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DEEP NEURAL NETWORKS (DNN)

* One layer of a neural net

VX
V € R% X Y Y(VX) e R™
X is a linear F is a non-linear
operation function

* Concatenation of the layers creates the whole net
OXL X%, ., X)) =PV XHX?) .. X")

VeRd - Xt @ Xt Y XK Y



THE NON-LINEAR PART

e Usuallyy = g o f. X Y
* f is the (point-wise) activation function
RelLU Sigmoid . Hyperbolic
f(x) = max(x,0) (x) = 1 tangent
fe0 = 1+e* f(x) = tanh(x)

* g is a pooling or an aggregation operator.

Vi W e e

Max pooling Mean pooling [, pooling

1 PINTY
max V; _z V; Zi_lvi
Néaij=q B

l




What is the role
of pooling?




SAMPLE OF RELATED EXISTING THEORY

Universal approximation for any measurable Borel functions

Depth of a network provides an exponential complexity compared to the

number parameters , invariance to more complex
deformations and better modeling of correlations of
the input

Number of training samples scales as the number of parameters
or the norm of the weights in the DNN

Pooling stage provides shift invariance
Relation of pooling and phase retrieval

Deeper networks have more local minima that are close to the global one
and less saddle points

Neural networks are capable of approximating the solution of optimi-
zation problems such as £1-minimization



Deep learning
can be viewed
as a metric
learning.




ASSUMPTIONS — GAUSSIAN WEIGRHTS

vert - X1 PN xE SN xx (0

XL .. XY .. XK are
random Gaussian matrices

* Infusion of random weights reveals internal
properties of a system

s




ASSUMPTIONS — NO POOLING

VeRd - Xt~ ¢ Xt . Y XK

Y is an element wise
. . . max (v, 0) ‘ tanh(v) —
activation function the

* Pooling provides invariance

»We assume that all equivalent points in the data were
merged together and omit this stage.

» Reveals the role of the other components in the DNN.



ASSUMPTIONS — LOW DIMENSIONAL DATA

Y is a low dimensional set




Gaussian mean
width is a good
measure for the

complexity of
the data.




WHAT HAPPENS TO SPARSE DATA IN DNN?

* Let Y be sparsely represented data

Y
e Example: Y ={V € R3:[|[V]l, < 1} >|<

* YX is still sparsely represented data

YX
e Example: YX ={V € R3:3W € R3,V = XW, |[W]l, < 1}

* Y (YX) not sparsely represented W
* But is still low dimensional




GAUSSIAN MEAN WIDTH

e Gaussian mean width:

w(Y)=E sup (V-W,g), g~N(01I).
V,WEY

g
w

The width of
the setY in
the direction 2

of g:

Ve



MEASURE FOR LOW DIMENSIONALITY

e Gaussian mean width:

w(Y)=E sup (V-W,g), g~N(,1I).
V,WeY

* w?(Y) is a measure for the dimensionality of the
data.

* Examples:




GAUSSIAN MEAN WIDTH IN DNN

Y Rd X is alinear

F is a non-linear ‘

operation YX C ]Rm function l/)(VX) = Rm

2D imply w2(Y) ~ w? (VX))

_—“

W 1t is sufficient to provide proofs only for a single layer

Theorem 1: small




DNN keep
the
important
information
of the data.



ASSUMPTIONS

L’_} Y(VX) e R™
i . ?

Xisa Y is an
random element wise

Gaussian activation
matrix function

Vey

1

max(v, 0) ‘ tanh(v) :
p 1+e™ |

m = 0(6 w?(Y))



ISOMETRY IN A SINGLE LAYER

VX l/)

Theorem 2: IS a in the Gromov-
Hausdorff sense between the sphere $¢~1 and the
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2015].

* |If two points belong to the same tile
then their distance

Each layer of the network keeps the
main information of the data

4
Py ===
Th

/ e rows of X create a tessellation of the space.

4
» This stands in line with [\Mlontufar et. al. 2014]



ONE LAYER STABLE EMBEDDING

Theorem 3: There exists an algorithm <A such that

w(Y) ;
[V —AQ@VX)| <O0|—]=0(5°)
Vm
> After K layers we have an error O(K62)
»Stands in line with

»DNN keep the important information of the data



CEIYELR
weights are
good for
classifying the
average points

~inthe data.




