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Curse of Dimensionality
• Images, videos, audio and text are instances of high-dimensional 

data.

high-dimensional space

x 2 Rd
, d ⇠ 106 .
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Curse of Dimensionality

Observe {(xi, yi = f(xi))}iN for some unknown f : Rd ! R.
Goal: Estimate

ˆf from training data.

high-dimensional space

Assume as little as possible on f .

e.g. f is Lipschitz: |f(x)� f(x0)|  Lkx� x

0k.

Q: How many points do we need to observe to guarantee
error |f̂(x)� f(x)| < ✏?

N should be ⇠ ✏�d
.

We pay an exponential price on the input dimension.
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Curse of Dimensionality
• Therefore, in order to beat the curse of dimensionality, it is 

necessary to make assumptions about our data and exploit them 
in our models. 

• Invariance and local stability perspective:

Supervised learning: (xi, yi)i, yi 2 {1,K} labels.

f(x) = p(y | x) satisfies f(x⌧ ) ⇡ f(x) if {x⌧}⌧ is a

high-dimensional family of deformations of x

x

x⌧

Unsupervised learning: (xi)i.
Density f(x) = p(x) also satisfies f(x⌧ ) ⇡ f(x).



ill-posed Inverse Problems
•Consider the following linear problem: 

•Examples: 
– Super-Resolution, Inpainting, Deconvolution.   

•Standard Regularization route: 

•Q: How to leverage training data? 
•Q: Is this formulation always appropriate to estimate images?

y = �x+ w , x, y, w 2 L

2(Rd) , where

� is singular
x is drawn from a certain distribution (e.g. natural images)

w independent of x

x̂ = argmin
x

k�x� yk2 +R(x) .

R(x) (typically) convex



Regularization and Learning
• The inverse problem requires a high-dimensional model for  
• Underlying probabilistic model for regularized least squares is  
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p(x | y) / N (�x� y, I)e�R(x)
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p(↵x1 + (1� ↵)x2|y) � p(x1|y) , ↵ 2 [0, 1] .
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Regularization and Learning
•The inverse problem requires a high-dimensional model for  
•Underlying probabilistic model for regularized least squares is  

•Suppose            are such that    
•Since                    is convex, it results that   

•Jitter model: 

•The conditional distribution of images is not well modeled only with 
Gaussian noise. Non-convexity in general.

p(x | y)

p(x | y) / N (�x� y, I)e�R(x)
.

x1, x2 p(x1|y) = p(x2|y) .
� log p(x|y)

p(↵x1 + (1� ↵)x2|y) � p(x1|y) , ↵ 2 [0, 1] .

y
x1 x2

↵x1 + (1� ↵)x2



Plan
• CNNs and the curse of dimensionality on image/audio regression. 

• Multi scale wavelet scattering convolutional networks. 

•Generative Models using CNN sufficient statistics.  

•Applications to inverse problems: Image and Texture Super-
Resolution

joint work with P. Sprechmann (NYU), Yann LeCun (NYU/FAIR) 
Ivan Dokmanic (UIUC), S. Mallat (ENS) and M. de Hoop (Rice)



Learning, features and Kernels

Data: x 2 Rd

x

Change of variable �(x) = {�k(x)}kd0

f̃(x) = h�(x) , wi =
X

k

wk �k(x) .

to nearly linearize f(x), which is approximated by:

1D projection

• What ”regularity” of f is needed ?

• How and when is possible to find such a � ?

Metric: kx� x

0k

�

Linear Classifier

�(x) 2 Rd0

w

k�(x)� �(x0)k



Feature Representation Wish-List
• A change of variable �(x) must linearize the orbits {g.x}g2G

x

g

p
1 .x

g1x

g

p
1 .x

0

g1x
0

x

0

• Linearise symmetries with a change of variable �(x)

�(gp1 .x
0)�(x0)

�(x)

�(gp1 .x)

• Lipschitz: 8x, g : k�(x)� �(g.x)k  C kgk
Discriminative: k�(x)� �(x0)k � C

�1 |f(x)� f(x0)|• Lipschitz: 8x, g : k�(x)� �(g.x)k  C kgk



• Deformation prior:  
– Models change in point of view in images 
– Models frequency transpositions in sounds 
– Consistent with local translation invariance

Geometric Variability Prior
x(u) , u : pixels, time samples, etc. ⌧(u) , : deformation field

L⌧ (x)(u) = x(u� ⌧(u)) : warping

Video of Philipp Scott Johnson

k⌧k = � sup
u

|⌧(u)|+ sup
u

|r⌧(u)| .



