Generalized Principal Component Analysis via Lossy Coding and Compression Yi Ma

Image Formation & Processing Group, Beckman Decision & Control Group, Coordinated Science Lab. Electrical & Computer Engineering Department

University of Illinois at Urbana-Champaign

MOTIVATION

PROBLEM FORMULATION AND EXISTING APPROACHES

SEGMENTATION VIA LOSSY DATA COMPRESSION

SIMULATIONS (AND EXPERIMENTS)

CONCLUSIONS AND FUTURE DIRECTIONS

MOTIVATION – Motion Segmentation in Computer Vision

Goal: Given a sequence of images of multiple moving objects, determine:
1. the number and types of motions (rigid-body, affine, linear, etc.)
2. the features that belong to the same motion.

QuickTime™ and a Cinepak decompressor are needed to see this picture

The "chicken-and-egg" difficulty:

- Knowing the segmentation, estimating the motions is easy;
- Knowing the motions, segmenting the features is easy.

A Unified Algebraic Approach to 2D and 3D Motion Segmentation, [Vidal-Ma, ECCV'

MOTIVATION – Image Segmentation

Goal: segment an image into multiple regions with homogeneous texture.

Difficulty: A mixture of models of different dimensions or

Multiscale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TIP

MOTIVATION – Video Segmentation

Goal: segmenting a video sequence into segments with "stationary" dynamics

Model: different segments as outputs from different (linear) dynamical systems: $x_{t+1} = A_{\lambda(t)}x_t + B_{\lambda(t)}u_t$ $y_t = C_{\lambda(t)}x_t + D_{\lambda(t)}u_t$ $\lambda(t) \in \{1, 2, ..., n\}$

Identification of Hybrid Linear Systems via Subspace Segmentation, [Huang-Wagner-Ma, C

MOTIVATION – Massive Multivariate Mixed Data

Face database

Hyperspectral images

QuickTime™ and a BMP decompressor are needed to see this picture

Articulate motions

Hand written digits

Microarrays

SUBSPACE SEGMENTATION – Problem Formulation

Assumption: the data{ $x_1, x_2, ..., x_N$ } are noisy samples from an arrangement of linear subspaces $x_1 = S_1 \cup S_2 \cup \cdots \cup S_n$.

Difficulties:

- the dimensions of the subspaces can be different
- the data can be corrupted by noise or contaminated by outliers
- the number and dimensions of subspaces may be unknown

SUBSPACE SEGMENTATION – Statistical Approaches

Assume that the data{ $x_1, x_2, ..., x_N$ } are i.i.d. samples from a mixture of probabilistic distributions:

$$p(\boldsymbol{x}, \theta) = \sum_{i=1}^{n} \pi_i p_i(\boldsymbol{x}, \theta)$$

Solutions:

 Expectation Maximization (EM) for the maximum-likelihood estimate [Dempster et. al.'77], e.g., Probabilistic PCA [Tipping-Bishop'99]:

$$\mathsf{max}_{ heta,\pi}\sum_{j=1}^N \mathsf{log}\left(\sum_{i=1}^n \pi_i p_i(oldsymbol{x}_j, heta)
ight)$$

 K-Means for a minimax-like estimate [Forgy'65, Jancey'66, MacQueen'67], e.g., K-Subspaces [Ho and Kriegman'03]:

 $\min_{\theta} \sum_{j=1}^{N} \min_{i} \left(-\log p_{i}(\boldsymbol{x}_{j}, \theta) \right)$

Essentially iterate between data segmentation and model estimation

SUBSPACE SEGMENTATION – An Algebro–Geometric Approach

Idea: a union of linear subspaces is an algebraic set -- the zero set of a set of (homogeneous) polynomials:

 $\mathcal{A} = S_1 \cup S_2 \cup \cdots \cup S_n$

$$= \{x : p(x) = 0, p \in I(\mathcal{A})\}.$$

Solution:

Identify the set of polynomials of degree n that vanish on

$$\Big\{p(x) = (b_1^T x)(b_2^T x) \cdots (b_n^T x) = c^T \nu_n(x), \ b_i \in S_i^{\perp}\Big\}.$$

Gradients of the vanishing polynomials are normals to the subspaces

$$\frac{\mathbf{x}}{\mathbf{x}}\Big|_{\mathbf{x}\in S_i} = \mathbf{b}_i \prod_{j\neq i} (\mathbf{b}_j^T \mathbf{x}) \in S_i^{\perp}, \ i = 1, 2, \dots, n.$$

Complexity exponential in the dimension and number of subspaces

Generalized Principal Component Analysis, [Vidal-Ma-Sastry, IEEE Transactions PAMI'0

SUBSPACE SEGMENTATION – An Information–Theoretic Approach

Problem: If the number/dimension of subspaces not given and data corrupted

by noise and outliers, how to determine the optimal subspaces that fit Solution at Model Selection Criteria?

