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DEEP NEURAL NETWORKS (DNN)

• One layer of a neural net

• Concatenation of the layers creates the whole net

Φ(𝑋1, 𝑋2, … , 𝑋𝐾) = 𝜓 𝜓 𝜓 𝑉𝑋1 𝑋2 …𝑋𝐾

𝑉 ∈ ℝ𝑑 𝑋 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚

𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝑉𝑋

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓



THE NON-LINEAR PART

• Usually 𝜓 = 𝑔 ∘ 𝑓.

• 𝑓 is the (point-wise) activation function

• 𝑔 is a pooling or an aggregation operator. 

ReLU 
𝑓(x) = max(x, 0)

Sigmoid 

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic 
tangent 

𝑓 𝑥 = tanh(𝑥)

𝑉1 𝑉2 𝑉𝑟𝑉3 𝑉4 … … … …

max
𝑖

𝑉𝑖

Max pooling Mean pooling

1

𝑛
෍

𝑖=1

𝑛

𝑉𝑖

𝑙𝑝 pooling
𝑝

෍
𝑖=1

𝑛

𝑉𝑖
𝑝

𝑋 𝜓



WHY DNN WORK?

What is so 
special with the 
DNN structure? What is the role of 

the depth of DNN?

What is the role 
of pooling?

What is the role of 
the activation 

function?

How many 
training samples 

do we need?

What is the 
capability of DNN?

What happens to the 
data throughout the 

layers?



SAMPLE OF RELATED EXISTING THEORY

• Universal approximation for any measurable Borel functions [Hornik et. al., 
1989, Cybenko 1989]

• Depth of a network provides an exponential complexity compared to the 
number parameters [Montúfar et al. 2014], invariance to more complex 
deformations [Bruna & Mallat, 2013] and better modeling of correlations of 
the input [Cohen et al. 2016]

• Number of training samples scales as the number of parameters [Shalev-

Shwartz & Ben-David 2014] or the norm of the weights in the DNN [Neyshabur et al. 2015]

• Pooling stage provides shift invariance [Bruna et al. 2013]

• Relation of pooling and phase retrieval [Bruna et al. 2014]

• Deeper networks have more local minima that are close to the global one 
and less saddle points [Saxe et al. 2014], [Dauphin et al. 2014], [Choromanska et al. 
2015], [Haeffele & Vidal, 2015]

• Neural networks are capable of approximating the solution of optimi-
zation problems such as ℓ1-minimization [Bruna et al. 2016], [Giryes et al. 2016]



Take 
Home 

Message

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Deep learning 
can be viewed 

as a metric 
learning.

Generalization 
error depends 

on the DNN 
input margin



• Infusion of random weights reveals internal 
properties of a system

ASSUMPTIONS – GAUSSIAN WEIGHTS

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝑋𝑖 , … , 𝑋𝑖, …,𝑋𝐾 are 
random Gaussian matrices

Compressed 
Sensing

Phase 
Retrieval

Sparse 
Recovery

Deep 
Learning

[Saxe et al. 
2014] 

[Dauphin et 
al. 2014] 

[Choromanska
et al. 2015] [Arora et 

al. 2014] 



• Pooling provides invariance [Boureau et. al. 2010, 
Bruna et. al. 2013].

We assume that all equivalent points in the data were 
merged together and omit this stage.

Reveals the role of the other components in the DNN.

ASSUMPTIONS – NO POOLING

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝜓 is an element wise 
activation function

max(v, 0) 1

1 + 𝑒−𝑥
tanh(𝑣)



ASSUMPTIONS – LOW DIMENSIONAL DATA

Υ is a low dimensional set

𝑉 ∈ Υ 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

Gaussian 
Mixture 
Models 
(GMM)

Signals with 
Sparse 

Representations

Low 
Dimensional 

Manifolds

Low Rank 
Matrices



Gaussian 
Mean 
Width

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Deep learning 
can be viewed 

as a metric 
learning.

Generalization 
error depends 

on the DNN 
input margin



WHAT HAPPENS TO SPARSE DATA IN DNN?

• Let Υ be sparsely represented data

• Example: Υ = {𝑉 ∈ ℝ3: 𝑉 0 ≤ 1}

• ΥX is still sparsely represented data

• Example: ΥX = {𝑉 ∈ ℝ3: ∃𝑊 ∈ ℝ3, 𝑉 = 𝑋𝑊, 𝑊 0 ≤ 1}

• 𝜓(ΥX) not sparsely represented

• But is still low dimensional

Υ𝑋

𝜓(Υ𝑋)

Υ



GAUSSIAN MEAN WIDTH

• Gaussian mean width:
𝜔 Υ = 𝐸 sup

𝑉,𝑊∈Υ
𝑉 −𝑊, 𝑔 ,       𝑔~𝑁(0, 𝐼).

