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Impact of Deep Learning in Computer Vision
• 2012-2014 classification results in ImageNet 

• 2015 results: MSR under 3.5% error using 150 layers!

CNN 
non-CNN

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna



Why These Improvements in Performance?
• Features are learned rather than hand-crafted 

• More layers capture more invariances [1]  

• More data to train deeper networks 

• More computing (GPUs) 

• Better regularization: Dropout 

• New nonlinearities 
– Max pooling, Rectified linear units (ReLU) 

• Theoretical understanding of deep networks remains shallow

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.



Deep Learning Problem is Non Convex

VX1 1( )X2 2( )�(X1, . . . , XK) =  K(· · · · · ·XK)

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

features weightsnonlinearity

labels regularizerloss



How is Non Convexity Handled?
• The learning problem is non-convex 

– Back-propagation, alternating minimization, descent method 

• To get a good local minima 
– Random initialization 
– If training error does not decrease fast enough, start again 
– Repeat multiple times 

• Mysteries 
– One can find many solutions with similar objective values 
– Rectified linear units work better than sigmoid/hyperbolic tangent  
– Dead units (zero weights)

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)



Prior Work on Optimization for Neural Nets
• Earlier work 

– No spurious local optima for linear networks (Baldi & Hornik ’89) 
– Stuck in local minima (Brady ’89, Gori & Tesi ’92), but guaranteed to 

converge for linearly separable data (Gori & Tesi ’92) 
– Manifold of spurious local optima (Frasconi ’97) 

• Recent work 
– Convex neural networks in infinite number of variables: Bengio ‘05 
– Networks with many hidden units can learn polynomials: Andoni‘14 
– The loss surface of multilayer networks: Choromanska ’15 
– Attacking the saddle point problem: Dauphin ‘14 
– Effect of gradient noise on the energy landscape: Chaudhuri ‘15 
– Guaranteed training of NNs using tensor methods: Janzamin ’15 

• Today 
– Guarantees of global optimality in neural network training: Haeffele ‘15 



Main Results

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Theorem 1: A local minimizer such that for some i and all k  
                is a global minimizer 

• Theorem 2: If the size of the network is large enough, local 
descent can reach a global minimizer from any initialization 

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

Xk
i = 0

� ⇥

f(↵X1, . . . ,↵XK) = ↵pf(X1, . . . , XK) 8↵ � 0

`(Y,X) X

Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015



Main Results

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Theorem 2: spurious local minima guaranteed not to exist

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

� ⇥

f(↵X1, . . . ,↵XK) = ↵pf(X1, . . . , XK) 8↵ � 0

`(Y,X) X

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework
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Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Outline

• Global Optimality in Structured Matrix Factorization [1,2] 
– PCA, Robust PCA, Matrix Completion 
– Nonnegative Matrix Factorization 
– Dictionary Learning 
– Structured Matrix Factorization 

• Global Optimality in Positively Homogeneous Factorization [2] 
– Tensor Factorization 
– Deep Learning 
– More

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ‘15

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

X U V >
⇡
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Low-Rank Modeling
• Models involving factorization are ubiquitous 

– Principal Component Analysis 
– Nonnegative Matrix Factorization  
– Sparse Dictionary Learning 
– Low-Rank Matrix Completion 
– Robust PCA

Face clustering and classification

Affine structure from motionHyperspectral imaging Recommendation systems



Typical Low-Rank Formulations
• Convex formulations: 

– Low-rank matrix approximation 
– Low-rank matrix completion 
– Robust PCA 

✓ Convex 
✴ Large problem size 
✴ Unstructured factors

• Factorized formulations: 

– Principal component analysis 
– Nonnegative matrix factorization 
– Sparse dictionary learning 

✴ Non-Convex 
✓ Small problem size 
✓ Structured factors

X U
V >

min
U,V

`(Y, UV >) + �⇥(U, V )

Typical Low Rank Formulations

min
X

`(Y,X) + �⇥(X) (1)

min
X

kY �Xk2F + �kXk⇤ (2)

min
X

kY �Xk1 + �kXk⇤ (3)



Convex Formulations of Matrix Factorization
• Convex formulations: 

–           : convex in 

• Low-rank matrix approximation:  

• Robust PCA:

11/9/15, 11:27 PMLow-Rank Matrix Recovery and Completion via Convex Optimization

Page 1 of 2http://perception.csl.illinois.edu/matrix-rank/home.html
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Low-Rank Matrix Recovery and Completion via Convex Optimization

Welcome!

