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Expressiveness

The driving force behind deep networks is their expressiveness

Fundamental theoretical questions:

What kind of functions can different network architectures represent?

What is the representational benefit of depth?

Why do functions realized by convolutional networks suit images?
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Expressiveness: Basic Concepts

Universality:
Network is able to realize any function if its size (width) is unlimited

Depth efficiency:
Function realized by deep network of polynomial size requires super-
polynomial size for being realized (or approximated) by shallow network

Complete depth efficiency:
The set of functions realizable by deep network for which depth efficiency
does not hold is negligible (has measure zero)
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Prior Works on Expressiveness

Prior works on the expressiveness of deep networks:

Study universality and only existence of depth efficiency

Consider only fully-connected networks, not the architectures
commonly used in practice (e.g. convolutional networks)

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix

M 0r 0r 1Lr  1Lr  Y

X

fully-connected convolutional
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Outline

1 Convolutional Arithmetic Circuits (Cohen, Sharir & Shashua, COLT’16)

2 Convolutional Rectifier Networks (Cohen & Shashua, ICML’16)

3 Expressiveness Beyond Depth Efficiency (Cohen & Shashua, arXiv)
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Convolutional Arithmetic Circuits

   ,
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pooling
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Convolutional networks:

locality

weight sharing (optional)

linear activation, product pooling

Computation in log-space leads to SimNets – new deep learning
architecture showing promising empirical performance 1

1Deep SimNets, Cohen-Sharir-Shashua, CVPR’16
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Coefficient Tensor

   ,
d irep i d f x
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pooling
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pooling
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(output)
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Function realized by output y :

hy (x1, . . . , xN) =
M∑

d1...dN=1
Ay

d1,...,dN

N∏
i=1

fθdi
(xi)

x1. . .xN – input patches

fθ1 . . .fθM – representation layer functions

Ay – coefficient tensor (MN entries, polynomials in weights al ,j,γ)
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Shallow Convolutional Arithmetic Circuit
←→ CP (CANDECOMP/PARAFAC) Decomposition
Shallow network (single hidden layer, global pooling):

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix
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,
j

pool conv j  
 

 1,1, , :y

out y

pool



a

X

Coefficient tensor Ay given by classic CP decomposition:

Ay =
r0∑
γ=1

a1,1,yγ · a0,1,γ ⊗ a0,2,γ ⊗ · · · ⊗ a0,N,γ︸ ︷︷ ︸
rank-1 tensor

(rank(Ay )≤r0)
Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 9 / 34



Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Deep Convolutional Arithmetic Circuit
←→ Hierarchical Tucker Decomposition
Deep network (L = log2N hidden layers, size-2 pooling windows):

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log2N)
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Coefficient tensor Ay given by Hierarchical Tucker decomposition:

φ1,j,γ =
∑r0

α=1
a1,j,γα · a0,2j−1,α ⊗ a0,2j,α

· · ·
φl,j,γ =

∑rl−1

α=1
al,j,γ
α · φl−1,2j−1,α ⊗ φl−1,2j,α

· · ·
Ay =

∑rL−1

α=1
aL,1,y
α · φL−1,1,α ⊗ φL−1,2,α
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Universality
Fact:
CP decomposition can realize any tensor Ay given MN terms
Implies:
Shallow network can realize any function given MN hidden channels

Fact:
Hierarchical Tucker decomposition is a superset of CP decomposition if
each level has matching number of terms
Implies:
Deep network can realize any function given MN channels in each of its
hidden layers

Convolutional arithmetic circuits are universal
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Depth Efficiency

Theorem
The rank of tensor Ay given by Hierarchical Tucker decomposition is at
least min{r0,M}N/2 almost everywhere w.r.t. decomposition parameters

Since rank of Ay generated by CP decomposition is no more than the
number of terms (# of hidden channels in shallow network):

Corollary
Almost all functions realizable by deep network cannot be approximated by
shallow network with less than min{r0,M}N/2 hidden channels

Convolutional arithmetic circuits are completely depth efficient!
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

Depth Efficiency Theorem – Proof Sketch

JAK – arrangement of tensor A as matrix (matricization)

Relation between tensor and Kronecker products: JA⊗ BK = JAK� JBK

� – Kronecker product for matrices. Holds: rank(A�B) = rank(A)·rank(B)

Implies: A =
∑Z

z=1 λzv(z)
1 ⊗ · · · ⊗ v(z)

2L =⇒ rankJAK≤Z

By induction over l = 1. . .L, almost everywhere w.r.t. {al,j,γ}l,j,γ :

∀j ∈ [N/2l ], γ ∈ [rl ] : rankJφl,j,γK≥ (min{r0,M})
2l/2

Base: “SVD has maximal rank almost everywhere”

Step: rankJA⊗ BK = rank(JAK� JBK) = rankJAK·rankJBK, and
“linear combination preserves rank almost everywhere”
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Convolutional Arithmetic Circuits (C.S.S. COLT’16)

A Note about Measure Zero

Depth Efficiency occurs with probability 1, i..e, besides a set of measure
zero, all functions that can be implemented by a deep network of polynomial
size, require exponential size in order to be realized (or even approximated)
by a shallow network.

