Addressing the Curse of Dimensionality
with Convolutional Neural Networks

Joan Bruna
UJC Berkeley —> Courant Institute, NYU

collaborators.
van Dokmanic (UIUC), Stephane Mallat (ENS, France)
Pablo Sprechmann (NYU), Yann LeCun (NYU)

COURANT INSTITUTE OF
MATHEMATICAL SCIENCES

Berkeley NYU

IIIIIIIIIIIIIIIIIIIIII




—rom Sanja Fisler
(Inspired by K. Urtasun ICLR'16)

Computer Vision: what Neural Networks can do for me.
Machine Leaming. what can | do for Neural Networks,



—rom Sanja Fisler
(Inspired by K. Urtasun ICLR'16)

Computer Vision: what Neural Networks can do for me.
Machine Leaming. what can | do for Neural Networks.

[heory



Curse of Dimensionality

* mages, videos, audio and text are instances of nign-dimensional
data
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Observe {(z;,y; = f(x;))}i<n for some unknown f : R? — R.
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Assume as little as possible on f.

o e.g. f is Lipschitz: |f(x) — f(2")| < L||x — 2’|
Q: How many points do we need to observe to guarantee
o error |f(x) — f(x)| < €7 e o e
o ° . ® o ®
N should be ~ e ¢, A N —
. . . . ® | ® @
We pay an exponential price on the input d1m9rr51t)1.1.' 5
@
S ® o



Curse of Dimensionality

¢ | Nerefore, In order to beat the curse of dimensionality, it s
necessary 1o make assumptions aobout our data and explolt them
N our models



Curse of Dimensionality

e |Nersfore, In order to beat the curse of dmensionality, It 1s

necessary 1o make assumptions about our data and exploit them
N our models.

* [Nvariance and local stavllity perspective:

Supervised learning: (x;,y;):, yi € {1, K} labels. !
f(z) =p(y | x) satisfies f(x,) ~ f(z) if {z;},isa

high-dimensional family of deformations of x

" _-{: ffff

Unsupervised learning: (x;);.
Density f(x) = p(z) also satisfies f(x,) ~ f(x).



II-posed Inverse Froblems

e Consider the following linear problem:

y=1l'z+w , w,y,w€L2(Rd) , Where

I' is singular
x is drawn from a certain distribution (e.g. natural images)
w independent of x

* - Xamples:
— Super-Resolution, Inpainting, Deconvolution

e Standard Regularization route:

7 = argmin [Tz — y||* + R(z) .
e () How 10 leverage trainimg data” R(x) (typically) convex
e () s this formulation always appropriate to estimate iImages'?




o

~egularzation and Leaming

Ne inverse problem requires a high-dimensional model for p(x | y)
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e Since —log p(x|y) is convex, It results that
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~egularzation and Leaming

e [Ne Inverse problem requires a high-dimensional model for p(x | y)
e Underlying probavllistic model 1or regularized least sguares Is

p(a | y) < N(Tz —y, e ™)

*SUppOSe x1,x2 are suchthal p(xq|y) = p(xaly) .
*oince — log p(x|y) s convex, It results that

plary + (1 — a)zaly) > p(z1ly) , a € (0,1] .
e Jitter model 1/ \xo

Y

ar, + (1 — a)zs

* [ne conditional distrioution of Images Is not well moadeled only with
Gaussian noise. Non-convexity In general,



e CNNs and the curse of dimensionality on image/audio regression.
e \ultl scale wavelet scattering convolutional networks,
¢ Cenerative Models using CNN sufficient statistics.

¢ Applications to Inverse problems: Image and lexture super-
~esolution

joint work with = Sprechmann (INYU), Yann LeCun (NYU/FAIR)
lvan Dokmanic (UILIC), S, Malat (ENS) and M. de Hoop (Rice)



_eaming, features and Kemels
Change of variable ®(x) = {¢x(x) }r<ar

to nearly linearize f (x) which is approximated by:

fz) = Z’wk b (x

1D pI’OJeCtIOH
Data: z € R? d(z) € R?

Linear Classifier

Metric: ||z — || |®(x) — @(z')]

e How and when is possible to find such a ® 7

e What "regularity” of f is needed 7



—eature Representation VVisn-List

e A change of variable ®(x) must linearize the orbits {g.z},cq

gix gi.x

- 5 0O ../:.."’V' 0
a:’x, 0 0 (‘\F‘\./‘

O(x)
O (z') ®(g7-2')

e Lipschitz: Vx,g : [|[®P(z) — P(g.2)|| < Cg|l
e Discriminative: ||®(xz) — ®(x')|| > Cc1 f(x) — f(a")]



Geometric Variability Frior

xr(u) , u: pixels, time samples, etc. 7(u) , : deformation field
L.(x)(u) =x(u—7(u)) : warping

