman
 - Human Gaits
 - Dynamic Textures
 - Water-bird
- Biomedical imaging
- Hybrid systems identification

Introductory example: algebraic clustering in 1D

$$x = b_1 \quad x = b_2$$

$$x = b_1 \text{ or } x = b_2$$

$$(x - b_1)(x - b_2) = 0$$

$$x^2 - (b_1 + b_2)x + b_1b_2 = 0$$

$$x^2 - (b_1 + b_2)x + b_1b_2 = 0$$

$$\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_N^2 & x_N & 1 \end{bmatrix} \underbrace{\begin{bmatrix} 1 \\ -(b_1 + b_2) \\ b_1b_2 \end{bmatrix}}_{P \quad c = 0$$

• Number of groups?

rank(P) = 1: one group only rank(P) = 2: two groups

Introductory example: algebraic clustering in 1D

$$x = b_1 \text{ or } x = b_2 \cdots x = b_n$$

$$p_n(x) = (x - b_1) \cdots (x - b_n) = 0$$

$$p_n(x) = x^n + c_1 x^{n-1} + \dots + c_n = 0$$

$$p_n(x) = \begin{bmatrix} x^n & \dots & x & 1 \end{bmatrix} c = 0$$

$$P_n \boldsymbol{c} = \underbrace{\begin{bmatrix} x_1^n & \cdots & x_1 & 1\\ x_2^n & \cdots & x_2 & 1\\ \vdots & & \vdots & \vdots\\ x_N^n & \cdots & x_N & 1 \end{bmatrix}}_{P_n \in \mathbb{R}^{N \times (n+1)}} \boldsymbol{c} = \boldsymbol{0}$$

How to compute n, c, b's?
Number of clusters

$$n \doteq \min\{i : rank(P_i) = i\}$$

- Cluster centers Roots of $p_n(x)$
- Solution is unique if
 - $N_{points} \ge n_{groups}$

$$n_{groups} \leq 4$$

Introductory example: algebraic clustering in 2D

• What about dimension 2?

$$z = x + iy \in \mathbb{C}$$

$$\underbrace{\begin{bmatrix} z_1^n & \cdots & z_1 & 1\\ z_2^n & \cdots & z_2 & 1\\ \vdots & \vdots & \vdots\\ z_N^n & \cdots & z_N & 1 \end{bmatrix}}_{P_n \in \mathbb{C}^{N \times (n+1)}} c = 0$$

- What about higher dimensions?
 - Complex numbers in higher dimensions?
 - How to find roots of a polynomial of quaternions?
- Instead
 - Project data onto one or two dimensional space
 - Apply same algorithm to projected data

Representing one subspace

• One plane

$$b^T x = b_1 x_1 + b_2 x_2 + b_3 x_3 = 0$$

- One line b_1 $b_1^T x = b_1 x_1 + b_2 x_2 + b_3 x_3 = 0$ $b_2^T x = b_4 x_1 + b_5 x_2 + b_6 x_3 = 0$
- One subspace can be represented with
 - Set of linear equations

$$S = \{ \boldsymbol{x} : B^T \boldsymbol{x} = \boldsymbol{0} \}$$

Set of polynomials of degree 1

Representing *n* subspaces

Fitting polynomials to data points

• Polynomials can be written linearly in terms of the vector of coefficients by using polynomial embedding

$$(b_1^T x)(b_2^T x) = c_1 x_1^2 + c_2 x_1 x_2 + c_3 x_2^2 = c^T \nu_n(x) = 0$$

- Coefficients of the polynomials can be computed from nullspace of embedded data $\lceil \nu_n(x_1)^T \rceil$
 - Solve using least squares
 - N = #data points

 $L_n oldsymbol{c} = egin{bmatrix}
u_n(oldsymbol{x}_1)^T \ dots \
u_n(oldsymbol{x}_N)^T \end{bmatrix} oldsymbol{c} = 0$

Finding a basis for each subspace

- Case of hyperplanes:
 - Only one polynomial
 - Number of subspaces
 - Basis are normal vectors

 $c^T \nu_n(x) = (b_1^T x) \cdots (b_n^T x)$ $n = \min\{i : \operatorname{rank}(L_i) = M_i - 1\}$ $b_1, b_2, \cdots b_n$

Polynomial Factorization (GPCA-PFA) [CVPR 2003]

- Find roots of polynomial of degree $oldsymbol{n}$ in one variable
- Solve K-2 linear systems in n variables
- Solution obtained in closed form for $n \leq 4$

- Problems
 - Computing roots may be sensitive to noise
 - The estimated polynomial may not perfectly factor with noisy
 - Cannot be applied to subspaces of different dimensions
 - Polynomials are estimated up to change of basis, hence they may not factor, even with perfect data