Credits People

This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
engineering problems where our techniques have been used to achieve state-of-the-art performance. 

Credits

This website is maintained by the research group of Prof. Yi Ma at the University of Illinois at Urbana-Champaign. This
work was partially supported by the grants: NSF IIS 08-49292, NSF ECCS 07-01676, ONR N00014-09-1-0230, ONR
N00014-09-1-0230, NSF CCF 09-64215, NSF ECCS 07-01676, and NSF IIS 11-16012. Any opinions, findings, and
conclusions or recommendations expressed in our publications are those of the respective authors and do not necessarily
reflect the views of the National Science Foundation or Office of Naval Research.

Please direct your comments and questions to the webmaster - Kerui Min.
Top of Page

People

kXk⇤ =
X

�i(X)

X
min
X

`(Y,X) + � ⇥(X)

min
X

1

2
kY �Xk2F + � kXk⇤

min
X

kY �Xk1 + � kXk⇤

✓ Convex 
✴ Large problem size 
✴ Unstructured factors

`,⇥

EJ Candès, B Recht. Exact matrix completion via convex optimization. Foundations of Computational mathematics, 2009. 
RH Keshavan, A Montanari, S Oh. Matrix completion from a few entries. IEEE Trans. on Information Theory, 2010. 
EJ Candès, T Tao. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. on Information Theory, 2010 
Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011. 
H Xu, C Caramanis, S Sanghavi. Robust PCA via outlier pursuit. NIPS 2010



Factorized Formulations Matrix Factorization
• Factorized formulations: 

–                 : convex in 

• PCA [1]: 

• NMF [2]: 

• SDL [3-5]:

`(Y,X) X

min
U,V

kY � UV >k2F s.t. U>U = I

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

`(Y, UV >) + �⇥(U, V )

✓ Small problem size 
✓ Structured factors

✴ Need to specify size a priori 
✴ Non-convex optimization problem

[1] Jolliffe. Principal component analysis. Springer, 1986 
[2] Lee and Seung. "Learning the parts of objects by non-negative matrix factorization." Nature, 1999 
[3] Olshausen and Field, “Sparse coding with an overcomplete basis set: A strategy employed by v1?,” Vision Research, 1997 
[4] Engan, Aase, and Hakon-Husoy, “Method of optimal directions for frame design,” ICASSP 1999 
[5] Aharon, Elad, Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation", TSP 2006



Main Results

• Assumptions: 
–                 : convex and once differentiable in 
–       : sum of positively homogeneous functions of degree 2 

• Theorem 1: A local minimizer (U,V) such that for some i  
                          is a global minimizer 

• Theorem 2: If the size of the factors is large enough, local 
descent can reach a global minimizer from any initialization 

⇥
`(Y,X) X

Ui = Vi = 0

min
U,V

`(Y, UV >) + �⇥(U, V )

⇥(U, V ) =
rX

i=1

✓(Ui, Vi), ✓(↵u,↵v) = ↵2✓(u, v), 8↵ � 0

B. Haeffele, E. Young, R. Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing. ICML 2014 
Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015



Main Results: Nuclear Norm Case
• Convex problem                   Factorized problem 

• Variational form of the nuclear norm 

• Theorem 1: Assume loss    is convex and once differentiable 
in X. A local minimizer of the factorized problem such that for 
some i                         is a global minimizer of both problems 

• Intuition: regularizer      “comes from a convex function”

Ui = Vi = 0

⇥

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

kXk⇤ = min
U,V

rX

i=1

|Ui|2|Vi|2 s.t. UV > = X

`

The following papers study the case of a square loss function using techniques from semi-definite programming: 
[1] S. Burer and R. Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427–444, 2005. 
[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix 
decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488–2495.



Main Results: Nuclear Norm Case
• Convex problem                   Factorized problem 

• Theorem 1: Assume loss    is convex and once differentiable 
in X. A local minimizer of the factorized problem such that for 
some i                         is a global minimizer of both problemsUi = Vi = 0

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

`

X U V >

The following papers study the case of a square loss function using techniques from semi-definite programming: 
[1] S. Burer and R. Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427–444, 2005. 
[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix 
decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488–2495.



