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Introduction - Image Representation via Linear Transformations

ﬂ better
— -
representations?

pixel-based representation

three matrixes of RGB-values

BRRRG

N \\\\ ‘ ! a more compact
t‘g?&\\‘ \ linear transformation representation




Introduction

Fixed Orthogonal Bases (representation, approximation, compression)

— Discrete Fourier transform (DFT) or discrete cosine transform (DCT)
(Ahmed ’74): JPEG.

— Wavelets (multi-resolution) (Daubechies’88, Mallat’92): JPEG-2000.

— Curvelets and contourlets (Candes & Donoho’99, Do & Veterlli’00)

Discrete Fourier transform (DFT) .
6.25% coefficients.

Wavelet transform

Unorthogonal Bases (for redundant representations)
- Extended lapped transforms, frames, sparse representations (LP

9eOMetrY)yin lz|, s.t y= Az, A€ R m >n




Introduction

Adaptive Bases (optimal if imagery data are uni-modal)
- Karhunen-Loeve transform (KLT), also known as PCA (Pearson’1901,
Hotelling’33, Jolliffe’86)

ok adaptive bases




Introduction - Principal Component Analysis (PCA)
Dimensionality Reduction

Find a low-dimensional representation (model) for high-dimensional data.

Principal Component Analysis (Pearson’1901, Hotelling’1933, Eckart &
Young’1936) or Karhunen-Loeve transform (KLT).

.mz O O O O .mN
O O S

VT - [mlamza = 'mN] € QRHXN

\

Variations of PCA

- Nonlinear Kernel PCA (Scholkopf-Smola-Muller’98)

- Probabilistic PCA (Tipping-Bishop’99, Collins et.al’01)

- Higher-Order SVD (HOSVD) (Tucker’66, Davis’02)

- Independent Component Analysis (Hyvarinen-Karhunen-0ja’01)

Basis for S




Hybrid Linear Models - Multi-Modal Characteristics

Distribution of the first three principal components of
the Baboon image: A clear distribution




Hybrid Linear Models - Multi-Modal Characteristics

Vector Quantization (VQ)
— multiple O-dimensional affine subspaces (i.e. cluster means)

— existing clustering algorithms are iterative (EM, K-means)

ﬁ+ 4 $¢
PO %




Hybrid Linear Models - Versus Linear Models

y= Az, A€ R m < n

A single linear model I
Linear
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Hybrid Linear Models - Characteristics of Natural Images

Multivariate Hybrid Hierarchical High-dime
1D 2D (multi-modal) (multi-scale) (vector-va
Fourier
(DCT) X | X
Wavelets X X
Curvelets X
Random fields X X X
PCA/KLT X X X
vQ X | X X X
Hybrid linear| x X X X X

We need a new & simple paradigm to effectively account for all
these characteristics simultaneously.

1
lue



Hybrid Linear Models - Subspace Estimation and Segmentation

Hybrid Linear Models (or Subspace
Arrangements)

- the number of subspaces is
unknown

- the dimensions of the
subspaces are unknown

:
- the basis of the subspaces are :
unknown | |
1
- the segmentation of the data |
points is unknown

“Chicken-and-Egg” Coupling

- Given segmentation, estimate subspaces

- Given subspaces, segment the data




Hybrid Linear Models - Recursive GPCA (an Example)

p(x) = c1a] + coxy

P g
o - mm s mm

v1(x)e#0,x € R3
p1(x) = va(x)le=0

Dpi(x1)

v1(x)le # 0, X € R2
po(x) = b’z(x) c=0

Dp1(x2
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Hybrid Linear Models - Effective Dimension

Model Selection (for Noisy Data)
® Model complexity;
® Data fidelity;

Number of
subspaces

(5)
ED(X,S) :L K —k;)
1

Total Dimension Number of
number of of each points in each
points subspace subspace

Model selection criterion: minimizing effective dime

subject to a given error tolerance (or PSNR)




