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Part II: Applications in computer vision

• Applications to motion & video segmentation (10.30-11.15)

– 2-D and 3-D motion segmentation

– Temporal video segmentation

– Dynamic texture segmentation

• Applications to image representation and segmentation

(11.15-12.00)

– Multi-scale hybrid linear models for sparse

image representation

– Hybrid linear models for image segmentation



Applications to motion and and video

segmentation
René Vidal

Center for Imaging Science

Institute for Computational Medicine

Johns Hopkins University



3-D motion segmentation problem

• Given a set of point correspondences in multiple views, determine

– Number of motion models

– Motion model: affine, homography, fundamental matrix, trifocal tensor

– Segmentation: model to which each pixel belongs

• Mathematics of the problem depends on

– Number of frames (2, 3, multiple)

– Projection model (affine, perspective)

– Motion model (affine, translational, homography, fundamental matrix, etc.)

– 3-D structure (planar or not)



Taxonomy of problems

• 2-D Layered representation
– Probabilistic approaches: Jepson-Black’93, Ayer-Sawhney’95, Darrel-Pentland’95, Weiss-

Adelson’96, Weiss’97, Torr-Szeliski-Anandan’99

– Variational approaches: Cremers-Soatto ICCV’03

– Initialization: Wang-Adelson’94, Irani-Peleg’92, Shi-Malik‘98, Vidal-Singaraju’05-’06

• Multiple rigid motions in two perspective views
– Probabilistic approaches: Feng-Perona’98, Torr’98

– Particular cases: Izawa-Mase’92, Shashua-Levin’01, Sturm’02,

– Multibody fundamental matrix: Wolf-Shashua CVPR’01, Vidal et al. ECCV’02, CVPR’03, IJCV’06

– Motions of different types: Vidal-Ma-ECCV’04, Rao-Ma-ICCV’05

• Multiple rigid motions in three perspective views
– Multibody trifocal tensor: Hartley-Vidal-CVPR’04

• Multiple rigid motions in multiple affine views
– Factorization-based: Costeira-Kanade’98, Gear’98, Wu et al.’01, Kanatani’ et al.’01-02-04

– Algebraic: Yan-Pollefeys-ECCV’06, Vidal-Hartley-CVPR’04

• Multiple rigid motions in multiple perspective views

– Schindler et al. ECCV’06, Li et al. CVPR’07



A unified approach to motion segmentation

• Estimation of multiple motion models equivalent to

estimation of one multibody motion model

– Eliminate feature clustering: multiplication

– Estimate a single multibody motion model: polynomial fitting

– Segment multibody motion model: polynomial differentiation

chicken-and-egg



A unified approach to motion segmentation

• Applies to most motion models in computer vision

• All motion models can be segmented algebraically by
– Fitting multibody model: real or complex polynomial to all data

– Fitting individual model: differentiate polynomial at a data point



Segmentation of 3-D translational motions

• Multiple epipoles (translation)

• Epipolar constraint: plane in

– Plane normal = epipoles

– Data = epipolar lines

• Multibody epipolar constraint • Epipoles are derivatives of

    at epipolar lines



Segmentation of 3-D translational motions



Single-body factorization

• Affine camera model

– p = point

– f  = frame

• Motion of one rigid-body lives in a 4-D subspace
(Boult and Brown ’91,

Tomasi and Kanade ‘92)

– P = #points

– F = #frames

Structure = 3D surface

Motion = camera position and orientation



Multi-body factorization

• Given n rigid motions

• Motion segmentation is obtained from

– Leading singular vector of      (Boult and Brown ’91)

– Shape interaction matrix        (Costeira & Kanade ’95, Gear ’94)

– Number of motions (if fully-dimensional)

• Motion subspaces need to be independent (Kanatani ’01)



Multi-body factorization

• Sensitive to noise

– Kanatani (ICCV ’01): use model selection to scale Q

– Wu et al. (CVPR’01): project data onto subspaces and iterate

• Fails with partially dependent motions

– Zelnik-Manor and Irani (CVPR’03)

• Build similarity matrix from normalized Q

• Apply spectral clustering to similarity matrix

– Yan and Pollefeys (ECCV’06)

• Local subspace estimation + spectral clustering

– Kanatani (ECCV’04)

• Assume degeneracy is known: pure translation in the image

• Segment data by multi-stage optimization (multiple EM problems)

• Cannot handle missing data

– Gruber and Weiss (CVPR’04)

• Expectation Maximization



PowerFactorization+GPCA

• A motion segmentation algorithm that

– Is provably correct with perfect data

– Handles both independent and degenerate motions

– Handles both complete and incomplete data

• Project trajectories onto a 5-D subspace of

– Complete data: PCA or SVD

– Incomplete data: PowerFactorization

• Cluster projected subspaces using GPCA

– Handles both independent and degenerate motions

– Non-iterative: can be used to initialize EM



Projection onto a 5-D subspace

• Motion of one rigid-body lives in

4-D subspace of

• By projecting onto a 5-D

subspace of

– Number and dimensions of

subspaces are preserved

– Motion segmentation is

equivalent to clustering

subspaces of dimension

2, 3 or 4 in

– Minimum #frames = 3

(CK needs a minimum of 2n

frames for n motions)

– Can remove outliers by robustly

fitting the 5-D subspace using

Robust SVD (DeLaTorre-Black)

• What projection to use?

