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MOTIVATION - Motion Segmentation in Computer Vision

Goal: Given a sequence of images of multiple moving objects, determine:
1. the number and types of motions (rigid-body, affine, linear, etc.)
2. the features that belong to the same motion.

The “chicken-and-egg” difficulty:
- Knowing the segmentation, estimating the motions is easy;
- Knowing the motions, segmenting the features is easy.

A Unified Algebraic Approach to 2D and 3D Motion Segmentation, [Vidal-Ma, ECCV’



MOTIVATION - Image Segmentation
Goal: segment an image into multiple regions with homogeneous texture.

T 4T ﬂ I
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A mixture of models of different dimensions or

Multiscale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TIP



MOTIVATION - Video Segmentation

Goal: segmenting a video sequence into segments with “stationary” dynamics

Model: different
segments as outputs
from different (linear)

dynamical system
Tle+1— ).(f)Tf_{_fB/\(r)“f

— C}‘(t)mi —|— Dk(t)u!{
}a(t) €{1,2,...,n}

/dentification of Hybrid Linear Systems via Subspace Segmentation, [Huang-Wagner-Ma, C



MOTIVATION - Massive Multivariate Mixed Data

R < Hyperspectral images Articulate motions
e o E_:;%
il
|1 [
Hand written digits - N

Microarrays




SUBSPACE SEGMENTATION - Problem Formulation

Assumption: the data{x1, x>,...,xxN} are noisy samples from an
arrangement of linear subspacest = S; US>, U---U Sp.

. \ | \ |

N N\ \\

noise-free samples noisy samples samples with outliers

I \
i

Difficulties:
- the dimensions of the subspaces can be different
- the data can be corrupted by noise or contaminated by outliers

- the number and dimensions of subspaces may be unknown




SUBSPACE SEGMENTATION - Statistical Approaches

Assume that the data{xq, x>, ...,z N}
are i.i.d. samples from a mixture of

probabilistic distributions: &
p(x,0) = —3,_1 mipi(x, 0)
Solutions:

« Expectation Maximization (EM) for the maximum-likelihood estimate
[Dempster et. al.’77], e.g., Probabilistic PCA [Tipping-Bishop’99]:

maxg» YN log ( ©2; mipi(x;,0))

%K

« K-Means for a minimax-like estimate [Forgy’65, Jancey’66, MacQueen’67],
e.g., K-Subspaces [Ho and Kriegman’03]:

mlngz *_, Min; (—lngi(mj?H))

Essentially iterate between data segmentation and model estimation




SUBSPACE SEGMENTATION - An Algebro-Geometric Approach

b1

Idea: a union of linear subspaces is an

algebraic set -- the zero set of a set of
(homogeneous) polynomials:

A = S1USU---USp
= {z:p(x) =0,p e I(A)}. Sh

So \\ S1
Solution:

« |dentify the set of polynomials of degree n that vanish on
{p(x) = (b{z)(bhz) - (b z) = cTvn(), b; € S}
e Gradients of the vanishing polynomials are normals to the
subsgaces -
x — bh.TT... Lf .
- mESi—btnj#i(bjm)ESi?1_1?2!""”'

Complexity in the dimension and number of subspaces

Generalized Principal Component Analysis, [Vidal-Ma-Sastry, IEEE Transactions PAMI’0

xr




SUBSPACE SEGMENTATION - An Information-Theoretic Approach

Problem: If the number/dimension of subspaces not given and data
corrupted

by noise and outliers, how to determine the optimal subspaces that fit

Solutiendatdodel Selection Criteria?

- Minimum message length (MML) [Wallace-Boulton’68]
- Minimum description length (MDL) [Rissanen’78]

- Bayesian information criterion (BIC)

- Akaike information criterion (AIC) [Akaike’77]

- Geometric AIC [Kanatani’03], Robust AIC [Torr’98]

Key idea (MDL):

- a good balance between model complexity and data fidelity.

- minimize the length of codes that describe the model and the
data:

Mingco Length(X, #) = Length(@) 4+ Length(X|0).

with a quantization error optimal for the model.




LOSSY DATA COMPRESSION

Questions:
- What is the “gain” or “loss” of segmenting or merging data?

- How does tolerance of error affect segmentation results?

Basic idea: whether the number of bits required to store “the

whole is more than the sum of its parts”

& ————— 7 #bits(X UY) > #bits(X) + #bits(Y)?