Hybrid Linear Models - Simulation Results (5% Noise)
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Hybrid Linear Models - Subspaces of the Barbara Image
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Hybrld Lmear Models - Lossy Image Representatlon (Baboon)
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Multi-Scale Implementation - Algorithm Diagram

Diagram for a level-3 implementation of hybrid linear models
for image representation

1o coefficients

Hybrid Linear
Model Estimation

Hybrid Linear
Model Estimation

£1n coefficients

Hybrid Linear
Model Estimation

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TI



Multi-Scale Implementation - The Baboon Image

The Baboon image

downsample
by two twice

segmentation of
2 by 2 blocks

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TI



Multi-Scale Implementation - Comparison with Other Methods

The Baboon image

B

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TI




Multi-Scale Implementation - Image Approximation

Comparison with level-3 wavelet (7.5% coefficients)

LR T

Level-3 bior-4.4 wavelets Level-3 hybrid linear model
PSNR=23.94 PSNR=24.64

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, Tl



Multi-Scale Implementation - Block Size Effect

The Baboon image

N
N

m
b=
14
=
w
o

N
=

5 <]
Ratio of Coefficients Kept (%)

Some with the multi-scale hybrid linear model:

1. has minor block effect;
2. is computationally more costly (than Fourier, wavelets, PCA);
3. does not fully exploit spatial smoothness as wavelets.

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TI



Multi-Scale Implementation - The Wavelet Domain

segmentation
at each scale




Multi-Scale Implementation - Wavelets v.s. Hybrid Linear Wavelets

The Baboon image

o

[
=

m
=
o 23
=
%)
o

N
N

—+— DCT

—&— PCA/KLT

—=— Level-3 Bior-4.4 Wavelets

—&— Hybrid Linear Model

—&— Level-3 Multiscale Hybrid Linear Model
—— Level-3 Wavelet Hybrid Linear Model

8 10 12
Ratio of Coefficients Kept (%)

Advantages of the hybrid linear model in wavelet domain:

1. eliminates block effect;
2. is computationally less costly (than in the spatial domain);

3. achieves higher PSNR.

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, TI



Multi-Scale Implementation - Visual Comparison

Comparison among several models (7.5% coefficients)

Original Wavelets
Image PSNR=23.94
Hybrid model Hybrid model
In spatial in wavelet
domain domain
PSNR=24.64 PSNR=24.88

Multi-Scale Hybrid Linear Models for Lossy Image Representation, [Hong-Wright-Ma, Tl



Image Segmentation - via Lossy Data Compression




APPLICATIONS - Texture-Based Image Segmentation

Naive approach:

- Take a 7x7 Gaussian window around every
pixel.

- Stack these windows as vectors.

— Clustering the vectors using our algorithm.

A few results:

Segmentation of Multivariate Mixed Data via Lossy Coding and Compression, [Ma-Derksen-Hong-Wright, PAMI'07]



APPLICATIONS - Distribution of Texture Features

Question: why does such a simple algorithm work at all?

Answer: Compression (MDL/MCL) is well suited to mid-level texture
segmentation.

Using a (e.g. windows, filterbank responses) for texture
different complexity = , Wwhich can be exploited f
clustering / compression.

uickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Above: singular values of feature vectors from two different
segments of the image at left.




APPLICATIONS - Compression-based Texture Merging (CTM)

with the naive

a p p I’O aC h QuickTime™ and a
o o TIFF (LZW) decompressor
u I re n [ I re. re n IS picture.
’

Low-level, edge-preserving over-segmentation into small homogeneous
regions.

Simple features: stacked Gaussian windows (7x7 in our experiments).