Video of Philipp Scott nn o
e Deformation prior |7|| = Asup |7(u)| + sup |[VT(u)]| .
—NModels change In point of view In imageg :
—Nodels frequency transpositions I souNds
—(Consistent with local translation invariance



—Rotation and Scaling Variability

e Rotation and deformations

Group: SO(2) x Diff(SO(2))

e Scaling and deformations

Group: R x Diff(R)



Geometric Variability Frior

* Blur operator:Az = x * ¢ , ¢: local average

— The only linear operator A stable to deformations

|AL .« — Ax|| < |7]2] - o(u)

[Bruna’12]




Geometric Variability Frior

* Blur operator:Az = z % ¢ , ¢: local average

— The only linear operator A stable to deformations

| ALz — Az| < [[7][[lz]] -

[Bruna’12]

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and




Geometric Variability Frior

* Blur operatoriAxz = x * ¢ , ¢: local average
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* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
W recovers information lost by A.
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Geometric Variability Frior

* Blur operatoriAxz = x * ¢ , ¢: local average

— The only linear operator A stable to deformations:

|AL .« — Ax|| < |7]2] - o(u)

[Bruna’12]

* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
W recovers information lost by A.

W nearly commutes with deformations: 7

|\WL,— LW/ <C|VT|s
* Point-wise non-linearity p(z) = |z

— Commutes with deformations: pL;x = L, px [Bruna'12] @

—Demodulates wavelet coefficients, preserves energy.



ocattering Convolutional Network

‘f*wﬁ,’}’l‘ *¢J

w7 ’ Vi1 dm
f*w ’ S *wma m *¢J
......... ‘ ‘ J1 71‘ Jm 7Y | \v/,ylmfym

Cascade of contractive operators.



mage =xamples

| 'Bruna, Mallat, "11,’12]
Fourier Wavelet Scattering

’f*wAl‘*¢ |’f*¢>\1‘*¢>\2|*¢

w2° .

SIFT
window size = image size

W "




Scattering stabllity

Theorem: [Mallat ’10] With appropriate wavelets, S; is stable to additive

noise,
|Ss(x+n) = Syz| < |n|

unitary, |[Syx| = ||z||, and stable to deformations

|Srzr = Syz|| < Cllz|[| V]| .




—epresentation of Stationary Processes

x(u): realizations of a Statlonary process X(u) (not Gaussian)




—epresentation of Stationary Processes

(u) (not Gaussian)

Discriminability: need to capture high-order moments
Stability: E(||®(X) — ®(X)||?) small




Scattering Moments

E(|X *wjlf)/l D 7\v/j1771
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Properties of scattering Moments

e Captures high order moments: Bruna, Mallat, *11,712]
Power Spectrum | Sylp| X

m = m = 2




Properties of scattering Moments

e Captures high order moments: Bruna, Mallat, *11,712]
Power Spectrum | Sylp| X

m = m:2

® Cascading non-lineartties 1s necessary o reveal higner-order
moments



Consistency of Scattering Moments

Theorem: [B’15] If ¢ is a wavelet such that |[¢]; < 1, and X (?) is a
linear, stationary process with finite energy, then

lim E(||SyX — SX|?) =0
N — o0



Consistency of Scattering Moments

Theorem: [B’15] If ¢ is a wavelet such that |[¢]; < 1, and X (?) is a
linear, stationary process with finite energy, then

lim E(||SyX — SX|?) =0
N — 00

Corollary: If moreover X (t) is bounded, then

X5

E(|SyX — SX||?) < C .
(HN H)— \/N

e Althougn we extract a growing numoer of features, thelr glooal
varance goes to O,

e NO varance blow-up due to hign order moments.
e Adding layers Is critical (here depth is log(N)).



Classification with Scattering

¢ State-of-the art on pattermn and texture recognition:

—NMNIST [Pami1 3] Fe8/979%b6a|
6757 8634¢%s
21790/ 3346
N7 90 ¢ 894

— Texture (CURED [Pami13]

N ER
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e Ubject Recognition:
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—17% error on Cifar-10 [Oya on, Mal af, CVP/? 15] using better
second layer wavelets that recombine channels,

— How good 1s that”” Not good enough. Best models do <5%.



Scattering Limitations

e \/odelng Intraclass variability as geometric varaoility/ texture is not
sufficient

— Adapting wavelets to the dataset, even to the class

e N0 simple mechanism to reduce the number of feature maps
without learming

— Scattering construction increases feature maps at exponential rate,

e —xiend group formalism to understand oenavior In deeper layers.

— Although extensions to rototranslation group vyield state-of-the-art results
N general object recognition |"Group Equivariant CNINS™, Cohen &
Welling, ICML16].