𝑊

𝑉

Υ

𝑔
The width of 
the set Υ in 

the direction 
of 𝑔:



MEASURE FOR LOW DIMENSIONALITY

• Gaussian mean width:
𝜔 Υ = 𝐸 sup

𝑉,𝑊∈Υ
𝑉 −𝑊,𝑔 ,       𝑔~𝑁(0, 𝐼).

• 𝜔2 Υ is a measure for the dimensionality of the 
data.

• Examples:

If Υ ⊂ 𝔹𝑑 is a Gaussian 
Mixture Model with 𝑘
Gaussians then

𝜔2 Υ = 𝑂(𝑘)

If Υ ⊂ 𝔹𝑑 is a data 
with 𝑘-sparse 
representations then
𝜔2 Υ = 𝑂(𝑘 log 𝑑)



Theorem 1: small 
𝜔2 Υ

𝑚
imply 𝜔2 Υ ≈ 𝜔2 𝜓(𝑉𝑋)

GAUSSIAN MEAN WIDTH IN DNN

Υ ⊂ ℝ𝑑

𝑋 𝜓

𝜓(𝑉𝑋) ∈ ℝ𝑚
𝑋 is a linear 
operation

𝐹 is a non-linear 
function

Υ𝑋 ⊂ ℝ𝑚

Small 𝜔2 Υ Small 𝜔2 𝜓(𝑉𝑋)

It is sufficient to provide proofs only for a single layer



DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
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boundary points 
between the 
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in the data.

Deep learning 
can be viewed 

as a metric 
learning.

Generalization 
error depends 

on the DNN 
input margin

Stability



ASSUMPTIONS

𝑋 is a 
random 

Gaussian 
matrix

𝜓 is an 
element wise 

activation 
function

𝑉 ∈ Υ

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

max(v, 0) 1

1 + 𝑒−𝑥
tanh(𝑣)

𝑚 = 𝑂 𝛿−6𝜔2 Υ



ISOMETRY IN A SINGLE LAYER

Theorem 2: 𝜓(∙ 𝑋) is a 𝛿-isometry in the Gromov-
Hausdorff sense between the sphere 𝕊𝑑−1 and the 
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2015].

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

• If two points belong to the same tile 
then their distance < 𝛿

• Each layer of the network keeps the 
main information of the data

The rows of 𝑋 create a tessellation of the space.
 This stands in line with [Montúfar et. al. 2014]



ONE LAYER STABLE EMBEDDING

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 3: There exists an algorithm 𝒜 such that

𝑉 −𝒜(𝜓(𝑉𝑋)) < 𝑂
𝜔 Υ

𝑚
= 𝑂 𝛿3

[Plan & Vershynin, 2013, Giryes, Sapiro & Bronstein 2015].

After 𝐾 layers we have an error 𝑂 𝐾𝛿3

Stands in line with [Mahendran and Vedaldi, 2015].

DNN keep the important information of the data



DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Deep learning 
can be viewed 

as a metric 
learning.

Generalization 
error depends 

on the DNN 
input margin

DNN with 
Gaussian 
Weights



ASSUMPTIONS

𝑋 is a 
random 

Gaussian 
matrix

𝜓 is the ReLU
𝑉 ∈ Υ

𝑉 ∈ ℝ𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

max(v, 0)

𝑚 = 𝑂 𝛿−4𝜔4 Υ



DISTANCE DISTORTION

𝑉 ∈ Υ 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 4: for 𝑉,𝑊 ∈ Υ

𝜓(𝑉𝑋) − 𝜓(𝑊𝑋) 2 − 1
2 V −W 2

−
V W

𝜋
(sin∠ V,W

∠ V,W

The smaller ∠ V,W the 
smaller the distance we get 
between the points



ANGLE DISTORTION

𝑉 ∈ Υ 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 5: for 𝑉,𝑊 ∈ Υ

cos∠ 𝜓(𝑉𝑋), 𝜓(W𝑋) − cos∠ V,W

−
1

𝜋
(sin∠ V,𝑊

∠ V,W

Behavior of ∠ 𝜓(𝑉𝑋), 𝜓(𝑊𝑋)



DISTANCE AND ANGLES DISTORTION

Points with small angles between them become 
closer than points with larger angles between them

𝑋 𝜓

Class II
Class I Class IIClass I



POOLING AND CONVOLUTIONS

• We test empirically this behavior on convolutional 
neural networks (CNN) with random weights and 
the MNIST, CIFAR-10 and ImageNet datasets.

• The behavior predicted in the theorems remains 
also in the presence of pooling and convolutions. 



TRAINING DATA SIZE

• Stability in the network implies that close points in the 
input are close also at the output

• Having a good network for an 𝜀-net of the input set Υ
guarantees a good network for all the points in Υ.