- Minimum message length (MML) [Wallace-Boulton'68]
- Minimum description length (MDL) [Rissanen'78]
- Bayesian information criterion (BIC)
- Akaike information criterion (AIC) [Akaike'77]
- Geometric AIC [Kanatani'03], Robust AIC [Torr'98]

Key idea (MDL):

• a good balance between model complexity and data fidelity.

• minimize the length of codes that describe the model and the data: $\min_{\theta \in \Theta} \operatorname{Length}(X, \theta) = \operatorname{Length}(\theta) + \operatorname{Length}(X|\theta).$

with a quantization error optimal for the model.

LOSSY DATA COMPRESSION

Questions:

- What is the "gain" or "loss" of segmenting or merging data?
- How does tolerance of error affect segmentation results?

Basic idea: whether the number of bits required to store "the whole is more than the sum of its parts"?

- A coding scheme maps a set of vectors $[v_1, v_2, ..., v_m] \in \Re^{K \times m}$ to a sequence of bits, from which we can decode $\|\hat{v}_i - v_i\|^2 \leq \epsilon^2$. The coding length is denoted as:

$$L: \mathfrak{R}^{K \times m} \to Z_+$$

 $V \mapsto L(V)$

- Given a set of real-valued mixed data= $[x_1, x_2, ..., x_N] \in \Re^{K \times N}$ the optimal segmentation $X = X_1 \cup X_2 \cup \cdots \cup X_n$ minimizes

the overall coding length:

 $L^{s}(X) \doteq L(X_{1}) + L(X_{2}) + \dots + L(X_{n}) + H(|X_{1}|, |X_{2}|, \dots, |X_{n}|)$

 $H(|X_1|, |X_2|, \dots, |X_n|) \doteq \sum_{i=1}^n |X_i| (-\log_2(|X_i|/N)).$ where

Theorem. Given $X = [x_1, \dots, x_N] \in \Re^{K \times N}$ $\text{with} \frac{1}{N} \sum_{i=1}^N x_i, \bar{X} = X - \mu$ $L(X) = \frac{N+K}{2} \log_2 \det \left(I + \frac{K}{\epsilon^2 N} \bar{X} \bar{X}^T\right) + \frac{K}{2} \log_2 \left(1 + \frac{\mu^T \mu}{\epsilon^2}\right)$

is the number of bits needed to encode the dat $\mathbf{x}_i \| \mathbf{x}_i \|^2 \le \epsilon^2$

A nearly optimal bound for even a small number of vectors drawn from a subspace or a Gaussian

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI'

LOSSY DATA COMPRESSION – Two Coding Schemes

Goal: $code_X = [x_1, ..., x_N]$

s.t. a mean squared $|| \mathbf{p}_i \mathbf{p}_i - \hat{x}_i ||^2 \leq \epsilon^2$

Linear subspace $x_i = Ub_i$

 $X = U\Sigma V^{T} \doteq UB$ $\delta u_{ij} \sim \left[-\frac{\epsilon\sqrt{N}}{\sigma_{j}K}, \frac{\epsilon\sqrt{N}}{\sigma_{j}K} \right], \quad \delta b_{ij} \sim \left[-\frac{\epsilon}{\sqrt{K}}, \frac{\epsilon}{\sqrt{K}} \right]$ $\# \text{bits}(U) \leq \frac{K}{2} \sum_{i=1}^{K} \log_{2} \left(1 + \frac{K\sigma_{i}^{2}}{N\epsilon^{2}} \right)$ $\# \text{bits}(B) \leq \frac{N}{2} \sum_{i=1}^{K} \log_{2} \left(1 + \frac{K\sigma_{i}^{2}}{N\epsilon^{2}} \right)$ $\# \text{bits} \leq \frac{N+K}{2} \sum_{i=1}^{K} \log_{2} \left(1 + \frac{K\sigma_{i}^{2}}{N\epsilon^{2}} \right) =$