Finding a basis for each subspace

• To learn a mixture of subspaces we just need one positive example per class

Choosing one point per subspace

- With noise and outliers
 - Polynomials may not be a perfect union of subspaces

- Normals can estimated correctly by choosing points optimally
- Distance to closest subspace without knowing segmentation? $|p_n(x)| = c_n(x)$

$$\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\| = \sqrt{\frac{|p_n(\boldsymbol{x})|}{\|Dp_n(\boldsymbol{x})\|}} + O(\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|^2)$$

GPCA for hyperplane segmentation

- Coefficients of the polynomial can be computed from null space of embedded data matrix $\begin{bmatrix} \nu_n(x_1)^T \end{bmatrix}$
 - Solve using least squares
 - N = #data points

$$L_n oldsymbol{c} = egin{bmatrix}
u_n(oldsymbol{x}_1)^T \ dots \
u_n(oldsymbol{x}_N)^T \end{bmatrix} oldsymbol{c} = oldsymbol{0}$$

 Number of subspaces can be computed from the rank of embedded data matrix

$$n = \min\{i : \operatorname{rank}(L_i) = M_i - 1\}$$

• Normal to the subspaces $b_1, b_2, \cdots b_n$ can be computed from the derivatives of the polynomial

$$\begin{array}{c} \boldsymbol{c} \in \mathbb{R}^{M_n} \\ \boldsymbol{b}_1 \quad \boldsymbol{b}_2 \quad \dots \quad \boldsymbol{b}_n \end{array} \quad \boldsymbol{b}_i = Dp_n(\boldsymbol{x})|_{\boldsymbol{x} = \boldsymbol{y}_i} \quad \boldsymbol{y}_i \in S_i \end{array}$$

GPCA for subspaces of different dimensions

• There are multiple polynomials fitting the data

 The derivative of each polynomial gives a different normal vector

 Can obtain a basis for the subspace by applying PCA to normal vectors

$$p_1(x) = (b^T x)(b_1^T x) = 0$$
$$p_2(x) = (b^T x)(b_2^T x) = 0$$

$$b = Dp_1(y_1) = Dp_2(y_1)$$

 S_2
 y_1
 S_2
 y_1
 S_2
 $b_2 = Dp_2(y_2)$
 y_2
 $b_1 = Dp_1(y_2)$

$$\{B_i = PCA(DP_n(\boldsymbol{y}_i))\}_{i=1}^n$$

GPCA for subspaces of different dimensions

Apply polynomial embedding to projected data

$$L_n = [\nu_n(\boldsymbol{x}^1), \dots, \nu_n(\boldsymbol{x}^N)]^T \in \mathbb{R}^{N \times M_n}$$

Obtain multiple subspace model by polynomial fitting

$$P_n(\boldsymbol{x}) \doteq [p_{n1}(\boldsymbol{x}), \dots, p_{n,m_n}(\boldsymbol{x})] \in \mathbb{R}^{1 \times m_n}$$

- Solve $L_n c = 0$ to obtain $\{c_{n\ell}\}_{\ell=1}^{m_i} \in \operatorname{null}(L_n)$,
- Need to know number of subspaces
- Obtain bases & dimensions by polynomial differentiation

$$B_i = PCA(DP_n(\boldsymbol{y}_i)) \qquad i = 1, \dots, n$$

$$k_i = K - \operatorname{rank}(DP_n(\boldsymbol{y}_i)) \qquad i = 1, \dots, n$$

• Optimally choose one point per subspace using distance $\|x - \tilde{x}\| = \sqrt{P_n(x) (DP_n(x)^T DP_n(x))^{\dagger} P_n(x)^T + O(\|x - \tilde{x}\|^2)}$

An example

Given data lying in the union of the two subspaces

$$S_1 = \{ m{x} : x_1 = x_2 = 0 \}$$

$$S_2=\{oldsymbol{x}:x_3=0\}$$

 $b_2 = Dp_2(\boldsymbol{y}_1)$ $\boldsymbol{y}_1 \rightarrow \boldsymbol{b}_1 = Dp_1(\boldsymbol{y}_1)$ We can write the union as $S_1 \cup S_2 = \{ \boldsymbol{x} : (x_1 = x_2 = 0) \lor (x_3 = 0) \}$ $= \{ \boldsymbol{x} : (x_1 = 0 \lor x_3 = 0) \land (x_2 = 0 \lor x_3 = 0) \}$ $= \{ \boldsymbol{x} : (x_1 x_3 = 0) \land (x_2 x_3 = 0) \}.$

 y_2

 S_1

Therefore, the union can be represented with the two polynomials

$$p_1(\bm{x}) = x_1 x_3$$
 $p_2(\bm{x}) = x_2 x_3$

An example

Can compute polynomials from

• Can compute normals from $\begin{bmatrix} \nabla p_1(\boldsymbol{x}) \ \nabla p_2(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} x_3 & 0 \\ 0 & x_3 \\ x_1 & x_2 \end{bmatrix} \implies$ $B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } B_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$

