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* Deep learning glves ~ 10% |mprovement on ImageNet
— 1.2M images : : s ; ' :
1000 categories

— 60 million
parameters
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[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12. ’_
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR’14.
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML'14. 1 AxG l \T G



Impact of Deep Learning in Computer Vision

- 2012-2014 classification results in ImageNet CNN

e 2015 results: MSR under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna




Transfer from ImageNet to Other Datasets

« CNNs + SMVs [1] e
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[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks CVPR’14 ey et
[3] Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR’'14 AGING



Transfer from Classification to Other Tasks

« CNNs + SVMs for object detection [1,2]
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* CNNs for pose estimation [3] and semantic segmentation [4]

[1] Girshick, Donahue, Darrell and Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’14

[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. ICLR ALy e
[3] Tompson, Goroshin, Jain, LeCun, Bregler. Efficient Object Localization Using Convolutional Networks. CVPR’15 AGING
[4] Pinheiro, Collobert, Dollar. Learning to Segment Object Candidates. NIPS’15 AR AL



Why These Improvements in Performance?

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.

Features are learned rather than hand-crafted
mean AP

More layers capture more invariances [1]
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More data to train deeper networks zij“/—/f

0.2+

More computing (GPUs) 37 1 15 19 23

level

Better regularization: Dropout

New nonlinearities
— Max pooling, Rectified linear units (ReLU)
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Theoretical understanding of deep networks remains shallow




Early Theoretical Results on Deep Learning

e Approximation theory

— Perceptrons and multilayer feedforward networks are universal
approximators: Cybenko ‘89, Hornik 89, Hornik ‘91, Barron ‘93

e Optimization theory
— No spurious local optima for linear networks: Baldi & Hornik ‘89
— Stuck in local minima: Brady ‘89

— Stuck in local minima, but convergence guarantees for linearly
separable data: Gori & Tesi ‘92

— Manifold of spurious local optima: Frasconi '97

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.

[5] P Baldi, K Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

[6] Brady, Raghavan, Slawny. Back propagation fails to separate where perceptrons succeed. IEEE Trans Circuits & Systems, 36(5):665-674, 1989.
[7] Gori, Tesi. On the problem of local minima in backpropagation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(1):76-86, 1992.

[8] Frasconi, Gori, Tesi. Successes and failures of backpropagation: A theoretical. Progress in Neural Networks: Architecture, 5:205, 1997.




Recent Theoretical Results on Deep Learning

* Invariance, stability, and learning theory
— Scattering networks: Bruna 11, Bruna ’13, Mallat '13
— Deformation stability for Lipschitz non-linearities: Wiatowski *15
— Distance and margin-preserving embeddings: Giryes '15, Sokolik ‘16

— Geometry, generalization bounds and depth efficiency: Montufar '15,
Neyshabur 15, Shashua '14 '15 16

e Optimization theory and algorithms
— Learning low-degree polynomials from random initialization: Andoni‘14

— Characterizing loss surface and attacking the saddle point problem:
Dauphin ‘14 , Choromanska 15, Chaudhuri ‘15

— Global optimality in neural network training: Haeffele ‘15
— Training NNs using tensor methods: Janzamin '15

[1] Bruna-Mallat. Classification with scattering operators, CVPR’11. Invariant scattering convolution networks, arXiv’12. Mallat-Waldspurger. Deep Learning by Scattering, arXiv'13.
[2] Wiatowski, Boélcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv 2015.

[3] Giryes, Sapiro, A Bronstein. Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? arXiv:1504.08291.

[4] Sokolic. Margin Preservation of Deep Neural Networks, 2015

[5] Montufar. Geometric and Combinatorial Perspectives on Deep Neural Networks, 2015.

[6] Neyshabur. The Geometry of Optimization and Generalization in Neural Networks: A Path-based Approach, 2015.

[71 Andoni, Panigraphy, Valiant, Zhang. Learning Polynomials with Neural Networks. ICML 2014.

[8] Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. NIP
[9] Choromanska, Henaff, Mathieu, Arous, LeCun, “The Loss Surfaces of Multilayer Networks,” AISTAT 2015.

[10] Chaudhuri and Soatto The Effect of Gradient Noise on the Energy Landscape of Deep Networks, arXiV 2015.

[11] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 2015.

[12] Janzamin, Sedghi, Anandkumar, Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor Methods, arxiv 2015.

$ C 1 B



Motivations and Goals of this Tutorial

* Motivation: Deep networks have led to dramatic
improvements in performance for many tasks, but the
mathematical reasons for this success remain unclear.

* Goal: Review very recent work that aims at understanding
the mathematical reasons for the success of deep networks.

 What we will do: Study theoretical questions such as
— What properties of images are being captured/exploited by DNNs?
— Can we ensure that the learned representations are globally optimal?
— Can we ensure that the learned representations are stable?

 What we will not do: Show X% improvement in performance
for a particular application.




Tutorial Schedule

14:00-14:15: René Vidal - Introduction

14:15-15:00: Amnon Shashua - On Depth Efficiency of
Convolutional Networks: Theory and Implications for Practical
Architectures

15:00-15:45: René Vidal and Benjamin Haeffele - Global
Optimality and Regularization in Deep Learning

15:45-16:15: Coffee Break

16:15-17:00: Raja Giryes and Guillermo Shapiro - Data
Structure Based Theory of Deep Learning

17:00-17:45: Joan Bruna - Addressing Curse of
Dimensionality with Convolutional Neural Networks

17:45-18:00: Discussion




