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Part Il: Applications in computer vision

* Applications to motion & video segmentation (10.30-11.15)
— 2-D and 3-D motion segmentation
— Temporal video segmentation
— Dynamic texture segmentation

° Appllcatlons to |mage representatlon and segmentatlon
(11.15-12.00) S ——

— Multi-scale hybrid linear models for sparse
Image representation

— Hybrid linear models for image segmentation
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3-D motion segmentation problem

e Given a set of point correspondences in multiple views, determine

— Number of motion models
— Motion model: affine, homography, fundamental matrix, trifocal tensor

— Segmentation: model to which each pixel belongs
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 Mathematics of the problem depends on
— Number of frames (2, 3, multiple)

— Projection model (affine, perspective)
— Motion model (affine, translational, homography, fundamental matrix, etc.)

— 3-D structure (planar or not)



Taxonomy of problems

2-D Layered representation

— Probabilistic approaches: Jepson-Black’93, Ayer-Sawhney’95, Darrel-Pentland’95, Weiss-
Adelson’96, Weiss’97, Torr-Szeliski-Anandan’99

— Variational approaches: Cremers-Soatto ICCV’'03
— Initialization: Wang-Adelson’94, Irani-Peleg’92, Shi-Malik‘98, Vidal-Singaraju’05-'06

« Multiple rigid motions in two perspective views
— Probabilistic approaches: Feng-Perona’98, Torr'98
— Particular cases: Izawa-Mase’92, Shashua-Levin’'01, Sturm’02,
— Multibody fundamental matrix: Wolf-Shashua CVPR’01, Vidal et al. ECCV’'02, CVPR’03, IJCV’'06
— Motions of different types: Vidal-Ma-ECCV’04, Rao-Ma-ICCV’'05

* Multiple rigid motions in three perspective views
— Multibody trifocal tensor: Hartley-Vidal-CVPR’04

* Multiple rigid motions in multiple affine views
— Factorization-based: Costeira-Kanade'98, Gear'98, Wu et al.’01, Kanatani’ et al.’"01-02-04
— Algebraic: Yan-Pollefeys-ECCV’06, Vidal-Hartley-CVPR’04

« Multiple rigid motions in multiple perspective views
— Schindler et al. ECCV'06, Li et al. CVPR’07



A unified approach to motion segmentation

e Estimation of multiple motion models equivalent to
estimation of one multibody motion model

My Je2| f(x1,20, M1) =0
.’131\/' or » chicken-and-egg
}2‘@ f(x1,20, M) =0

— Eliminate feature clustering: multiplication
f(x1, 22, M1) f(21,22, M2) =0

— Estimate a single multibody motion model: polynomial fitting
f(xy, 22, M1) f(21, 22, M2) = g(21,22, M) =0

— Segment multibody motion model: polynomial differentiation

M — {MZ}?=1 Mz — Dg|m1,:c2



A unified approach to motion segmentation

* Applies to most motion models in computer vision

Motion models

Model equations

Equivalent to clustering

2-D translational x> =x1+ T} Hyperplanes in C2

2-D similarity x> = \;R;x1 +T; | Hyperplanes in C3

2-D affine xo = A; [«’1311] Hyperplanes in C4

3-D translational 0 = 23 Tixy Hyperplanes in R3 G
3-D fundamental matrix | 0 =zl Fx, Bilinear forms in R3x3

3-D homography x> ~ Hxq Bilinear forms in C2x3

3-D trifocal tensor 0 = 10,437 Trilinear forms in R3%3%3

3-D multiframe affine xpp = AppXp Subspaces in R <

« All motion models can be segmented algebraically by
— Fitting multibody model: real or complex polynomial to all data
— Fitting individual model: differentiate polynomial at a data point




Segmentation of 3-D translational motions

* Multiple epipoles (translation)
{e; e RO},

« Epipolar constraint: plane in R3
— Plane normal = epipoles

\
— Data = epipolar lines /\_ 2 /e /
L1 i Tj !}sz

T —
e; (xyxmxp) =0

£=epip€lar line

* Multibody epipolar constraint . Epipoles are derivatives of
pn(€) at epipolar lines

pu(€) = T] (7€) = 0 [ ~ 0(pa(®)) J
1=1
(=2,

=T o0
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Segmentation of 3-D translational motions