#bits = $(N + K) \log_2 \left(\operatorname{vol}(\hat{X}) / \operatorname{vol}(z) \right)$

LOSSY DATA COMPRESSION – Properties of the Coding Length

$$L(X) = \frac{N+K}{2} \log_2 \det \left(I + \frac{K}{\epsilon^2 N} X X^T \right)$$

- 1. *Commutative Property*: det $\left(I + \frac{K}{\epsilon^2 N} X X^T\right) = \det \left(I + \frac{K}{\epsilon^2 N} X^T X\right)$. For high-dimensional data, computing the coding length only needs the kernel matrix $X^T X$.
- 2. Asymptotic Property: $\lim_{N \to \infty} \frac{1}{N} L(X) \doteq R(\epsilon) = \frac{1}{2} \log_2 \left[\det \left(I + \frac{K}{\epsilon^2} \Sigma_X \right) \right].$ At high SNR, this is the optimal rate distortion for a Gaussian source.
- 3. Invariant Property: L(X) = L(UX) = L(XV), ∀U ∈ O(K), V ∈ O(N).
 Harmonic Analysis is useful for data compression only when the data are non–Gaussian or nonlinear so is segmentation!

LOSSY DATA COMPRESSION - Why Segment?

 $L(X) > L^{s}(X) = L(X_{1}) + L(X_{2}) + H(|X_{1}|, |X_{2}|)$

partitioning:

sifting:

LOSSY DATA COMPRESSION – Probabilistic Segmentation?

Assign the ith point to the jth group with probability (0, 1], j = 1, 2, ..., n.

$$\Pi_{j} \doteq \begin{bmatrix} \pi_{1j} & 0 & \cdots & 0 \\ 0 & \pi_{2j} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \pi_{Nj} \end{bmatrix} \in \Re^{N \times N}, \quad \Pi_{j} \succeq 0, \sum_{j=1}^{n} \Pi_{j} = I_{N \times N}.$$

Theorem. The expected coding length of the segmented data

$$L^{s}(X,\Pi) = \sum_{j=1}^{n} \frac{\operatorname{tr}(\Pi_{j})}{2} \log_{2} \operatorname{det} \left(I + \frac{K}{\epsilon^{2} \operatorname{tr}(\Pi_{j})} X \Pi_{j} X^{T} \right) - \operatorname{tr}(\Pi_{j}) \log_{2} \left(\frac{\operatorname{tr}(\Pi_{j})}{N} \right)$$

is a *concave* function in Π over the domain of a convex polytope.

Minima are reached at the vertexes of the polytope -- no probabilistic

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI'

LOSSY DATA COMPRESSION – Segmentation & Channel Capacity

A MIMO additive white Gaussian noise (AWGN) channel

$$y = Wx + z, \quad W \in \Re^{K \times N}, \ z \sim \mathcal{N}(0, \sigma^2 I)$$

s the capacity $C(W) \doteq \frac{1}{2} \log_2 \det \left(I + \frac{P}{N\sigma^2} W W^T\right).$

If allowing probabilistic grouping of transmitters, the expected capacity

$$C(W,\Pi) = \sum_{j=1}^{n} \frac{\operatorname{tr}(\Pi_j)}{2N} \log_2 \det \left(I + \frac{P}{\operatorname{tr}(\Pi_j)\sigma^2} W \Pi_j W^T \right)$$

is a *concave* function in Π over a convex polytope.