Rotation and Scaling Variability

Group:

• Rotation and deformations

• Scaling and deformations

Group:

SO(2)⇥Di�(SO(2))

R⇥Di�(R)



Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations
kAL⌧x�Axk  k⌧kkxk .

[Bruna’12]
�(u)

Ax = x ⇤ � , �: local average
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• Blur operator: 

– The only linear operator A stable to deformations
kAL⌧x�Axk  k⌧kkxk .
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Chapter 2. Invariant Scattering Representations

ω

|x̂| |x̂τ |

ξ (1 + s)ξ

σx (1 + s)σx

Figure 2.1: Dilation of a complex bandpass window. If ξ ≫ σxs−1, then the supports
are nearly disjoint.

Besides deformation instabilities, the Fourier modulus and the autocorrelation lose
too much information. For example, a Dirac δ(u) and a linear chirp eiu

2
are two signals

having Fourier transforms whose moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A canonical invariant [KDGH07; Soa09] Φ(x) = x(u − a(x)) registers x ∈ L2(Rd)
with an anchor point a(x), which is translated when x is translated:

a(xc) = a(x) + c .

It thus defines a translation invariant representation: Φxc = Φx. For example, the anchor
point may be a filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some filter h(u). A
canonical invariant Φx(u) = x(u−a(x)) carries more information than a Fourier modulus,
and characterizes x up to a global absolute position information [Soa09]. However, it
has the same high-frequency instability as a Fourier modulus transform. Indeed, for any
choice of anchor point a(x), applying the Plancherel formula proves that

∥x(u− a(x))− x′(u− a(x′))∥ ≥ (2π)−1 ∥|x̂(ω)|− |x̂′(ω)|∥ .

If x′ = xτ , the Fourier transform instability at high frequencies implies that Φx =
x(u− a(x)) is also unstable with respect to deformations.

2.2.5 SIFT and HoG

SIFT (Scale Invariant Feature Transform) is a local image descriptor introduced by Lowe
in [Low04], which achieved huge popularity thanks to its invariance and discriminability
properties.

The SIFT method originally consists in a keypoint detection phase, using a Dif-
ferences of Gaussians pyramid, followed by a local description around each detected
keypoint. The keypoint detection computes local maxima on a scale space generated
by isotropic gaussian differences, which induces invariance to translations, rotations and
partially to scaling. The descriptor then computes histograms of image gradient ampli-
tudes, using 8 orientation bins on a 4× 4 grid around each keypoint, as shown in Figure
2.2.

19
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Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations:

• Wavelet filter bank: 

• Point-wise non-linearity   
–Commutes with deformations: 
–Demodulates wavelet coefficients, preserves energy.

kAL⌧x�Axk  k⌧kkxk .

[Bruna’12]
�(u)

Ax = x ⇤ � , �: local average

Wx = {x ⇤  k} ,  k(u) = 2�j
 (2�j

R✓u)

 k

✓

j

 : spatially localized band-pass filter.

⇢L⌧x = L⌧⇢x

W recovers information lost by A.

⇢(x) = |x|
[Bruna’12]

W nearly commutes with deformations:

kWL⌧ � L⌧Wk  C|r⌧ |1



     Scattering Convolutional Network

| |f ⇧ ⇤j1,�1 | ⇧ ⇤j2,�2 | ⇧ ⇥J
�j1, j2
��1, �2

|WJ |

|f ⌅ ⇤j1,�1 | ⌅ ⇥J
�j1
��1

| |f ⇥ �j1,�1 | ⇥ �j2,�2 |

|WJ |
|f ⇥ �j1,�1 |

f ⇥ �J
|WJ |

| |f ⇥ �j1,�1 · · · | ⇥ �jm+1,�m+1 |

Cascade of contractive operators.