LOSSY DATA COMPRESSION - Problem Formulation

- A coding scheme maps a set of vectors= [vq, v, ..., vm] € REX™M
to a sequence of bits, from which we can decgdeg||s; — v;||2 < €2.
The coding length is denoted as:

L:RExm . 7z,

V — L((V)
- Given a set of real-valued mixed data= [z, x5, ..., xy] € REXN
the optimal segmentationy = x; U X, U---U X,
minimizes
the overall coding length:
H(|X1|, X2l .., | Xa]) = £, |X;](—log2(|X;|/N)).

where




LOSSY DATA COMPRESSION - Coding Length for Multivariate Data

Theorem.
Givenx = [zy,...,xy] e REXN  WEAL SN 2, X =X — 4

N+ K K .. K T
L(X) = = —logzdet (I+62NXXT) + 7 log2 (1 +i—2“)

is the number of bits needed to encode the data|ml— ;|2 < 2

A nearly optimal bound for even a small number

of vectors drawn from a subspace or a Gaussian

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI’



LOSSY DATA COMPRESSION - Two Coding Schemes

Goal: codeX = [zq,...,zy] S.t. @ mean squared rgr— z,||2 < 2

Linear subspace ;. —

Hrj

2

#bits(U) < — i lo (1 + KJ?) _ / € 1 T
P g2 N2 vol(X) o< |/det (Ef-l-EXX )
. N K KJE €2
#bits(B) < 5;-;1]092 (1 + NEE) vol(z) o \/det(EI)
i Ko? n
#bits < T > logs (1 + Nfé) —  F#bits= (N + K)logs (vol(X)/vc-l(z))




LOSSY DATA COMPRESSION - Properties of the Coding Length

N+ K

L(X) = log, det (1+ QK XXT)

c
) = det ( TX).

For high-dimensional data, computmg the coding Iength only needs
the kernel matrixx?x.

. Commutative Property:det (

2. Asymptotic Property I|r'r'| —L(X) = R(e) = ! Iogg [det (I + {Zxﬂ

At high SNR, this is the optlmal rate dlstortlon for a Gaussian source.

3. Invariant Property: (X)) = L(UX) = L(XV), YU € O(K),V € O(N).

Harmonic Analysis is useful for data compression only when the data are
non-Gaussian or nonlinear ......... SO is segmentation!




LOSSY DATA COMPRESSION - Why Segment?

L(X) > L*(X) = L(X1)+L(X2)+H(|X1],|X2|)

partitioning:




LOSSY DATA COMPRESSION - Probabilistic Segmentation?

Assign the ith point to the jth group with probabilityo, 1],; = 1,2,...,n.

14 0 - 0 -
|-|j — D ﬂz? 0 = ERNXN, I-Ij ~ 0, Z MN; = InxnN.
f.} = U‘ TN j=1

Theorem. The expected coding length of the segmented data

L3(X,N) = i tr(n;)

J=1

tr(l‘lj))

log, det (I—l— -
1

—XH-XT)—tr N, lo (
etr(n;)” 7 (M) 109

is a concave function in IT over the domain of a convex polytope.

Minima are reached at the vertexes of the
polytope —— no probabilistic

4

‘/

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI’



LOSSY DATA COMPRESSION - Segmentation & Channel Capacity

A MIMO additive white Gaussian noise (AWGN) channel NG

y:W:E-I—E, WE?RI{X*N, ZNN(O,JEI) N4 \\\
o« N\

has the capacity.c(w) = % log, det (I + %WWT).

o

If allowing probabilistic grouping of transmitters, the expected
capacity

U ADE i iR

i=1

log, det (I + W jWT)

tr(l_lj)rrg

is a concave function in IT over a convex polytope.

Maximizing such a capacity is a convex C(M)

On Coding and Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI




LOSSY DATA COMPRESSION - A Greedy (Agglomerative) Algorithm

Objective: minimizing the overall coding length

min L*(X) = L(X1)+L(X2)+ - -+L(Xn)+H(|X1], | X2], ..., | Xn]).

|npUtX = {m]_-,mg-, - 'J:UN} C ERH" e>0 BOttOm—up merge

S={S={z}|zeX)
while true do

choose two set$;,. 5, s  such
that(s, U $2) — L*(S1, 92)
Is mL’EE‘{‘é'SQ) — L5(S1,55) <0

I 5= (s\{51.%})u{s1Uss)
then

else break
endif
end S

Output:

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]



SIMULATIONS - Mixture of Almost Degenerate Gaussians

Noisy samples from two lines and one plane in %3

Given Data Segmentation Results

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]




SIMULATIONS - “Phase Transition”
#group v.s. distortion Rate v.s. distortion

R%(e) ~ —p3l0g1p€ + a

Stability: the same segmentation
for € across 3 magnitudes!

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]




SIMULATIONS - Comparison with EM

100 x d uniformly distributed random samples from each subspace, corrupte
with 4% noise. Classification rate averaged over 25 trials for each case.