• Using Sudakov minoration the number of data points 
is 

exp(𝜔2 Υ /𝜀2) .

• Though this is not a tight bound, it introduces the 
Gaussian mean width 𝜔 Υ as a measure for the 
complexity of the input data and the required number 
of training samples.



DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Deep learning 
can be viewed 

as a metric 
learning.

Generalization 
error depends 

on the DNN 
input margin

Role of 
Training



ROLE OF TRAINING

• Having a theory for Gaussian weights we test the 
behavior of DNN after training.

• We looked at the MNIST, CIFAR-10 and ImageNet
datasets.

• We will present here only the ImageNet results. 

• We use a state-of-the-art pre-trained network for 
ImageNet [Simonyan & Zisserman, 2014].

• We compute inter and intra class distances.



Compute the distance ratio: 
ഥ𝑉− ҧ𝑍

𝑊−𝑉

INTER BOUNDARY POINTS DISTANCE RATIO

Class II
Class I

Class IIClass I

𝑊𝑉

𝑉 is a random point and 
𝑊 its closest point from 

a different class.  

ത𝑉

ത𝑉 is the output of 𝑉 and ҧ𝑍 the closest 
point to ത𝑉 at the output from a 

different class.

𝑊 − 𝑉
ҧ𝑍

ത𝑉 − ҧ𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓



Compute the distance ratio: 
ഥ𝑉− ҧ𝑍

𝑊−𝑉

INTRA BOUNDARY POINTS DISTANCE RATIO

Class IIClass I Class IIClass I

𝑊

𝑉

Let 𝑉 be a point and 𝑊
its farthest point from 

the same class.  

ത𝑉

Let ത𝑉 be the output of 𝑉 and ҧ𝑍 the 
farthest point from ത𝑉 at the output 

from the same class

𝑊 − 𝑉

ҧ𝑍

ത𝑉 − ҧ𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓



Inter-class Intra-class

ത𝑉 − ҧ𝑍

𝑊 − 𝑉

ത𝑉 − ҧ𝑍

𝑊 − 𝑉

BOUNDARY DISTANCE RATIO



Compute the distance ratios: 
ഥ𝑉− ഥ𝑊

𝑉−𝑊
,

ഥ𝑉− ҧ𝑍

𝑉−𝑍

AVERAGE POINTS DISTANCE RATIO

Class II

Class I

Class II
Class I𝑍

𝑉

𝑉,𝑊 and 𝑍 are three 
random points

ത𝑉

ത𝑉, ഥ𝑊 and ҧ𝑍 are the outputs of 𝑉,𝑊
and 𝑍 respectively.

𝑉 −𝑊 ҧ𝑍

ത𝑉 − ҧ𝑍

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

ഥ𝑊

ത𝑉 − ഥ𝑊

𝑉 − 𝑍

𝑊



AVERAGE DISTANCE RATIO

Inter-class Intra-class

ത𝑉 − ഥ𝑊

𝑉 −𝑊

ത𝑉 − ҧ𝑍

𝑉 − 𝑍



ROLE OF TRAINING

• On average distances are preserved in the trained 
and random networks.

• The difference is with respect to the boundary 
points. 

• The inter distances become larger.

• The intra distances shrink.
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the 

important 
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of the data.
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measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 
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in the data.

Important goal 
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on the DNN 
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Generali-
zation
Error



Linear classifier

ASSUMPTIONS

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝜓 is the ReLU
Two

Classes
𝑤

𝑤𝑇Φ 𝑋1, 𝑋2, … , 𝑋𝐾 = 0

∈ Υ

Input Space Feature Space



GENERALIZATION ERROR (GE)

• In training, we reduce the classification error of 
the training data ℓtraining as the number of 

training examples 𝐿 increases.

• However, we are interested to reduce the error of 
the (unknown) testing data ℓtest as 𝐿 increases.

• The difference between the two is the 
generalization error 

GE = ℓtraining − ℓtest

• It is important to understand the GE of DNN



GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2ෑ

𝑖

𝑋𝑖
2,2

[Neyshabur et al., 2015].

•



GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2ෑ

𝑖

𝑋𝑖
2,2

[Neyshabur et al., 2015].

• Note that in both cases the GE grows with the depth



DNN INPUT MARGIN

• Theorem 6: If for every input margin 𝛾𝑖𝑛 𝑉𝑖 > 𝛾

then 𝐺𝐸 ≤ Τ𝑁𝛾/2(Υ) 𝑚

• 𝑁𝛾/2(Υ) is the covering number of the data Υ.

• 𝑁𝛾/2(Υ) gets smaller as 𝛾 gets smaller

• Bound is independent of depth

• Our theory relies on the 
robustness framework 
[Xu & Mannor, 2015].