Signal and Texture Recovery Challenge

SJJJ:{$*¢J,‘LE*?7DJ'1‘*¢J, 7"‘}ji§=]

e [(Q1] Given S yxcomputed with m layers, under what conditions
can we recover I (Up to global symmetry)” Using what algorthm’?
As a function of the localization scale J 7

SX ={E(X), E(|X *1;,]), peee

o Q2] Given SX, how can we characterize Interesting processes”
—How 1o sample from such distributions”



oparse signal Recovery

Theorem [B,M’14]|: Suppose xo(t) = ), a,0(t—>by) with |b, —bn1+1] > A,
and Sjyrg = Syxr with m =1 and J = oo. If ¥ has compact support, then

z(t) =Y cad(t —ey) , with [e, — ent1]| 2 A .

n



oparse signal Recovery

Theorem [B,M’14]|: Suppose xo(t) = ), a,0(t—by) with |b, —bn4+1] > A,
and Sjyrg = Syxr with m =1 and J = oo. If ¥ has compact support, then

z(t) =Y cald(t —ey) , with |e, — ent1]| 2 A .

n

e Sx essentially identifies sparse measures,
up to log spacing factors.

* Here, sparsity 1s encoded In the measurements
themselves.

* In 2D, singular measures (le curves) require m = 2 to be
well characterized.



Oscllatory Signal Recovery

Theorem [B,M’14]: Suppose zo(§{) = >, and(§ — b,) with |logb, —
logb,i1] > A, and Syxr = Sjyxg with m = 2 and J = log N. If ¢ has com-
pact support K < A, then

(&) = ch5(§ —ey) , with |loge, —loge,i1| = A .

n

 Oscllatory, lacunary signals are also well captured with the same
mMeasurements,

e[l |S the opposite set of extremal points from previous result,



ocatterng Reconstruction Algorithm

S
S ={zx st Szr=25)

min || Sz — Sp||?
Xr

* Non-linear Least Squares, non-convex optimization.

* | evenberg-Marquardt gradient descent:
Tna1 = Tn — Y(DSzy) (Szs — Sp)



ocatterng Reconstruction Algorithm

S
S ={zx st Szr=25)

min || Sz — Sp||?
X

* Non-linear Least Squares.

— Levenberg-Marquardt gradient descent:

Tpi1 = Ty — ’}/(DS$n)T(§ZEn — §0)

* (Weak) Global convergence guarantees using complex
wavelets:

DSz is full rank for m = 2 if x compact support.



Original images of N? pixels:

MM 1
MM
/7 A +
MY
MM

m = 1, 27 = N: reconstruction from O(log, N) scattering coeff.
p RAAAA LA A AL L)
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m = 2, 27 = N: reconstruction from O( log2 ) scattering coeff.
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T
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—rgodic lexture Reconstruction
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—rgodic lexture

Reconstruction using CNINS

e Besults using a desp CNN network from [Gathys et al, NIPS' 15
e | Jses a much larger feature vector than scattering (O((log N)#) )

Synthesised

» ~ g -Siu;gs,- - "
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—rgodic lexture Reconstruction using CNINS

e Results using a deep CNN network from [Gathys et al, NIPS' 19
e | Jses a much larger feature vector than scattering (O((log N)#) ).

Synthesised

Synthesised




Application: Super-=esolution

e Sost Linear Method: Least squares estimate (inear interpolation).
§ = (8]5y)a



Application: Super-=esolution

e Sest Linear Method: Least sguares estimate (inear interpolation):
e State-of-the-art Methods: Yy = (Z;];ny)x
—Dictionary-leaming Super-Resolution

—CNN-pbased: Just train a CNIN to regress from low-res to high-
es

— [hey optimize cleverly a fundamentally unstaole metric criterion:

* . . R I S e
© —argmén;\\F(a?z,@) vil|© . 9= F(z,0%)



Scattering Approach

* Bolax the metric:




Scattering Approach

® —clax the metnc

—Start with simple Inear estimation on scattering domain

—Deformation stabllity gives more approximation power in the
transtormed domain via locally lIinear methods.

— [he method Is not necessarly better in terms of PSNR




Some Numerical Besults




Some Numerical Besults

Best Scattering

Original Linear Estimate state-of-the-art Estimate




Some Numerical Besults

Scattering
Estimate

state-of-the-art
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oparse Spike super-\esolution
(with I. Domanic (ENS/UIUC), S. Mallat)

Examples with Cox Processes
(inhomogeneous Poisson point processes)

Cox realization Measurements ¢, minimization Scattering reconstruction
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Conclusions and Open Froblems

e CNNs: Geometric encoding with built-in deformation stability.
— EQuipped to break curse of dimensionaliy.

* [Nis statistical advantage Is useiul both In supernvised anc
Unsupenvised leaming
— Giblbs CNN distributions are stable to deformations,
— exploted In high-dimensional inverse proolems.

e Challenges Ahead:
— Decode geometry leamt by CNNs: role of higher layers”
— CNNs and unsupervised leaming: we need better inference,
— Optimization In CNINs: exploit layerwise/convolutional model,
— Non-Eucldean domains (text, genomics, n-body dynamical systems)



Thank you!