ASSUMPTIONS

Ax—! pm e wr

I X is a Y is the RelLU

max(v, 0) ‘

Gaussian
matrix

m = 0(6 *w*(Y))



DISTANCE DISTORTION

o

Theorem 4:forV,W €Y

VI [|W
! ”72 L sin 2v,w)

The smaller (V, W) the
smaller the distance we get
between the points




ANGLE DISTORTION

o

Theorem 5:forV,IWW €Y Behavior of Z(y(VX), p(WX))

1
— ; (Sin L(V, W)




DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them



POOLING AND CONVOLUTIONS

* We test empirically this behavior on convolutional
neural networks (CNN) with random weights and
the MNIST, CIFAR-10 and ImageNet datasets.

* The behavior predicted in the theorems remains
also in the presence of pooling and convolutions.



TRAINING DATA SIZE

e Stability in the network implies that close points in the
input are close also at the output

Having a good network for an &-net of the input set Y
guarantees a good network for all the pointsin Y.

Using Sudakov minoration the number of data points

IS
exp(w?(Y)/&?).

Though this is not a tight bound, it introduces the

Gaussian mean width w (Y) as a measure for the

complexity of the input data and the required number

of training samples.



Important goal
of training:
Classify the

boundary points
between the

different classes
in the data.



ROLE OF TRAINING

* Having a theory for Gaussian weights we test the
behavior of DNN after training.

* We looked at the MINIST, CIFAR-10 and ImageNet
datasets.

* We will present here only the ImageNet results.

* \We use a state-of-the-art pre-trained network for
ImageNet

* We compute inter and intra class distances.



INTER BOUNDARY POINTS DISTANCE RATIO

V is the output of VV and Z the closest
point to IV at the output from a
different class.

I/ is a random point and
W its closest point from
a different class.

IV-Z|
W=Vl

Compute the distance ratio:



INTRA BOUNDARY POINTS DISTANCE RATIO

20 -0 80

!
Let VV be a pointand W

its farthest point from
the same class.

Let I/ be the output of V and Z the
farthest point from V' at the output
from the same class

IV-Z|
W=Vl

Compute the distance ratio:



BOUNDARY DISTANCE RATIO

Inter-class Intra-class

- Fiandom
——Trained




AVERAGE POINTS DISTANCE RATIO

Class Il

Class |

V,W and Z are three V,W and Z are the outputs of V, W

random points and Z respectively.

\v-wi| ||[V-Z]
\Wv-w|’ |lv-Z||

Compute the distance ratios:



AVERAGE DISTANCE RATIO

Inter-class Intra-class

—Random —Random
——Trained ——Trained

A
IV —Zll




ROLE OF TRAINING

* On average distances are preserved in the trained
and random networks.

* The difference is with respect to the boundary
points.

* The inter distances become larger.

* The intra distances shrink.



Generalization
error depends
on the DNN
input margin

e ———— e —




ASSUMPTIONS

Xt -y Xt . Y xkK

Y isthe ReLU  Linear classifier —w

Input Space Feature Space




GENERALIZATION ERROR (GE)

* In training, we reduce the classification error of
the training data fiy3ining as the number of

training examples L increases.

e However, we are interested to reduce the error of
the (unknown) testing data €.t as L increases.

* The difference between the two is the
generalization error

GE = ftraining — Lrest
= |t is important to understand the GE of DNN



GE BOUNDS

e Using the VC dimension it can be shown that

log(L)

GE < 0| [DNN params - T

\

 The GE was bounded also by the DNN weights
| .
GE < —LZK“WHZ HHXluz,z
i



GE BOUNDS

e Using the VC dimension it can be shown that

log(L)

GE<O
B L

 The GE was bounded also by the DNN weights
|
GE < = Iwll; HHX‘HZZ

* Note that in both cases the GE grows with the depth



DNN INPUT MARGIN

* Theorem 6: If for every input margin ym(Vi) >y

then GE < \/Ny/z (Y)/m

* N, /2 (Y) is the covering number of the data Y.