– PCA: 5 principal components

– RPCA: with outliers

Motion 1

Motion 2



Projection onto a 5-D subspace

PowerFactorization algorithm:

• Complete data

– Given A solve for B

– Orthonormalize B

– Given B solve for A

– Iterate

• Converges to rank-r
approximation with rate

Given    , factor it as

• Incomplete data

• It diverges in some cases

• Works well with up to 30% of
missing data

Linear problem



Motion segmentation using GPCA

• Apply polynomial embedding to 5-D points

Veronese map



Hopkins 155 motion segmentation database

• Collected 155 sequences
– 120 with 2 motions

– 35 with 3 motions

• Types of sequences
– Checkerboard sequences: mostly full

dimensional and independent motions

– Traffic sequences: mostly degenerate (linear,
planar) and partially dependent motions

– Articulated sequences: mostly full dimensional
and partially dependent motions

• Point correspondences
– In few cases, provided by Kanatani & Pollefeys

– In most cases, extracted semi-automatically
with OpenCV



Experimental results: Hopkins 155 database

• 2 motions, 120 sequences, 266 points, 30 frames



Experimental results: Hopkins 155 database

• 3 motions, 35 sequences, 398 points, 29 frames



Experimental results: missing data sequences

• There is no clear correlation between amount of missing data and

percentage of misclassification

• This could be because convergence of PF depends more on “where”

missing data is located than on “how much” missing data there is



Conclusions

• For two motions

– Algebraic methods (GPCA and LSA) are more accurate than

statistical methods (RANSAC and MSL)

– LSA performs better on full and independent sequences, while

GPCA performs better on degenerate and partially dependent

– LSA is sensitive to dimension of projection: d=4n better than d=5

– MSL is very slow, RANSAC and GPCA are fast

• For three motions

– GPCA is not very accurate, but is very fast

– MSL is the most accurate, but it is very slow

– LSA is almost as accurate as MSL and almost as fast as GPCA
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Modeling a dynamic texture: fixed boundary

• Examples of dynamic textures:

• Model temporal evolution as the output of a linear

dynamical system (LDS): Soatto et al. ‘01

dynamics
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Segmenting non-moving dynamic textures

• One dynamic texture lives in the observability subspace

• Multiple textures live in multiple subspaces

• Cluster the data using GPCA
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Segmenting moving dynamic textures



Segmenting moving dynamic textures

Ocean-bird



Level-set intensity-based segmentation

• Chan-Vese energy functional

• Implicit methods
– Represent C as the zero level set

of an implicit function , i.e.
C = {(x, y) : (x, y) = 0}

• Solution
– The solution to the gradient descent algorithm for  is given by

– c1 and c2 are the mean intensities inside and outside the contour C.



Dynamics & intensity-based energy

• We represent the intensities of the pixels in the images as

the output of a mixture of AR models of order p

• We propose the following spatial-temporal extension of the

Chan-Vese energy functional

where



Variational segmentation of dynamic textures

• Given the ARX parameters, we can solve for the implicit

function  by solving the PDE

• Given the implicit function , we can solve for the ARX

parameters of the jth region by solving the linear system



Variational segmentation of dynamic textures

• Fixed boundary segmentation results and comparison

Ocean-smoke Ocean-dynamics Ocean-appearance



Variational segmentation of dynamic textures

• Moving boundary segmentation results and comparison

Ocean-fire



Variational segmentation of dynamic textures

• Results on a real sequence

Raccoon on River



Temporal video segmentation

• Segmenting N=30 frames of a

sequence containing n=3

scenes

– Host

– Guest

– Both

• Image intensities are output of

linear system

• Apply GPCA to fit n=3

observability subspaces

dynamics

appearance
images

xt+1=Axt+vt
y
t=Cxt+wt



Temporal video segmentation

• Segmenting N=60 frames of a

sequence containing n=3

scenes

– Burning wheel

– Burnt car with people

– Burning car

• Image intensities are output of linear
system

• Apply GPCA to fit n=3 observability
subspaces

dynamics

appearance
images

xt+1=Axt+vt
y
t=Cxt+wt



Conclusions

• Many problems in computer vision can be posed as subspace
clustering problems

– Temporal video segmentation

– 2-D and 3-D motion segmentation

– Dynamic texture segmentation

– Nonrigid motion segmentation

• These problems can be solved using GPCA: an algorithm for clustering
subspaces

– Deals with unknown and possibly different dimensions

– Deals with arbitrary intersections among the subspaces

• GPCA is based on

– Projecting data onto a low-dimensional subspace

– Recursively fitting polynomials to projected subspaces

– Differentiating polynomials to obtain a basis
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