—— PFA
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Fig. 3. Segmenting 3-D translational motions by clustering planes in R?®. Left: segmenting a real
sequence with 2 moving objects. Center: comparing our algorithm with PFA and EM as a function
of noise in the image features. Right: performance of PFA as a function of the number of motions.
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Single-body factorization

Structure = 3D surface

» Affine camera model

— p = point
— f =frame (R, T) € SE(3)

—
Motion = camera positiommt%

« Motion of one rigid-body lives in a 4-D subspace

(Boult and Brown '91, . T
Tomasi and Kanade ‘92) W M S

11 T1p Aq
— P = #points : — [Xl” XP]
— F = #frames Tpi1 - TFp Ap| ™ N g
£L - J, L 4% P
2F x P 2F x4



Multi-body factorization

e Given n rigid motions W — -W1°°°Wn-
W; =M;S; M e R2Ix4 : [T ... 0
1=1,...,n S; € REix4 = M1---Mpn| | ¢ s
0 Sh_

* Motion segmentation is obtained from
— Leading singular vector of | (Boult and Brown '91)
— Shape interaction matrix (] (Costeira & Kanade '95, Gear '94)

Object1 |

Q=Ww" g, =0ifiandj
W="USV! belong to different motions

- Object 2

— Number of motions (if fully-dimensional) n = %rank(W)

e Motion subspaces need to be independent (Kanatani '01)

rank([W; W;]) = rank(W;) + rank(W;)




Multi-body factorization

« Sensitive to noise
Qz'j=0 if 2 and
belong to different motions
— Kanatani (ICCV '01): use model selection to scale Q
— Wu et al. (CVPR'01): project data onto subspaces and iterate .-+

Object1 |

« Fails with partially dependent motions . i
— Zelnik-Manor and Irani (CVPR’03) o *
 Build similarity matrix from normalized Q RN
» Apply spectral clustering to similarity matrix
— Yan and Pollefeys (ECCV’'06)
» Local subspace estimation + spectral clustering
— Kanatani (ECCV’04)

« Assume degeneracy is known: pure translation in the image
« Segment data by multi-stage optimization (multiple EM problems)

e Cannot handle missing data

— Gruber and Weiss (CVPR’04)
» Expectation Maximization

AGING
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PowerFactorization+GPCA

* A motion segmentation algorithm that
— |Is provably correct with perfect data
— Handles both independent and degenerate motions
— Handles both complete and incomplete data

* Project trajectories onto a 5-D subspace of R2E

— Complete data: PCA or SVD
— Incomplete data: PowerFactorization

o Cluster projected subspaces using GPCA
— Handles both independent and degenerate motions
— Non-iterative: can be used to initialize EM



Projection onto a 5-D subspace

* Motion of one rigid- body lives in
4-D subspace of R2

* By projecting onto a 5-D
subspace of R?

— Number and dimensions of
subspaces are preserved

— Motion segmentation is
equivalent to clustering
subspaces of dimension 5
2,30r4inR> R

— Minimum #frames = 3
(CK needs a minimum of 2n
frames for n motions)

— Can remove outliers by robustly
fitting the 5-D subspace using _ _
Robust SVD (DeLaTorre-Black) — RPCA: with outliers

 What projection to use?
— PCA: 5 principal components



Projection onto a 5-D subspace

PowerFactorization algorithm: Given W, factor itas W = AB”
« Complete data * Incomplete data
T 2 T 2
mln Z (WZJ (AB )ZJ) mm Z (WZ] (AB )zy)
(m) ® (ij)eT
— Given A solve for B = (4,7) Wiy 1S Known

o)
— Orthonormalize B _
— Given B solve for A

[ Ak — WBg ] | ﬁ

— lterate t di _
. lverges in some cases
e Converges to rank-r g

approximation with rate  Works well with up to 30% of
k missing data
(Sp41/5r)




Motion segmentation using GPCA

* Apply polynomial embedding to 5-D points

.| R3  Veronese map

. . 5'3. .. ) 'm- . .- Vn:R5_>RMn

.S > c = Sym(b1®br®b3)