Maximizing such a capacity is a convex

ha

On Coding and Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI

LOSSY DATA COMPRESSION – A Greedy (Agglomerative) Algorithm

Objective: minimizing the overall coding length

 $\min L^{s}(X) = L(X_{1}) + L(X_{2}) + \dots + L(X_{n}) + H(|X_{1}|, |X_{2}|, \dots, |X_{n}|).$

Input: $X = \{x_1, x_2, \dots, x_N\} \subset \Re^K, \epsilon > 0$ $\mathcal{S} = \{S = \{x\} \mid x \in X\}$ while true do choose two sets $S_1, S_2 \in S$ such $that(S_1 \cup S_2) - L^s(S_1, S_2)$ is minimal S_2 - $L^s(S_1, S_2) < 0$ if $\mathcal{S} = \left(\mathcal{S} \setminus \{S_1, S_2\}\right) \cup \{S_1 \cup S_2\}$ then else break endif end S Output:

"Bottom-up" merge

QuickTime™ and a PNG decompressor re needed to see this picture

SIMULATIONS – Mixture of Almost Degenerate Gaussians

Noisy samples from two lines and one plane in \Re^3

SIMULATIONS - "Phase Transition"

ice

-3

cubes

-2

lo<mark>g₁₀(e_o)</mark>

n

0.08

400 350 300 250 $\log_{10}(\epsilon_0)$ $\simeq 200$ 150 100 50 -8 -8 -7 -6 -6 -3 -2 -4 -1 log_{t n}(s) $\varepsilon_0 =$ 0.08

3.5 3

2.5

1.5

1 0.5

> □.` -8

.7

steam

water

-6

-4

 $\log_{10}(\epsilon)$

-6

#group v.s. distortion

Rate v.s. distortion

Stability: the same segmentation for ϵ across 3 magnitudes!

100 x d uniformly distributed random samples from each subspace, corrupte with 4% noise. Classification rate averaged over 25 trials for each case.

Subspace	Identified	Classification (%)	Classification (%)
dimensions	dimensions	(Greedy Algorithm)	(E-M)
(2,1,1) in ℜ ³	2, 1, 1	96.62	39.33
(2,2,1) in ℜ ³	2, 2, 1	90.00	68.98
(4,2,2,1) in ℜ ⁵	4,2,2,1	98.53	43.36
(6,3,1) in ℜ ⁷	6,3,1	99.77	66.16
$(7,5,2,1,1)$ in \Re^8	7, 5, 2, 1, 1	98.04	42.29

SIMULATIONS – Comparison with EM

Segmenting three degenerate or non-degenerate Gaussian clusters for 50 tri

SIMULATIONS – Robustness with Outliers

35.8% outliers

45.6%

71.5%

73.6%

SIMULATIONS – Affine Subspaces with Outliers

35.8% outliers

45.6%

2.4

2.2

2

1.8

1.6

2.62.42.2

axis 2

²1.8_{1.6}

1.6 1.8 2 2.2 2.4

axis 1

SIMULATIONS – Piecewise–Linear Approximation of Manifolds

 The minimum coding length objective automatically addresses the

model selection issue: the optimal solution is very stable and robust.

The segmentation/merging is physically meaningful (measured in bits).

The results resemble phase transition in statistical physics.

 The greedy algorithm is scalable (polynomial in both K and N) and

converges well when ε is not too small w.r.t. the sample density.

Clustering from a Classification Perspective

reaches minimum.

Solution: Knowing the distributio $\eta s_{X,Y}(x,y) = p \eta dy$, the optimal classifier is the maximum a posteriori (MAP) classifier:

$$\widehat{y}(oldsymbol{x}) = rg \max_y \ln p_{X|Y}(oldsymbol{x}|y) + \ln p_Y(y)$$

Difficulties: How to learn the two distribution $p_{X,Y}$, p_Y from samples? (parametric, non-parametric, model selection, high-dimension, outliers...)

MINIMUM INCREMENTAL CODING LENGTH – Problem Formulation

Ideas: Using the lossy coding length

$$L_{\epsilon}(X) = \frac{N+K}{2} \log_2 \det \left(I + \frac{K}{\epsilon^2 N} \bar{X} \bar{X}^T\right) + \frac{K}{2} \log_2 \left(1 + \frac{\mu^T \mu}{\epsilon^2}\right)$$

 $\mathbb{L}_{\epsilon}(\mathcal{X}_{j})$

 $\mathcal{X}_j = \{x_i, y_i = j\}$

as a surrogate for the Shannon lossless coding length w.r.t. true distributions.