𝑉𝑖

𝑉𝑖

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016]



INPUT MARGIN BOUND

• Maximizing the input margin directly is hard

• Our strategy: relate the input margin to the output 
margin 𝛾𝑜𝑢𝑡 𝑉

𝑖 and other DNN properties

• Theorem 7:

𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
𝐹

𝑉𝑖

Φ(𝑉𝑖)

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016]



OUTPUT MARGIN

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥

𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Output margin is easier to
maximize – SVM problem

• Maximized by many cost 
functions, e.g., hinge loss.

𝑉𝑖

Φ(𝑉𝑖)



GE AND WEIGHT DECAY

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥

𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Bounding the weights 
increases the input margin

• Weight decay regularization
decreases the GE

• Related to regularization used 
by [Haeffele & Vidal, 2015]

𝑉𝑖

Φ(𝑉𝑖)



JACOBIAN BASED REGULARIZATION

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥

𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

ς1≤𝑖≤𝐾 𝑋𝑖
𝐹

• 𝐽 𝑉 is the Jacobian of the 
DNN at point 𝑉.

• 𝐽 ∙ is piecewise constant.

• Using the Jacobian of the
DNN leads to a better bound.

• New regularization technique.



RESULTS

• Better performance with less training samples

• CCE: the categorical cross entropy.

• WD: weight decay regularization.

• LM: Jacobian based regularization for large margin.

• Note that hinge loss generalizes better than CCE and 
that LM is better than WD as predicted by our theory.

MNIST 
Dataset

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2016]
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𝜓

ASSUMPTIONS

𝑋 is fully 
connected
and trained

𝜓 is the 
hyperbolic tan

𝑉 ∈ ℝ𝑑 𝜓𝑋1 𝑋2 ത𝑉



METRIC LEARNING BASED TRAINING

• Cosine Objective: 

min
𝑋1,𝑋2

෍

𝑖,𝑗∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡

ത𝑉𝑖
𝑇 ത𝑉𝑗

ത𝑉𝑖 ത𝑉𝑗
− 𝜗𝑖,𝑗

2

𝜗𝑖,𝑗 =
𝜆 + (1 − 𝜆)

𝑉𝑖
𝑇𝑉𝑗

𝑉𝑖 𝑉𝑗
𝑖, 𝑗 ∈ 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠

−1 𝑖, 𝑗 ∈ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠

𝜓𝑉𝑖 ∈ ℝ𝑑 𝜓𝑉𝑋𝑋1 𝑋2 ത𝑉𝑖

Classification 
term

Metric 
preservation term



METRIC LEARNING BASED TRAINING

• Euclidean Objective: 

min
𝑋1,𝑋2

𝜆
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑆𝑒𝑡

෍
𝑖,𝑗∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑆𝑒𝑡

𝑙𝑖𝑗 ത𝑉𝑖 − ത𝑉𝑗 − 𝑡𝑖𝑗 +

+ 1−𝜆
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

෍
𝑉𝑖,𝑉𝑗 𝑎𝑟𝑒

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

ത𝑉𝑖 − ത𝑉𝑗 − 𝑉𝑖 − 𝑉𝑗

𝜓𝑉𝑖 ∈ ℝ𝑑 𝜓𝑉𝑋𝑋1 𝑋2 ത𝑉𝑖

𝑙𝑖𝑗 = ൞
1 𝑖, 𝑗 ∈

𝑠𝑎𝑚𝑒
𝑐𝑙𝑎𝑠𝑠

−1 𝑖, 𝑗 ∈
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
𝑐𝑙𝑎𝑠𝑠

𝑙𝑖𝑗 =

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑟𝑎
𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖, 𝑗 ∈
𝑠𝑎𝑚𝑒
𝑐𝑙𝑎𝑠𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟
𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖, 𝑗 ∈
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
𝑐𝑙𝑎𝑠𝑠

Classification term

Metric learning term



ROBUSTNESS OF THIS NETWORK

• Metric learning objectives impose stability

• Similar to what we have in the random case

• Close points at the input are close at the output

• Using the theory of 𝑇, 𝜖 -robustness, the 

generalization error scales as
𝑇

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡

• 𝑇 is the covering number.

• Also here, the number of training samples scales as 

exp(𝜔2 Υ /𝜀2) .



RESULTS

• Better performance with less training samples
#Training/class 30 50 70 100

original pixels 81.91% 86.18% 86.86% 88.49%

LeNet 87.51% 89.89% 91.24% 92.75%

Proposed 1 92.32% 94.45% 95.67% 96.19%

Proposed 2 94.14% 95.20% 96.05% 96.21%

MNIST 
Dataset

Faces in 
the wild

ROC curve

[Huang, Qiu, Sapiro, 
Calderbank, 2015]



Take 
Home 

Message

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Deep learning 
can be viewed 

as a metric 
learning.
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