Dealing with high-dimensional data

- Minimum number of points
 - K = dimension of ambient space
 - n = number of subspaces
- In practice the dimension of each subspace ki is much smaller than K

$$k_i << K$$

- Number and dimension of the subspaces is preserved by a linear projection onto a subspace of dimension $\max\{k_i\} + 1 << K$
- Can remove outliers by robustly fitting the subspace

Open problem: how to choose projection?
 PCA?

GPCA with spectral clustering

- Spectral clustering
 - Build a similarity matrix between pairs of points
 - Use eigenvectors to cluster data
- How to define a similarity for subspaces?
 - Want points in the same subspace to be close
 - Want points in different subspace to be far
- Use GPCA to get basis

 $B_i = PCA(DP_n(y_i))$ $B_j = PCA(DP_n(y_j))$

• Distance: subspace angles $\mathcal{D}_{ij} \doteq \langle B_i, B_j \rangle$

Comparison of PFA, PDA, K-sub, EM

Dealing with outliers

• GPCA with outliers

• GPCA fails because PCA fails \Rightarrow seek a robust estimate of $\operatorname{Null}(L_n)$ where $L_n = [\nu_n(\mathbf{x}_1), \dots, \nu_n(\mathbf{x}_N)].$

Three approaches to tackle outliers

- Probability-based: small-probability samples
 - Probability plots: [Healy 1968, Cox 1968]
 - PCs: [Rao 1964, Ganadesikan & Kettenring 1972]
 - M-estimators: [Huber 1981, Camplbell 1980]
 - Multivariate-trimming (MVT): [Ganadesikan & Kettenring 1972]
- Influence-based: large influence on model parameters
 - Parameter difference with and without a sample: [Hampel et al. 1986, Critchley 1985]
- Consensus-based: not consistent with models of high consensus.
 - Hough: [Ballard 1981, Lowe 1999]
 - RANSAC: [Fischler & Bolles 1981, Torr 1997]
 - Least Median Estimate (LME): [Rousseeuw 1984, Steward 1999]

Robust GPCA

STEP 1: Given the outlier percentage α %, robustify PCA:

- Influence function:
 - **1** Compute null space $C = {\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_m}$ for $L_n = [\nu_n(\mathbf{x}_1) \cdots \nu_n(\mathbf{x}_N)]$.
 - 2 For \mathbf{x}_i , compute $C^{(i)}$ for $L_n^{(i)} = [\nu_n(\mathbf{x}_1) \cdots \hat{i} \cdots \nu_n(\mathbf{x}_N)]$.

 - ④ Reject top α % samples with highest influence.
- Multivariate-trimming (MVT): Assuming a Gaussian distribution, samples with large *Mahalanobis* distance more likely to be outliers.
 - Compute a robust mean ū. v_i = u_i ū. u_i, v_i ∈ ℝ<sup>M_n^[D]
 Initialize Σ₀ = I<sub>M_n^[D]×M_n^[D].
 In kth iteration, sort v₁,..., v_N by the Mahalanobis distance: d_i = v_i^TΣ_{k-1}⁻¹v_i.
 Update Σ_k from (100 α)% samples with smallest distances.
 Iteration stops when ||Σ_{k-1} Σ_k|| is small.
 </sup></sub>

Robust GPCA

Simulation on Robust GPCA (parameters fixed at τ = 0.3rad and σ = 0.4

• RGPCA – Influence

• RGPCA - MVT

Robust GPCA

Comparison with RANSAC

• Accuracy

• Speed

Table: Average time of RANSAC and RGPCA with 24% outliers.

Arrangement	(2,2,1) in \Re^3	(4,2,2,1) in \Re^5	(5,5,5) in $ $
RANSAC	44s	5.1min	3.4min
MVT	46s	23min	8min
Influence	3min	58min	146min

Summary

- GPCA: algorithm for clustering subspaces
 - Deals with unknown and possibly different dimensions
 - Deals with arbitrary intersections among the subspaces
- Our approach is based on
 - Projecting data onto a low-dimensional subspace
 - Fitting polynomials to projected subspaces
 - Differentiating polynomials to obtain a basis
- Applications in image processing and computer vision
 - Image segmentation: intensity and texture
 - Image compression
 - Face recognition under varying illumination

For more information,

Vision, Dynamics and Learning Lab @ Johns Hopkins University

http://www.vision.jhu.edu

Thank You!