) . ..S' : . (27%\ .lo o..oo o
VQ(El)z e /. vn(T)

x, ' Mp,
b, 01 B\ a2 ) R
o D@+ 2+ 3)(n+4)
" 24

Minimum #points || 1 2 3 4 n

4 14 34 69 O(n%)
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e Collected 155 sequences
— 120 with 2 motions
— 35 with 3 motions

e Types of sequences

— Checkerboard sequences: mostly full
dimensional and independent motions

— Traffic sequences: mostly degenerate (linear,
planar) and partially dependent motions

— Articulated sequences: mostly full dimensional
and partially dependent motions

 Point correspondences

— In few cases, provided by Kanatani & Pollefeys fil=y 5

— In most cases, extracted semi-automatically
with OpenCV




Experimental results: Hopkins 155 database

e 2 motions, 120 sequences, 266 points, 30 frames

Occurences [%)]

10

N & o @

REF | GPCA|LSA 5|/ LSA 4n| MSL |RANSAC
Checkerboard|2.76%| 6.09%| 8.84%| 2.57%| 4.46%| 6.52%
Traffic 0.30%| 1.41%| 2.15%| 5.43% 2.23%!| 2.55%
Articulated |1.71%| 2.88%| 4.66%| 4.10%| 7.23%| 7.25%

REF | GPCA|LSA 5|/ LSA 4n| MSL |RANSAC
Average 2.03%| 4.59%| 6.73%| 3.45%| 4.14%| 5.56%
Time 0.32s| 6.75s| 7.58 s|/11h4m| 0.18 s
0 T T T T T o Referonce
0 I CPCA -

B LSA S
0 ' P LSA 4n -
0 L IMSL i
—_IRANSAC
. |
0 hjlw L — e R — |
0 5 10 15 20 25 30 a5 40 45 50

Misclassification error (%)
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Experimental results: Hopkins 155 database

« 3 motions, 35 sequences, 398 points, 29 frames

100

Occurences [%)]
N o o0
o o o o

&
o

REF | GPCA| LSA 5| LSA 4n| MSL |RANSAC
Checkerboard|6.28%31.95%(30.37%| 5.80%| 10.38%| 25.78%
Traffic 1.30%119.83%1(27.02%| 25.07%| 1.80%| 12.83%
Articulated 12.66%|16.85%123.11%| 7.25%| 2.71%| 21.38%

REF | GPCA| LSA 5| LSA 4n| MSL |RANSAC
Average 5.08%128.66%1(29.28%| 9.73%| 8.23%| 22.94%
Time 0.74 s[15.01 s| 15.95s(1d 23 h| 0.25s

| | | | | | —F’—Réferenm
- I GPCA :
I LSA 5
. B LSA 4n B
- ToomsL |
__JRANSAC

20

30

40

Misclassification error (%]

50
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Experimental results: missing data sequences

Sequence P F n missing data| PF+GPCA
oclR2RC 686 40 3 8.98% 4.81%
oclR2RC gl2 | 316 40 2 12.56% 0.00%
oclR2RC gl3 | 520 40 2 11.46% 0.77%
oclR2RC.g23 | 536 40 2 4.48% 2.94%
oclR2RCT g12 | 231 30 2 10.13% 3.46%
oclR2RCT g13 | 444 30 2 9.04% 11.49%
oclR2RCT g23 | 461 30 2 4.83% 7.81%
Average 456 35 2.1 8.78% 4.37%

There is no clear correlation between amount of missing data and
percentage of misclassification

This could be because convergence of PF depends more on “where”
missing data is located than on “how much” missing data there is
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Conclusions

For two motions

— Algebraic methods (GPCA and LSA) are more accurate than
statistical methods (RANSAC and MSL)

— LSA performs better on full and independent sequences, while
GPCA performs better on degenerate and partially dependent

— LSA is sensitive to dimension of projection: d=4n better than d=5
— MSL is very slow, RANSAC and GPCA are fast

For three motions

— GPCA is not very accurate, but is very fast

— MSL is the most accurate, but it is very slow

— LSA is almost as accurate as MSL and almost as fast as GPCA
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. Examples of dynamic textures:

 Model temporal evolution as the output of a linear
dynamical system (LDS) Soatto et al. ‘01

Copyright (c) UCLA, G. Doretto
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One dynamic texture lives in the observability subspace

z . =Az, +v Y1 Y2 ¢

t+1 t 't

K _C yo yz | = | CA| |21 2
=25 T W | | |CcA?