· · · · · ·
| |f ⇥ �j1,�1 | · · · ⇥ �jm,�m |

|WJ |
| |f ⇧ ⇤j1,�1 | · · · ⇧ ⇤jm,�m | ⇧ ⇥J

⇥j1...jm

⇥�1...�m

f



Wavelet Scattering

SIFT

window size = image size

f̂ |f ⇤ ⇥�1 | ⇤ �

Image Examples
Images Fourier

�1

�2

�1

�2

f ||f ⇤ ⇥�1 | ⇤ ⇥�2 | ⇤ �

[Bruna, Mallat, ’11,’12]



Scattering Stability

Theorem: [Mallat ’10] With appropriate wavelets, SJ is stable to additive

noise,

kSJ(x+ n)� SJxk  knk ,

unitary, kSJxk = kxk, and stable to deformations

kSJx⌧ � SJxk  Ckxkkr⌧k .

x⌧ |cx⌧ | SJx⌧



Representation of Stationary Processes 
x(u): realizations of a stationary process X(u) (not Gaussian)



Representation of Stationary Processes
x(u): realizations of a stationary process X(u) (not Gaussian)

Discriminability: need to capture high-order moments

�(X) = {E(fi(X))}i

Stability: E(kb�(X)� �(X)k2) small

b�(X) =

(
1

N

X

n

fi(x)(n)

)

i

Estimation from samples x(n):



     Scattering Moments

|WJ |

|WJ |

|WJ |

· · · · · ·

|WJ |

X

E(X)

|X ?  j1,�1 |
E(|X ?  j1,�1 |) , 8j1, �1

| |X ?  j1,�1 | ?  j2,�2 |

E(| |X ?  j1,�1 | ?  j2,�2 |) , 8ji, �i

| ..|X ?  j1,�1 | ? . . . | ?  jm,�m |

E(|..|X ?  j1,�1 | ? . . . | ?  jm,�m |) , 8ji, �i
| ..|X ?  j1,�1 | ? . . . | ?  jm+1,�m+1 |



Properties of Scattering Moments
•Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]



Properties of Scattering Moments
•Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]

• Cascading non-linearities is necessary to reveal higher-order 
moments.



Consistency of Scattering Moments
Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Consistency of Scattering Moments

Corollary: If moreover X(t) is bounded, then

E(k ˆSNX � SXk2)  C
|X|21p

N
.

• Although we extract a growing number of features, their global 
variance goes to 0. 

• No variance blow-up due to high order moments. 
• Adding layers is critical (here depth is log(N)). 

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Classification with Scattering
• State-of-the art on pattern and texture recognition: 

– MNIST [Pami’13] 

– Texture (CUREt) [Pami’13] 

• Object Recognition: 

– 17% error on Cifar-10 [Oyallon, Mallat, CVPR’15] using better 
second layer wavelets that recombine channels. 

– How good is that? Not good enough. Best models do <5%. 



Scattering Limitations
• Modeling intraclass variability as geometric variability/ texture is not 

sufficient 
– Adapting wavelets to the dataset, even to the class. 

• No simple mechanism to reduce the number of feature maps 
without learning 
– Scattering construction increases feature maps at exponential rate.  

• Extend group formalism to understand behavior in deeper layers. 
– Although extensions to rototranslation group yield state-of-the-art results 

in general object recognition [“Group Equivariant CNNs”, Cohen & 
Welling, ICML’16]. 



Signal and Texture Recovery Challenge

• [Q1] Given        computed with m layers, under what conditions 
can we recover    (up to global symmetry)? Using what algorithm? 
As a function of the localization scale J ? 

• [Q2] Given SX, how can we characterize interesting processes? 
How to sample from such distributions?

SJx = {x ⇤ �J , |x ⇤  j1 | ⇤ �J , ||x ⇤  j1 | ⇤  j2 | ⇤ �J , . . . }jiJ

SJx

x

SX = {E(X), E(|X ⇤  j1 |), E(||X ⇤  j1 | ⇤  j2 |), . . . }



Sparse Signal Recovery
Theorem [B,M’14]: Suppose x0(t) =

P
n an�(t�bn) with |bn�bn+1| � �,

and SJx0 = SJx with m = 1 and J = 1. If  has compact support, then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .



Sparse Signal Recovery

•  

• Here, sparsity is encoded in the measurements 
themselves.

• In 2D, singular measures (ie curves) require           to be 
well characterized.

Sx essentially identifies sparse measures,
up to log spacing factors.

m = 2

Theorem [B,M’14]: Suppose x0(t) =
P

n an�(t�bn) with |bn�bn+1| � �,

and SJx0 = SJx with m = 1 and J = 1. If  has compact support, then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .



Oscillatory Signal Recovery

• Oscillatory, lacunary signals are also well captured with the same 
measurements.  

• It is the opposite set of extremal points from previous result.

Theorem [B,M’14]: Suppose cx0(⇠) =

P
n an�(⇠ � bn) with | log bn �

log bn+1| � �, and SJx = SJx0 with m = 2 and J = logN . If

b
 has com-

pact support K  �, then

bx(⇠) =
X

n

cn�(⇠ � en) , with | log en � log en+1| & � .



Scattering Reconstruction Algorithm

• Non-linear Least Squares, non-convex optimization. 
• Levenberg-Marquardt gradient descent:

S
x0 ⇠ N (0, I)

min
x

kbSx� b
S0k2

xn+1 = xn � �(D b
Sxn)

†(bSxn � b
S0)

S = {x s.t.

b
Sx = b

S0}



Scattering Reconstruction Algorithm

• Non-linear Least Squares. 
– Levenberg-Marquardt gradient descent:

• (Weak) Global convergence guarantees using complex 
wavelets:

S
x0 ⇠ N (0, I)

min
x

kbSx� b
S0k2

xn+1 = xn � �(D b
Sxn)

†(bSxn � b
S0)

S = {x s.t.

b
Sx = b

S0}

D

ˆ

Sx is full rank for m = 2 if x compact support.



Sparse Shape Reconstructions
Original images of N2 pixels:

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.



Ergodic Texture Reconstruction
Original Textures

Gaussian process model with same second order moments

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.



Ergodic Texture Reconstruction using CNNs
• Results using a deep CNN network from [Gathys et al, NIPS’15] 
• Uses a much larger feature vector than scattering (                  ).O((logN)

2
)



• Results using a deep CNN network from [Gathys et al, NIPS’15] 
• Uses a much larger feature vector than scattering (                  ).

Ergodic Texture Reconstruction using CNNs

O((logN)

2
)



Application: Super-Resolution

• Best Linear Method: Least Squares estimate (linear interpolation):

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x



Application: Super-Resolution

•Best Linear Method: Least Squares estimate (linear interpolation): 
•State-of-the-art Methods: 

– Dictionary-learning Super-Resolution 
– CNN-based: Just train a CNN to regress from low-res to high-

res. 
– They optimize cleverly a fundamentally unstable metric criterion:

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x

⇥⇤ = argmin
⇥

X

i

kF (xi,⇥)� yik2 , ŷ = F (x,⇥⇤)



Scattering Approach
• Relax the metric: 

F

S
S

x

y

S�1



Scattering Approach
•Relax the metric:  

– Start with simple linear estimation on scattering domain. 
– Deformation stability gives more approximation power in the 

transformed domain via locally linear methods. 
– The method is not necessarily better in terms of PSNR!

F

S
S

x

y

S�1



Some Numerical Results
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Sparse Spike Super-Resolution
(with I. Domanic (ENS/UIUC), S. Mallat)

Examples with Cox Processes

(inhomogeneous Poisson point processes)



Conclusions and Open Problems
• CNNs: Geometric encoding with built-in deformation stability. 

– Equipped to break curse of dimensionality. 
• This statistical advantage is useful both in supervised and 

unsupervised learning. 
– Gibbs CNN distributions are stable to deformations.  
– Exploited in high-dimensional inverse problems.  

• Challenges Ahead: 
– Decode geometry learnt by CNNs: role of higher layers?  
– CNNs and unsupervised learning: we need better inference. 
– Optimization in CNNs: exploit layerwise/convolutional model. 
– Non-Euclidean domains (text, genomics, n-body dynamical systems)



Thank you!


