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MOTIVATION – Motion Segmentation in Computer Vision

The “chicken-and-egg” difficulty:
– Knowing the segmentation, estimating the motions is easy;
– Knowing the motions, segmenting the features is easy.

Goal: Given a sequence of images of multiple moving objects, determine:
– 1. the number and types of motions (rigid-body, affine, linear, etc.)

2. the features that belong to the same motion.

A Unified Algebraic Approach to 2D and 3D  Motion Segmentation, [Vidal-Ma, ECCV’

QuickTime™ and a
Cinepak decompressor

are needed to see this picture.



MOTIVATION – Image Segmentation 

feature
s

Computer Human

Goal: segment an image into multiple regions with homogeneous texture.

Difficulty: A mixture of models of different dimensions or 
complexities. 

Multiscale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TIP’



MOTIVATION – Video Segmentation
Goal: segmenting a video sequence into segments with “stationary” dynamics

Identification of Hybrid Linear Systems via Subspace Segmentation, [Huang-Wagner-Ma, C

Model: different 
segments as outputs 
from different (linear) 
dynamical systems:

QuickTime™ and a
H.264 decompressor

are needed to see this picture.



MOTIVATION – Massive Multivariate Mixed Data

Face database

Hand written digits

Hyperspectral images

Microarrays

Articulate motions

QuickTime™ and a
BMP decompressor

are needed to see this picture.



SUBSPACE SEGMENTATION – Problem Formulation

Difficulties:
– the dimensions of the subspaces can be different
– the data can be corrupted by noise or contaminated by outliers
– the number and dimensions of subspaces may be unknown

Assumption: the data         are noisy samples from an 
arrangement of linear subspaces:

noise-free samples noisy samples samples with outliers



SUBSPACE SEGMENTATION – Statistical Approaches

Assume that the data         
are i.i.d. samples from a mixture of 
probabilistic distributions: 

Essentially iterate between data segmentation and model estimation.

Solutions:
• Expectation Maximization (EM) for the maximum-likelihood estimate 

[Dempster et. al.’77], e.g., Probabilistic PCA [Tipping-Bishop’99]:

• K-Means for a minimax-like estimate [Forgy’65, Jancey’66, MacQueen’67], 
e.g., K-Subspaces [Ho and Kriegman’03]:



SUBSPACE SEGMENTATION – An Algebro-Geometric Approach

Idea: a union of linear subspaces is an 
algebraic set -- the zero set of a set of 
(homogeneous) polynomials:

Complexity exponential in the dimension and number of subspaces.

Solution:
• Identify the set of polynomials of degree n that vanish on 

• Gradients of the vanishing polynomials are normals to the 
subspaces

Generalized Principal Component Analysis, [Vidal-Ma-Sastry, IEEE Transactions PAMI’0



SUBSPACE SEGMENTATION – An Information-Theoretic Approach

Problem: If the number/dimension of subspaces not given and data 
corrupted 

by noise and outliers, how to determine the optimal subspaces that fit 
the data?Solutions: Model Selection Criteria?
– Minimum message length (MML) [Wallace-Boulton’68]
– Minimum description length (MDL) [Rissanen’78]
– Bayesian information criterion (BIC)
– Akaike information criterion (AIC) [Akaike’77]
– Geometric AIC [Kanatani’03], Robust AIC [Torr’98]

Key idea (MDL):
• a good balance between model complexity and data fidelity.
• minimize the length of codes that describe the model and the 
data:

with a quantization error optimal for the model.



LOSSY DATA COMPRESSION

Questions:

– What is the “gain” or “loss” of segmenting or merging data?

– How does tolerance of error affect segmentation results? 

Basic idea: whether the number of bits required to store “the 
whole is more than the sum of its parts”? 



LOSSY DATA COMPRESSION – Problem Formulation

– A coding scheme maps a set of vectors 
to a sequence of bits, from which we can decode 
The coding length is denoted as:

– Given a set of real-valued mixed data 
the optimal segmentation

minimizes 
the overall coding length:

where



LOSSY DATA COMPRESSION – Coding Length for Multivariate Data

Theorem.
Given                                            with 

is the number of bits needed to encode the data s.t. 
.

A nearly optimal bound for even a small number 
of vectors drawn from a subspace or a Gaussian 
source.

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI’



LOSSY DATA COMPRESSION – Two Coding Schemes

Goal: code                            s.t. a mean squared error      

Linear subspace Gaussian source



LOSSY DATA COMPRESSION – Properties of the Coding Length

2. Asymptotic Property:

At high SNR, this is the optimal rate distortion for a Gaussian source.

1. Commutative Property:
For high-dimensional data, computing the coding length only needs
the kernel matrix: 

3. Invariant Property:
Harmonic Analysis is useful for data compression only when the data are
non-Gaussian or nonlinear ……… so is segmentation!



LOSSY DATA COMPRESSION – Why Segment?

partitioning:

sifting:



LOSSY DATA COMPRESSION – Probabilistic Segmentation?

is a concave function in Π over the domain of a convex polytope.

Minima are reached at the vertexes of the 
polytope -- no probabilistic 
segmentation!