Main Results: Projective Tensor Norm Case
• A natural generalization is the projective tensor norm [1,2] 

• Theorem 1 [3,4]: A local minimizer of the factorized problem 
 
 
 
 
such that for some i                        , is a global minimizer of 
both the factorized problem and of the convex problem

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. 
[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

min
X

`(Y,X) + �kXku,v

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv

Ui = Vi = 0



Main Results: Projective Tensor Norm Case
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size of factorization and find descent direction (u,v)

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

r  r + 1 U  
⇥
U u

⇤
V  

⇥
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⇤



Algorithm: Projective Tensor Norm Case

• Convex in U given V and vice versa 

• Alternating proximal gradient descent 
– Calculate gradient of smooth term 
– Compute proximal operator 
– Acceleration via extrapolation 

• Advantages 
– Easy to implement 
– Highly parallelizable 
– Guaranteed to converge to Nash equilibrium (may not be local min) [1]

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv

Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and 
completion,” SIAM Journal of Imaging Sciences, vol. 6, no. 3, pp. 1758–1789, 2013.



Example: Nonnegative Matrix Factorization
• Original formulation 

• New factorized formulation 

– Note: regularization limits the number of columns in (U,V)

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F + �
X

i

|Ui|2|Vi|2 s.t. U, V � 0



Example: Sparse Dictionary Learning
• Original formulation 

• New factorized formulation

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

kY � UV >k2F + �
X

i

|Ui|2(|Vi|2 + �|Vi|1)



Non Example: Robust PCA
• Original formulation [1] 

• Equivalent formulation 

• New factorized formulation 

• Not an example because loss is not differentiable

min
X,E

kEk1 + �kXk⇤ s.t. Y = X + E

min
X

kY �Xk1 + �kXk⇤

min
U,V

kY � UV >k1 + �
X

i

|Ui|2|Vi|2

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.



Application: Calcium Imaging Segmentation
• Fluorescent microscopy technique 

– Optical recording of brain activity 
– Neurons “flash” when active electrically

60 microns 470 microns



Application: Calcium Imaging Segmentation



Application: Calcium Imaging Segmentation
• Find neuronal shapes and spike trains in calcium imaging

Data

Neuron Shape

True Signal

Spike Times

Time Time

Z

A A1

1 Z2

2
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Φ(AZ )T
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�(UV >)

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

Why Do We Need Structure?
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p = number of pixels
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In Vivo Results (Small Area)

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

Raw Data Sparse + Low Rank + Total Variation

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

60 microns



Conclussions
• Structured Low Rank Matrix Factorization 

– Structure on the factors captured by the Projective Tensor Norm 
– Efficient optimization for Large Scale Problems 

• Local minima of the non-convex factorized form are global 
minima of both the convex and non-convex forms 

• Advantages in Applications 
– Neural calcium image segmentation  
– Compressed recovery of hyperspectral images
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From Matrix Factorizations to Deep Learning
• Two-layer NN 

– Input: 
– Weights:  
– Nonlinearity: ReLU 

• “Almost” like matrix factorization 
– r = rank 
– r = #neurons in hidden layer

From Matrix Factorizations to Deep Learning
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From Matrix Factorizations to Deep Learning

 1(x) = max(x, 0) (10)

V 2 RN⇥d1
(11)

X
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(12)
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(13)

�(X
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, X

2
) =  1(V X

1
)(X

2
)
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From Matrix Factorizations to Deep Learning
• Recall the generalized factorization problem 

• Matrix factorization is a particular case where K=2 

• Both     and     are sums of positively homogeneous functions  

• Other examples 
– ReLU + max pooling is positively homogeneous of degree 1

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

� ⇥

f(↵X1, . . . ,↵XK) = ↵pf(X1, . . . , XK) 8↵ � 0

�(U, V ) =
rX

i=1

UiV
>
i , ⇥(U, V ) =

rX

i=1

kUikukVikv



“Matrix Multiplication” for K > 2
• In matrix factorization we have 

• By analogy we define 
 
 
 
where        is a tensor,        is its i-th slice along its last 
dimension, and      is a positively homogeneous function 

• Examples 
– Matrix multiplication: 
– Tensor product: 
– ReLU neural network:

�(U, V ) = UV > =
rX

i=1

UiV
>
i

Xk Xk
i

�

�(X1, . . . , XK) =
rX

i=1

�(X1
i , . . . , X

K
i )

�(X1, X2) = X1X2>

�(X1, . . . , XK) = X1 ⌦ · · ·⌦XK

�(X1, . . . , XK) =  K(· · · 2( 1(V X1)X2) · · ·XK)



Example: CP Tensor Factorization

CHAPTER 4. GENERALIZED FACTORIZATIONS
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Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