Additional bits need to encode the test $L_{\epsilon}(\mathcal{X}_{j}\cup\{x\})$ sample x with the jth training set is

$$\delta L_{\epsilon}(\boldsymbol{x},j) = L_{\epsilon}(\mathcal{X}_{j} \cup \{\boldsymbol{x}\}) - L_{\epsilon}(\mathcal{X}_{j}) + L(j)$$

Classification Criterion: Minimum Incremental Coding Length (MICL)

$$\widehat{y}(x) = \arg\min_j \, \delta L_{\epsilon}(x,j)$$

Theorem: As the number of samples goes to infinity, the MICL criterion converges with probability one to the following criterion:

$$\widehat{y}_{\epsilon}(\boldsymbol{x}) = \arg\max_{j} \mathcal{L}_{G}\left(\boldsymbol{x} \mid \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j} + \frac{\epsilon^{2}}{K}I\right) + \ln\pi_{j} + \frac{1}{2}D_{\epsilon}(\boldsymbol{\Sigma}_{j}),$$

where $D_{\epsilon}(\boldsymbol{\Sigma}_{j}) \doteq \operatorname{trace}_{\Sigma_{j}}\left(\boldsymbol{\Sigma}_{j} + \frac{\epsilon^{2}}{K}I\right)^{-1}$

 $D_{\epsilon}(\Sigma_j)$ is the "number of effective parameters" of the j-th model (class).

Theorem: The MICL classifier converges to the above asymptotic form at the ratevol¹/₂ for some_c constant .

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a., NIPS'07]

SIMULATIONS – Interpolation and Extrapolation via MICL

MICL

SVM

k-NN

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS'07]

SIMULATIONS – Improvement over MAP and RDA [Friedman1989]

Two Gaussians in \mathcal{R}^2

isotropic (left) anisotropic (right) (500 trials)

dim = ndim = n/2

dim = 1

(500 trials)

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS'07]

SIMULATIONS – Local and Kernel MICL

Local MICL (LMICL): Applying MICL locally to the k-nearest neighbors of the test sample (frequencylist + Bayesianist).

Kernel MICL (KMICL): Incorporating MICL with a nonlinear kernel naturally through the identity ("kernelized" RDA):

$$\det\left(I + \frac{K}{\epsilon^2 N} X X^T\right) = \det\left(I + \frac{K}{\epsilon^2 N} X^T X\right).$$

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a., NIPS'07]

CONCLUSIONS

- Assumptions: Data are in a high-dimensional space but have low-dimensional structures (subspaces or submanifolds).
- Compression => Clustering & Classification:
 - Minimum (incremental) coding length subject to distortion.
 - Asymptotically optimal clustering and classification.
 - Greedy clustering algorithm (bottom-up, agglomerative).
 - MICL corroborates MAP, RDA, k-NN, and kernel methods.
- Applications (Next Lectures):
 - Video segmentation, motion segmentation (Vidal)
 - Image representation & segmentation (Ma)
 - Others: microarray clustering, recognition of faces and handwritten digits (Ma)

FUTURE DIRECTIONS

Theory

- More complex structures: manifolds, systems, random fields...
- Regularization (ridge, lasso, banding etc.)
- Sparse representation and subspace arrangements
- Computation
 - Global optimality (random techniques, convex optimization...)
 - Scalability: random sampling, approximation...
- Future Application Domains
 - Image/video/audio classification, indexing, and retrieval
 - Hyper-spectral images and videos
 - Biomedical images, microarrays
 - Autonomous navigation, surveillance, and 3D mapping
 - Identification of hybrid linear/nonlinear systems

REFERENCES & ACKNOWLEGMENT

- References:
 - Segmentation of Multivariate Mixed Data via Lossy Data Compression, Yi Ma, Harm Derksen, Wei Hong, John Wright, PAMI, 2007.
 - Classification via Minimum Incremental Coding Length (MICL), John Wright et. al., NIPS, 2007.
 - Website: <u>http://perception.csl.uiuc.edu/coding/home.htm</u>

People:

- John Wright, PhD Student, ECE Department, University of Illinois
- Prof. Harm Derksen, Mathematics Department, University of Michigan
- Allen Yang (UC Berkeley) and Wei Hong (Texas Instruments R&D)
- Zhoucheng Lin and Harry Shum, Microsoft Research Asia, China
- Funding:
 - ONR YIP N00014-05-1-0633
 - NSF CAREER IIS-0347456, CCF-TF-0514955, CRS-EHS-0509151

"The whole is more than the sum of its parts."

Aristotle Questions, please?

Yi Ma, CVPR 2008