Assign the ith point to the jth group with probability 

Theorem. The expected coding length of the segmented data

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI’



LOSSY DATA COMPRESSION – Segmentation & Channel Capacity

A MIMO additive white Gaussian noise (AWGN) channel

has the capacity:

If allowing probabilistic grouping of transmitters, the expected
capacity    

is a concave function in Π over a convex polytope.
Maximizing such a capacity is a convex
problem.

On Coding and Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI



LOSSY DATA COMPRESSION – A Greedy (Agglomerative) Algorithm

Objective: minimizing the overall coding length

Input:

while true do
choose two sets                  such 

that                           
is minimal

if
then
else break
endif

end
Output:

“Bottom-up” merge

QuickTime™ and a
PNG decompressor

are needed to see this picture.

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]



SIMULATIONS – Mixture of Almost Degenerate Gaussians
Noisy samples from two lines and one plane in <3

Given Data Segmentation Results

ε0 = 0.01

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]

ε0 = 0.08



SIMULATIONS – “Phase Transition”
Rate v.s. distortion

0.0
8

ε0 = 
0.08

#group v.s. distortion

Stability: the same segmentation 
for ε across 3 magnitudes!

0.08

steam
water

ice 
cubes

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]



SIMULATIONS – Comparison with EM

100 x d uniformly distributed random samples from each subspace, corrupte
with 4% noise. Classification rate averaged over 25 trials for each case.

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]



SIMULATIONS – Comparison with EM

Segmenting three degenerate or non-degenerate Gaussian clusters for 50 tria

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]



SIMULATIONS – Robustness with Outliers

35.8% outliers 45.6%

71.5% 73.6%

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]



SIMULATIONS – Affine Subspaces with Outliers

35.8% outliers 45.6%

66.2% 69.1%

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI’07]



SIMULATIONS – Piecewise-Linear Approximation of Manifolds

Swiss roll Mobius strip Torus Klein bottle



SIMULATIONS – Summary

– The minimum coding length objective automatically addresses 
the 

model selection issue: the optimal solution is very stable and 
robust.

– The segmentation/merging is physically meaningful (measured 
in bits).    

The results resemble phase transition in statistical physics.

– The greedy algorithm is scalable (polynomial in both K and N) 
and

converges well when ε is not too small w.r.t. the sample 
density.



Clustering from a Classification Perspective

Solution: Knowing the distributions                       and            
, the optimal classifier is the maximum a posteriori (MAP) 
classifier: 

Difficulties:   How to learn the two distributions                   from samples?
(parametric, non-parametric, model selection, high-dimension, outliers…)

Goal: Construct a classifier                  
such that the misclassification 
error

reaches minimum.

Assumption: The training data             
are drawn from a distribution



MINIMUM INCREMENTAL CODING LENGTH – Problem Formulation

Ideas: Using the lossy coding length

as a surrogate for the Shannon lossless coding length w.r.t. true 
distributions.

Classification Criterion: Minimum Incremental Coding Length 
(MICL)

Additional bits need to encode the test 
sample      with the jth training set is



MICL (“Michael”) – Asymptotic Properties

Theorem: As the number of samples       goes to infinity, the MICL 
criterion converges with probability one to the following criterion:

where
?

is the “number of effective 
parameters” of the j-th model (class).

Theorem: The MICL classifier converges to the above asymptotic form 
at the rate of               for some constant    .

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



SIMULATIONS – Interpolation and Extrapolation via MICL

MICL

SVM

k-NN

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



SIMULATIONS – Improvement over MAP and RDA [Friedman1989]

Two Gaussians in 
R2

isotropic (left)
anisotropic 

(right)
(500 trials)

Three Gaussians in 
Rn

dim = n
dim = n/2
dim = 1

(500 trials)

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



SIMULATIONS – Local and Kernel MICL

LMICL k-
NN

KMICL-RBF SVM-RBF

Local MICL (LMICL): Applying MICL locally to the k-nearest 
neighbors of the test sample (frequencylist + Bayesianist).

Kernel MICL (KMICL): Incorporating MICL with a nonlinear kernel 
naturally through the identity (“kernelized” RDA):                                           

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



CONCLUSIONS  

Assumptions: Data are in a high-dimensional space but have 
low-dimensional structures (subspaces or submanifolds).

Compression => Clustering & Classification:
– Minimum (incremental) coding length subject to distortion.
– Asymptotically optimal clustering and classification.
– Greedy clustering algorithm (bottom-up, agglomerative).
– MICL corroborates MAP, RDA, k-NN, and kernel methods. 

Applications (Next Lectures):
– Video segmentation, motion segmentation (Vidal)
– Image representation & segmentation (Ma)
– Others: microarray clustering, recognition of faces and 

handwritten digits (Ma)



FUTURE DIRECTIONS 

Theory
– More complex structures: manifolds, systems, random 

fields…
– Regularization (ridge, lasso, banding etc.)
– Sparse representation and subspace arrangements

Computation
– Global optimality (random techniques, convex 

optimization…)
– Scalability: random sampling, approximation…

Future Application Domains
– Image/video/audio classification, indexing, and retrieval
– Hyper-spectral images and videos
– Biomedical images, microarrays
– Autonomous navigation, surveillance, and 3D mapping
– Identification of hybrid linear/nonlinear systems
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““The whole is more than the sum of its The whole is more than the sum of its 
partsparts.”.”

----
Aristotle  Aristotle  

Questions, please? 

11/2003

Yi Ma, CVPR 2008