(where ⌦ denotes the tensor outer product) results in �r(X1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [29], which is visualized for a 3rd order tensor in figure 4.2. Further, instead

of choosing � to be a simple outer product, we can also generalize this to be any

multilinear function of the factor slices (X1
i , . . . , X

K
i ). For example, the output could

be formed by taking convolutions between the factor slices. We note that more

general tensor decompositions, such as the general form of the Tucker decomposition,

do not explicitly fit inside the framework we describe here; however, by using similar

arguments to the ones we will develop here, it is possible to show analogous results to

those we derive in this paper for more general tensor decompositions, and we briefly

discuss these extensions in section 4.6.2.
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Example: Deep Learning

CHAPTER 4. GENERALIZED FACTORIZATIONS
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ReLU Network with One Hidden Layer

Rectified Linear Unit (ReLU)
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Parallel Network

Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.10) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping �(X1

i , X
2
i ). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r=4) with elemental mappings defined by (4.11) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping �(X1

i , X
2
i , X

3
i , X

4
i ).

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a potential

elemental mapping, by an appropriate definition of �, one can describe neural net-

works with very general architectures, provided the non-linearities in the network are

compatible with positive homogeneity (ReLUs are one example, but non-linearities
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Factorization Regularization for “K > 2” 
• In matrix factorization we had “generalized nuclear norm” 

• By analogy we define “nuclear deep net regularizer” 
 
 
 
 
where     is positively homogeneous of the same degree as 

• Proposition:                is convex 

• Intuition: regularizer      “comes from a convex function”

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

✓

⌦�,✓(X) = min
{Xk}

rX

i=1

✓(X1
i , . . . , X

K
i ) s.t. �(X1, . . . , XK) = X

⌦�,✓

�

⇥



Examples of Deep Network Regularizers
• Different norms for different properties on each factor  

• Different norms plus conic set constraints on the factors 

• Conic set examples 
– Kernel of linear operator 
– Inequalities w.r.t. linear operator 
– Constraints on non-zero support 
– Semidefinite matrices



Main Results
• Theorem 1: A local minimizer of the factorized formulation 
 
 
 
 
such that for some i and all k                 is a global minimizer 
for both the factorized problem and of the convex formulation 

• Examples 
– Matrix factorization 
– Tensor factorization 
– Deep learning

min
{Xk}

`
�
Y,

rX

i=1

�(X1
i , . . . , X

K
i )

�
+ �

rX

i=1

✓(X1
i , . . . , X

K
i )

Xk
i = 0

min
X

`(Y,X) + �⌦�,✓(X)

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15



Main Results
• Theorem 2: If the size of the network is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At a local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size by 1 (add network in parallell) and continue 
– Maximum r guaranteed to be bounded by the dimensions of the 

network output

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Current Limitations
• Requires networks with parallel architecture 

– Future work to explore more general regularization strategies to 
control other aspects of the network architecture 

• Results only apply to local minima, not saddle points  
– Finding descent direction from saddle point can be NP-Hard 

• Upper bound on size of network is impractically large 
– O(# of training examples in dataset) 
– But, this is a worst case upper bound for any possible initialization



Relation to Dropout
• Our theory suggests that a highly parallel architecture is 

advantageous for optimization 

• Similar to dropout regularization (not an exact analogy) 
– Sum of exponential number of subnetworks

[1] Srivastava, et al, "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research, 2014.



Balanced Degrees of Homogeneity
• Weight decay is often cited as not performing as well as 

dropout in ReLU networks [1-3]. 
– Ex: L2 decay 

• Degrees of homogeneity are not typically balanced 

• Proposition: If K > 2 there exist spurious local minima

[1] Srivastava, et al, "Dropout: a simple way to prevent neural networks from overfitting." JMLR, 2014. 
[2] Krizhevsky, et al, “Imagenet classification with deep convolutional neural networks.” NIPS, 2012. 
[3] Wan et al, “Regularization of neural networks using dropconnect.” ICML, 2013.

min
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KX
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kXkk2F
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Conclusions and Future Directions
• Size matters 

– Optimize not only the network weights, but also the network size 
– Today: size = number of neurons or number of parallel networks 
– Tomorrow: size = number of layers + number of neurons per layer 

• Regularization matters 
– Use “positively homogeneous regularizer” of same degree as network 
– How to build a regularizer that controls number of layers + number of 

neurons per layer 

• Not done yet 
– Checking if we are at a local minimum or finding a descent direction 

can be NP hard 
– Need “computationally tractable” regularizers



More Information,

Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 

Center for Imaging Science @ Johns Hopkins University 
http://www.cis.jhu.edu 

Thank You!
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