Merge adjacent regions to minimize coding length (“compress” the features).
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e
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ical Image Segmentation via CTM
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APPLICATIONS
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APPLICATIONS - CTM: Qualitative Results




APPLICATIONS - CTM: Quantitative Evaluation and Comparison

Berkeley Image Segmentation Database

PRI Vol GCE BDE
Humans 0.8754 | 1.1040 | 0.0797 4,994
CTM (0.1) 0.7561 | 2.4640
CTM (0.15) | 0.7627 | 2.2035 | 0.1846 | 9.4902
CTM (0.2) 0.7617 0.1877 | 9.8962
Mean-Shift 0.7550 2.477 0.2598 | 9.7001
NCuts 0.7229 | 2.9329 | 0.2182 | 9.6038
FH 2.6647 | 0.1895 | 9.9497

PRI: Probabilistic Rand Index [Pantofaru 2005]

Vol: Variation of Information [Meila 2005]

GCE: Global Consistency Error [Martin 2001]

BDE: Boundary Displacement Error [Freixenet 2002]

Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 20



Other Applications: Multiple Motion Segmentation (on Hopkins155)

Claszsificatian eror for two groups

urences [9]
Joourences [95]

e

20 0 40 = 0 10 20 an 40 50

Misclassificatian ermar [%] Misclassificatian arrar [%)]

Two Motions: MSL 4.14%, LSA 3.45%, ALC 2.40%, and work with up to 25% outliers.
Three Motions: MSL 8.32%, LSA 9.73%, ALC 6.26%.

Shankar Rao, Roberton Tron, Rene Vidal, and Yi Ma, to appear in CVPR’0¢



Other Applications - Clustering of Microarray Data

s:

T
||||||

Fig. 14, Segmentation of microarray data. Left: raw data. Each row represents the expression level of a single gene. Right:

Three distinet clusters are found, visualized by reordering the rows,

Fig. 15. Results on two microarray datasets. (a) raw yeast data. (b) segmentation, visualized by reordering rows. The greedy

algorithm discovers a number of distinct clusters of varving size. (¢) raw leukemia data. (d) segmentation. Three clusters are

found.

Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI’




Other Applications - Clustering of Microarray Data
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Segmentation of Multivariate Mixed Data, [Ma-Derksen-Hong-Wright, PAMI’



Other Applications - Supervised Classification

Premises: Data{y} lie on an
arrangement of subspaces

A=S1US>U---U Sy

Unsupervised Clustering Supervised Classification
- Generalized PCA - Sparse Representation




Other Applications - Robust Face Recognition

IRANPS
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Robust Face Recognition via Sparse Representation, to appear in PAMI 200



Other Applications: Robust Motion Segmentation (on Hopkins155)
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Figure 2. Errors of recovered trajectories for the sequences: "1R2ZRC” (left), "arm™ (center), and “cars10” (right). Top: Results for our
' -based trajectory completion. The different colored plots are for experiments with varying percentage of the dataset used for completion.

Bottom: Results for our #'-based detection and repair of corrupted trajectories. The different colors represent experiments with varying
percentage of corrupted trajectories in the dataset.

Dealing with incomplete or mistracked features with dataset 80%
|

Shankar Rao, Roberto Tron, Rene Vidal, and Yi Ma, to appear in CVPR’08




Three Measures of Sparsity: Bits, L_O and L,-Norm

Reason: High-dimensional data, like images, do have compact,
compressible, sparse structures, in terms of their geometry,
statistics, and semantics.




Conclusions

® Most imagery data are high-dimensional, statistically or
geometrically heterogeneous, and have multi-scale
structures.

® |Imagery data require hybrid models that can adaptively
represent different subsets of the data with different
(sparse) linear models.

® Mathematically, it is possible to estimate and segment
hybrid (linear) models non-iteratively. GPCA offers one such
method.

® Hybrid models lead to new paradigms, new principles, and
new applications for image representation, compression,
and segmentation.




Future Directions

® Mathematical Theory
- Subspace arrangements (algebraic properties).

- Extension of GPCA to more complex algebraic varieties (e.g.,
hybrid multilinear, high-order tensors).

- Representation & approximation of vector-valued functions.

® Computation & Algorithm Development
- Efficiency, noise sensitivity, outlier elimination.
- Other ways to combine with wavelets and curvelets.

® Applications to Other Data
- Medical imaging (ultra-sonic, MRI, diffusion tensor...)
- Satellite hyper-spectral imaging.
- Audio, video, faces, and digits.
- Sensor networks (location, temperature, pressure, RFID...)
- Bioinformatics (gene expression data...)
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