Subspace Identified Classification (%) | Classification (%)
dimensions dimensions | (Greedy Algorithm) (E-M)
(2,1,1) in R3 2.1,1 96.62 39.33
(2,2.1) in R3 2,2,1 90.00 68.98
1 <= :1 In Bt Bt .5 .
(4,2,2,1) in ®° 4,2.2.1 98.53 43.36
.3,1) in .3, 77 .
(6,3,1) in RY 6,3,1 99 ©6.16
7:5: il In ?:5: 3 = . :
2,1,1) in RO 2,1.1 98.04 42.29

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]



SIMULATIONS - Comparison with EM

Segmenting three degenerate or non-degenerate Gaussian clusters for 50 tri

Algorithm 1 Algorithm 1 Algorithm 1

4 5678 091011121314 ) JTESTS
K K
Figueirado and Jain Figueirado and Jain Figueirado and Jain

] 123

12345678 91011121314
K

(@) (2,1,1) in R? (b) (2,2,1) in R? (c) 3 Gaussians in B2

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]




SIMULATIONS - Robustness with Outliers

35.8% outliers
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Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]



SIMULATIONS - Affine Subspaces with Outliers

35.8% outliers
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SIMULATIONS - Piecewise-Linear Approximation of Manifolds

Klein bottle

Swiss roll Mobius strip




SIMULATIONS - Summary

- The minimum coding length objective automatically addresses
the

model selection issue: the optimal solution is very stable and
robust.

- The segmentation/merging is physically meaningful (measured
in bits).

The results resemble phase transition in statistical physics.

- The greedy algorithm is scalable (polynomial in both K and N)
and

converges well when ¢ is not too small w.r.t. the sample
density.




Clustering from a Classification Perspective

Assumption: The training dat(x;, v;)} ¥, (\ =3
are drawn from a distributipn, v (x, y/) y(x) =7 \\ \
~J
Goal: Construct a classifiey(x) &
such that the misclassification 7 =1
error E[Iﬁ(X)#Y]
y =2

reaches minimum.

Solution: Knowing the distributionsy y (x, y) andy)
, the is the maximum a posteriori (MAP)
classifier:

y(z) = argmaxinpyy(zly) + Inpy (y)

Difficulties: How to learn the two distribution® x v, py from samples?

(parametric, non-parametric, model selection, high-dimension, outliers...)




MINIMUM INCREMENTAL CODING LENGTH - Problem Formulation

Ideas: Using the lossy coding length

N4+ K K K ,u,T,u,)

L(X) = logp det (7 + EQNJ?X’T) + 5 log> (1+ >

as a for the Shannon lossless coding length w.r.t. true
distributions.

Additional bits need to encode the test

sample z with the jth training set is

0Le(z,j) = Le(Xj U{z}) — Le(Xj) + L(5) X; = {x; ‘y =¥
7 2y gL T

Minimum Incremental Coding Length
(MICL)

y(x) = argmin; dLc(x,j)




MICL ("Michael”) - Asymptotic Properties

Theorem: As the number of sampley goes to infinity, the MICL
criterion converges with probability one to the following criterion:

2
— € 1
yf(m) = arg m?xﬁg(m ‘ M ZJ-I_EI) + In 5 + EDF(Z‘?)‘J

, e2 \~1 S1
where Dﬁ(zj) = tracer(Zj —+ EI)

” of the j-th model (class).

Theorem: Thgz MICL classifier converges to the above asymptotic form
at the rateyofz for someconstant

?

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS'07]



SIMULATIONS - Interpolation and Extrapolation via MICL

MICL

SVM

k-NN

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



SIMULATIONS - Improvement over MAP and RDA [Friedman1989]

HMAP N Hr-.-m:L HMAP‘ B Hr-mcn.
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Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



SIMULATIONS - Local and Kernel MICL

Local MICL (LMICL): Applying MICL locally to the k-nearest
neighbors of the test sample (frequencylist + Bayesianist).

Kernel MICL (KMICL): Incorporating MICL with a nonlinear kernel
naturally through the identity ("kernelized” RDA):

K
det ([
( + €2 N

-

‘MXX'T) = det (I +

XTX),

F
EEJ.

LMICL KMICL-RBF SVM-RBF

Minimum Incremental Coding Length (MICL), [Wright and Ma et. a.., NIPS’07]



CONCLUSIONS

® Data are in a high-dimensional space but have
low-dimensional structures (subspaces or submanifolds).

O
- Minimum (incremental) coding length subject to distortion.
- Asymptotically optimal clustering and classification.
- Greedy clustering algorithm (bottom-up, agglomerative).
- MICL corroborates MAP, RDA, k—-NN, and kernel methods.
O

- Video segmentation, motion segmentation
- Image representation & segmentation

- Others: microarray clustering, recognition of faces and
handwritten digits




FUTURE DIRECTIONS

- More complex structures: manifolds, systems, random
fields...

- Regularization (ridge, lasso, banding etc.)
- Sparse representation and subspace arrangements

- Global optimality (random techniques, convex
optimization...)

- Scalability: random sampling, approximation...

- Image/video/audio classification, indexing, and retrieval
- Hyper-spectral images and videos

- Biomedical images, microarrays

- Autonomous navigation, surveillance, and 3D mapping

T —
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