Multiple textures live in multiple subspaces

Cluster the data using GPCA

Sk






Original video sequence Segmentation with Dynamic GPCA Polynomial Coefficient #8

v

{(c) JHU Vision Lab 2005
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Level-set intensity-based segmentation

 Chan-Vese energy functional

B(C.crven) =il + M [ (ulary) = e Pdedy+de [ (ula,g) - ex)Pdudy
o in(C) out(C)
* Implicit methods

— Represent C as the zero level set
of an implicit function @, i.e.

C={(X,y) : o(x,y) =0}

e Solution
— The solution to the gradient descent algorithm for ¢ is given by

= 0(0) (17 () + M) = ) = afule.s) - o)

— c, and c, are the mean intensities inside and outside the contour C.



Dynamics & intensity-based energy

 We represent the intensities of the pixels in the images as
the output of a mixture of AR models of order p

p
w(w,y, f) = al + Y _alu(x,y, f—i)+w(z,y, f)

 We propose the folIowiﬁalspatial-temporal extension of the
Chan-Vese energy functional

F
E=ucltn [ Y (uen ) - ey ) dody

in(c) I=PH1

F
+ A / Y (ulz,y, ) — calw,y, f)) dady

out(C') F=p+1

where e . |
cj(w,y, ) =al+ ) alu(x,y f—i) j=1,2
=1

tttttttt

CCCCCCC



Variational segmentation of dynamic textures

e Given the ARX parameters, we can solve for the implicit
function ¢ by solving the PDE

9 _ (ve G ) 2
ot °(9) (/JV ( ) T A /z'nt(C) f=%:+1(1($7y7 f) —ci(z,y, f))“dxdy

F
Do [ Y U@y ) = el f))zdwdy)

WO p=p1

o Given the implicit function ¢, we can solve for the ARX
parameters of the jth region by solving the linear system

-1 I(x%_ayiaf— 1) I(%{,y‘i,f—p)- ZS - I(m‘iayiaf) -
i i i TR
_1 I(xkjaykjaf - 1) o I(xkjaykjaf _p)_ ap. i I(xkjaykjaf) |

ccccccccc
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Variational segmentation of dynamic textures

* Fixed boundary segmentation results and comparison

Ocean-smoke Ocean-dynamics Ocean-appearance

ccccccccc
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Variational segmentation of dynamic textures

 Moving boundary segmentation results and comparison

Copyright (¢ 2003, UCLA Vision Lab

Ocean-fire
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Variational segmentation of dynamic textures

* Results on a real sequence

Raccoon on River

rrrrrrrrr
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Temporal video segmentation

o Segmenting N=30 frames of a
sequence containing n=3
scenes

— Host
— Guest
— Both

nriedr sSysielrl

11 = SO

fita By +wy




Temporal video segmentation

o Segmenting N=60 frames of a
sequence containing n=3

scenes

— Burning wheel
— Burnt car with people
— Burning car

20

50

Image intensities are output of linear

system
L1 = W
.yt — Uy — Wy
.

Apply GPCA to fitn
subspaces



Conclusions

Many problems in computer vision can be posed as subspace
clustering problems

— Temporal video segmentation
— 2-D and 3-D motion segmentation
— Dynamic texture segmentation
— Nonrigid motion segmentation

These problems can be solved using GPCA: an algorithm for clustering
subspaces

— Deals with unknown and possibly different dimensions
— Deals with arbitrary intersections among the subspaces

GPCA is based on
— Projecting data onto a low-dimensional subspace

— Recursively fitting polynomials to projected subspaces
— Differentiating polynomials to obtain a basis



For more information,

Vision, Dynamics and Learning Lab

@

Johns Hopkins University
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