* N, /» (Y) gets smaller as y gets smaller

* Class 1

* Bound is independent of depth |§

 Our theory relies on the
robustness framework



INPUT MARGIN BOUND

e Maximizing the input margin directly is hard

* Our strategy: relate the input margin to the output
margin yout(V‘) and other DNN properties

* Class 1

e Theorem 7: A

v Vi > Vout(Vi)
m( ) 3‘;5”%“"”‘

Vout(Vi)
~ Ma<i<xlX*ll,

> Vout(Vi)_
My<i<kll X 2




OUTPUT MARGIN

* Theorem 7: yin(Vi) =

* Class 1

— = :
Ma<isellXHl, — MicisklX*l % Class2

* Output margin is easier to
maximize — SVM problem

* Maximized by many cost
functions, e.g., hinge loss.




GE AND WEIGHT DECAY

Vout(V )

e Theorem 7: ¥, (V) > >
(V)2 T,
| A=A
Yout (V) = Yout(V")
My<i=rll X, — o

* Bounding the weights
increases the input margin

* Weight decay regularization
decreases the GE

* Related to regularization used
by




JACOBIAN BASED REGULARIZATION

Vout(Vi)

sup [
e VI )

e Theorem 7: ym(Vi) =

=

Yout(Vi) S Vout(Vi)
<kl X, — My<i<rll Xl

* J(V) is the Jacobian of the
DNN at point I/.

* J(+) is piecewise constant.

e Using the Jacobian of the
DNN leads to a better bound.

=) New regularization technique.




RESULTS

e Better performance with less training samples

256 samples 512 samples 1024 samples
c loss #layers noreg. WD LM noreg. WD IM noreg. WD LM
S - — —-—_—-— - Y T
hinge y 88.37 89.88 93.83 9399 9462 9549 9579 96.57 97.45
Dataset [Eueiwes | 8722 8931 9322 9341 9397 9576 9546 9645 97.60

CCE 88.45 8845 9277 9229 93.14 9525 9538 9579 96.89

CCE 3 89.05 89.05 93.10 91.81 93.02 9532 9511 9586 97.14

CCE: the categorical cross entropy.
* WD: weight decay regularization.
* LM: Jacobian based regularization for large margin.

* Note that hinge loss generalizes better than CCE and
that LM is better than WD as predicted by our theory.



Deep Iearnlng
can be viewed
as a metric
Iearnmg

———




ASSUMPTIONS

42 M. Mm-

X is fully Y is the
connected hyperbolic tan
and trained



METRIC LEARNING BASED TRAINING

* Cosine Objective:

min z 171 V]_ J: ;
A Al 17

[,JETraining Set

2

f/1+( A) VTVj
il |

\ —1 i,] € dif ferent clas

i,] € same class

e
|

L,] —




METRIC LEARNING BASED TRAINING

vV, € R% Y 7

* Euclidean Objective:

‘Trai;lling 2 [linVi B ‘7]H B ]_|_

Set l,JETraining

min >et
x1,x2 1-1 ARV,
+|Neighbour5| z ‘HVi N V}H B HVi N V}H‘
ViVjare

neighbours



ROBUSTNESS OF THIS NETWORK

* Metric learning objectives impose stability
e Similar to what we have in the random case
* Close points at the input are close at the output

* Using the theory of (T, €)-robustness, the
T
|Training set|

generalization error scales as\/

* T is the covering number.
* Also here, the number of training samples scales as

exp(w?(Y)/e?).



RESULTS

e Better performance with less training samples

#Training/class 30 50 70 100
original pixels 81.91% 86.18% 86.86% 88.49%
LeNet 87.51% 89.89% 91.24% 92.75%

\ININYE

Dataset
Proposed 1 92.32% 94.45% 95.67% 96.19%

Proposed 2 94.14% 95.20% 96.05% 96.21%

Faces in
the wild
ROC curve

——HD-LBP
——deepFace
DML
——proposed
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QUESTIONS?

WEB.ENG.TAU.AC.IL/~RAJA
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