The set is a zero set of a certain polynomial (based on determinants).

The zero set of a polynomial is closed, i.e., cannot approximate anything
that is not included in the set.

In other words, the closure of the set is also of measure zero.

For example, the set of Rational numbers is of measure zero, but the closure
of the set is not of measure zero. It actually fills the entire space.

Therefore, the set of functions that do not satisfy depth efficiency should be
viewed as a low-dimensional manifold rather than a scattered set in space.
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Convolutional Rectifier Networks (C.S. ICML’16)

Outline

1 Convolutional Arithmetic Circuits (Cohen, Sharir & Shashua, COLT’16)

2 Convolutional Rectifier Networks (Cohen & Shashua, ICML’16)

3 Expressiveness Beyond Depth Efficiency (Cohen & Shashua, arXiv)
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Convolutional Rectifier Networks (C.S. ICML’16)

From Convolutional Arithmetic Circuits
to General Convolutional Networks

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv

pooling
dense 

(output)

hidden layer 0 hidden layer L-1

ix
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0 , , ,:jconv j rep j  a
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, ',

j window j
pool j P conv j 




    1 1 ' covers space
',L L j

pool P conv j  

   ,1,

1, :L y

Lout y pool  a

X

Transform convolutional arithmetic circuits into general convolutional networks:

liner activation −→ general point-wise activation σ(·)

product pooling −→ general pooling operator P{·}
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Convolutional Rectifier Networks (C.S. ICML’16)

Generalized Tensor Decompositions

Convolutional arithmetic circuits correspond to tensor decompositions
based on tensor product ⊗:

(A⊗ B)d1,...,dP+Q
= Ad1,...,dP · BdP+1,...,dP+Q

For an associative and commutative operator g : R× R→ R, the
generalized tensor product ⊗g is defined by:

(A⊗g B)d1,...,dP+Q
= g(Ad1,...,dP ,BdP+1,...,dP+Q )

(same as ⊗ but with g instead of product)

Generalized tensor decompositions are obtained by replacing ⊗ with ⊗g
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Convolutional Rectifier Networks (C.S. ICML’16)

General Convolutional Networks
←→ Generalized Tensor Decompositions

Define the activation-pooling operator:

ρσ/P(a, b) := P{σ(a), σ(b)}

If ρσ/P is associative and commutative:

Shallow ConvNet with
activation σ(·) and pooling P{·}

←→
Generalized CP

decomposition with ⊗ρσ/P

Deep ConvNet with
activation σ(·) and pooling P{·}

←→
Generalized Hierarchical Tucker

decomposition with ⊗ρσ/P

Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 18 / 34
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Convolutional Rectifier Networks (C.S. ICML’16)

Convolutional Rectifier Networks

Convolutional networks with:

ReLU activation: σ(z) = [z ]+ := max{z , 0}

max/average pooling: P{cj} = max{cj}/mean{cj}

Most successful deep learning architecture to date

Corresponding activation-pooling operators associative and commutative:

ρReLU/max (a, b) := max{[a]+, [b]+} = max{a, b, 0}

ρReLU/sum(a, b) := [a]+ + [b]+ 1

Equivalence with generalized tensor decompositions thus holds!

1Sum and average pooling are equivalent in terms of expressiveness
Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 19 / 34
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Convolutional Rectifier Networks (C.S. ICML’16)

Universality

Claim
Convolutional rectifier networks are universal with max pooling, but not
with average pooling

Proof idea

Generalized CP and Hierarchical Tucker decompositions with
⊗ρReLU/max can realize any tensor given sufficient number of terms

With ⊗ρReLU/sum the decompositions generate tensors that have low
rank when arranged as matrices
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Convolutional Rectifier Networks (C.S. ICML’16)

Depth Efficiency

Claim
Convolutional rectifier networks realize depth efficient functions

Proof idea
With ⊗ρReLU/max the rank of a generated tensor arranged as a matrix is:

Generalized CP decomposition:
Linear in number of terms (# of hidden channels in shallow network)

Generalized Hierarchical Tucker decomposition:
Exponentially high for appropriately chosen weight settings
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Convolutional Rectifier Networks (C.S. ICML’16)

Depth Efficiency (cont’)

Claim
Convolutional rectifier networks are not completely depth efficient

Proof idea
With ⊗ρReLU/max there exist weight settings al ,j,γ for generalized
Hierarchical Tucker decomposition such that:

Realized tensor can be implemented by generalized CP decomposition
with single term (single hidden channel in shallow network)

The same holds if al ,j,γ are subject to small perturbations

Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 22 / 34



Convolutional Rectifier Networks (C.S. ICML’16)

Convolutional Rectifier Networks vs.
Convolutional Arithmetic Circuits

convolutional convolutional
rectifier networks arithmetic circuits

universality applies w/max pool appliesnot w/average pool
depth incomplete completeefficiency

optimization well studied addressed only
methods and developed recently 1

Developing optimization methods for convolutional
arithmetic circuits may give rise to an architecture that
is provably superior but has so far been overlooked

1Deep SimNets, Cohen-Sharir-Shashua, CVPR’16
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Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Outline

1 Convolutional Arithmetic Circuits (Cohen, Sharir & Shashua, COLT’16)

2 Convolutional Rectifier Networks (Cohen & Shashua, ICML’16)

3 Expressiveness Beyond Depth Efficiency (Cohen & Shashua, arXiv)
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Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Limitations of Depth Efficiency

Depth efficiency implies that there are functions efficiently realizable by
deep networks but not by shallow ones.

It does not explain why these functions are effective.

all functions

functions efficiently 
realizable by deep networks

functions efficiently realizable
by shallow networks

Why are these 
functions 

interesting?

Moreover, it does not compare different networks of the same depth, and
thus does not shed light on the inductive bias of deep architectures.
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Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Separation Rank – A Measure of Input Correlations

Partition BPartition A

I -
J -

The separation rank of a function h(x1, . . . , xN) w.r.t. the partition
I ·∪J = [N], I = {i1, . . . , i|I|}, J = {j1, . . . , j|J|}:

sep(h; I, J) := min
{

R ∈ N : ∃g1. . .gR : (Rs)|I| → R, g ′1. . .g ′R : (Rs)|J| → R s.t.

h(x1, . . . , xN) =
∑R

ν=1
gν(xi1 , . . . , xi|I|)g

′
ν(xj1 , . . . , xj|J|)

}
Measures correlation induced by h between (xi1 . . . xi|I|) and (xj1 . . . xj|J|).

We analyze the separation ranks of convolutional arithmetic circuits.
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Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Separation Ranks of Convolutional Arithmetic Circuits
Recall expression for function realized by convolutional arithmetic circuit:

hy (x1, . . . , xN) =
∑M

d1...dN=1
Ay

d1,...,dN

∏N
i=1

fθdi
(xi)

x1 . . . xN ∈ Rs – local image patches

Ay ∈ RM×···×M – coefficient tensor, N modes (indexing entries)

Define JAy KI,J – matricization of Ay w.r.t. the partition I ·∪J = [N]:
Arrangement of Ay as matrix
Rows correspond to modes indexed by I
Columns correspond to modes indexed by J

Claim
sep(hy ; I, J) = rankJAy KI,J
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Ay ∈ RM×···×M – coefficient tensor, N modes (indexing entries)

Define JAy KI,J – matricization of Ay w.r.t. the partition I ·∪J = [N]:
Arrangement of Ay as matrix
Rows correspond to modes indexed by I
Columns correspond to modes indexed by J

Claim
sep(hy ; I, J) = rankJAy KI,J

Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 27 / 34



Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Separation Ranks of Convolutional Arithmetic Circuits
Recall expression for function realized by convolutional arithmetic circuit:

hy (x1, . . . , xN) =
∑M

d1...dN=1
Ay

d1,...,dN

∏N
i=1

fθdi
(xi)

x1 . . . xN ∈ Rs – local image patches

Ay ∈ RM×···×M – coefficient tensor, N modes (indexing entries)

Define JAy KI,J – matricization of Ay w.r.t. the partition I ·∪J = [N]:
Arrangement of Ay as matrix
Rows correspond to modes indexed by I
Columns correspond to modes indexed by J

Claim
sep(hy ; I, J) = rankJAy KI,J

Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 27 / 34



Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Shallow Separation Ranks
Shallow convolutional arithmetic circuit (single hidden layer):

   ,
d irep i d f x

input representation 1x1 conv

global 
pooling

dense 
(output)

hidden layer

ix

M 0r 0r Y

   0, ,, , ,:jconv j rep j  a

   
covers space

,
j

pool conv j  
 

 1,1, , :y

out y

pool



a

X
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Claim
rankJAy KI,J≤r0

Proof sketch
Matricizing CP decomposition gives (� – Kronecker product):

JAy KI,J =
∑r0

γ=1
a1,1,yγ ·

(
�|I|t=1a

0,it ,γ
) (
�|J|t=1a

0,jt ,γ
)>
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Claim
rankJAy KI,J≤r0

Shallow networks only realize separation
ranks (correlations) linear in their size

Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 28 / 34



Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Deep Separation Ranks
Deep convolutional arithmetic circuit (L = log4N hidden layers):

   ,
d irep i d f x

input representation 1x1 conv
pooling

1x1 conv
pooling

dense 
(output)

hidden layer 0 hidden layer L-1
(L=log4N)

ix

M 0r 0r 1Lr  1Lr  Y

   0, ,

0 , , ,:jconv j rep j  a

   
 

0,1,2,3

0 0

' 4

, ',

t
j j t

pool j conv j 


 

 

   
 

1 1

' 4

',L L

j

pool conv j  





   ,1,

1, :L y

Lout y pool  a

X

Theorem
Maximal rank that JAy KI,J can take is:

Exponential (in N) for “interleaved” partitions,
e.g. ≥ min{r0,M}N/4 for I = {1, 3, . . . ,N − 1}, J = {2, 4, . . . ,N}

Polynomial (in network size) for “coarse” partitions,
e.g. ≤ rL−1 for I = {1, . . . ,N/2}, J = {N/2 + 1, . . . ,N}

Deep networks realize exponential separation ranks (correlations)
for favored partitions, polynomial (in network size) for others
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Deep Separation Ranks Theorem – Proof Sketch

For tensors B, C with P,Q modes resp, and a partition T ·∪S = [P + Q]:

JB ⊗ CKT ,S = JBKT∩[P],S∩[P] � JCK(T−P)∩[Q],(S−P)∩[Q]

Recursive application to the hierarchical decomposition of Ay gives:

Jφ1,k,γKI1,k ,J1,k =
∑r0

α=1
a1,γ
α ·

4
�

t=1
Ja0,4(k−1)+t,αKI0,4(k−1)+t ,J0,4(k−1)+t

· · ·

Jφl,k,γKIl,k ,Jl,k =
∑rl−1

α=1
al,γ
α ·

4
�

t=1
Jφl−1,4(k−1)+t,αKIl−1,4(k−1)+t ,Jl−1,4(k−1)+t

· · ·

JAy KI,J =
∑rL−1

α=1
aL,y
α ·

4
�

t=1
JφL−1,t,αKIL−1,t ,JL−1,t

where I ·∪J = [N] is an arbitrary partition and:

Il,k := (I − (k − 1) · 4l) ∩ [4l ]

Jl,k := (J − (k − 1) · 4l) ∩ [4l ]

Shashua (HUJI) Inductive Bias and Depth Efficiency Mathematics of DL, CVPR’16 30 / 34



Expressiveness Beyond Depth Efficiency (C.S. arXiv)

Deep Separation Ranks Theorem – Proof Sketch (cont’)
Jφ1,k,γKI1,k ,J1,k =

∑r0

α=1
a1,γ
α ·

4
�

t=1
Ja0,4(k−1)+t,αKI0,4(k−1)+t ,J0,4(k−1)+t

· · ·

Jφl,k,γKIl,k ,Jl,k =
∑rl−1

α=1
al,γ
α ·

4
�

t=1
Jφl−1,4(k−1)+t,αKIl−1,4(k−1)+t ,Jl−1,4(k−1)+t

· · ·

JAy KI,J =
∑rL−1

α=1
aL,y
α ·

4
�

t=1
JφL−1,t,αKIL−1,t ,JL−1,t

Il,k := (I − (k − 1) · 4l) ∩ [4l ] , Jl,k := (J − (k − 1) · 4l) ∩ [4l ]

Recall the rank-multiplicative property of the Kronecker product:
rank(A�B) = rank(A)·rank(B)

If partition I ·∪J = [N] is “interleaved” then Il,k≈Jl,k and Jφl,k,γKIl,k ,Jl,k are
approximately square, allowing ranks to grow double-exponentially fast.

If partition I ·∪J = [N] is “coarse” then either Il,k or Jl,k is small, and the
ranks of Jφl,k,γKIl,k ,Jl,k are limited.
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Inductive Bias through Pooling Geometry

Partition BPartition A

I -
J -

The pooling geometry of a deep network links partitions I ·∪J = [N] to spatial
input patterns, thereby controlling the inductive bias:

Contiguous pooling supports strong correlation between entangled regions
(e.g. A), at the expense of low correlation between distinct ones (e.g. B)
Other pooling schemes will lead to different correlation preferences

Standard convolutional network design orients
inductive bias towards statistics of natural images
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Conclusion

Depth efficiency is complete with convolutional arithmetic circuits
(SimNets), incomplete with convolutional rectifier networks

Shallow networks cannot model high correlation between input
regions – require exponential size for exponential separation ranks

Deep networks can model with polynomial size exponential separation
ranks for “favorable” partitions

Pooling geometry of a deep network determines which partitions are
favorable, standard contiguous windows favor entangled partitions
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Thank You
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