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* Deep learning glves ~ 10% |mprovement on ImageNet
— 1.2M images : : s ; ' :
1000 categories

— 60 million
parameters
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[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12. ’_
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR’14.
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML'14. 1 AxG l \T G



Impact of Deep Learning in Computer Vision

- 2012-2014 classification results in ImageNet CNN

e 2015 results: MSR under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna




Transfer from ImageNet to Other Datasets

« CNNs + SMVs [1] e
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[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks CVPR’14 ey et
[3] Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR’'14 AGING



Transfer from Classification to Other Tasks

« CNNs + SVMs for object detection [1,2]
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* CNNs for pose estimation [3] and semantic segmentation [4]

[1] Girshick, Donahue, Darrell and Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’14

[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. ICLR ALy e
[3] Tompson, Goroshin, Jain, LeCun, Bregler. Efficient Object Localization Using Convolutional Networks. CVPR’15 AGING
[4] Pinheiro, Collobert, Dollar. Learning to Segment Object Candidates. NIPS’15 AR AL



Why These Improvements in Performance?

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.

Features are learned rather than hand-crafted
mean AP

More layers capture more invariances [1]
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More data to train deeper networks zij“/—/f
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More computing (GPUs) 37 1 15 19 23

level

Better regularization: Dropout

New nonlinearities
— Max pooling, Rectified linear units (ReLU)
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Theoretical understanding of deep networks remains shallow




Theoretical Results on Deep Learning

 Approximation, depth, width, and invariance theory

— Perceptrons and multilayer feedforward networks are universal
approximators: Cybenko ‘89, Hornik 89, Hornik ‘91, Barron 93

— Scattering networks are deformation stable for Lipschitz non-
linearities: Bruna-Mallat ’13, Wiatowski '15, Mallat ’16

 Generalization and regularization theory
— # training examples grows exponentially with network size: Barlett ‘03
— Distance and margin-preserving embeddings: Giryes 15, Sokolik ‘16

— Geometry, generalization bounds and depth efficiency: Montufar '15,
Neyshabur 15, Shashua '14 '15 ‘16

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.
[5] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872—-1886, 2013.

[6] Wiatowski, Bolcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv 2015.

[7] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016.

[8] Bartlett and Maass. Vapnik-Chervonenkis dimension of neural nets. The handbook of brain theory and neural networks, pages 1188— 1192, 2003.
[9] Giryes, Sapiro, A Bronstein. Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? arXiv:1504.08291.

[10] Sokolic. Margin Preservation of Deep Neural Networks, 2015

[11] Montufar. Geometric and Combinatorial Perspectives on Deep Neural Networks, 2015.

[12] Neyshabur. The Geometry of Optimization and Generalization in Neural Networks: A Path-based Approach, 2015.
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Theoretical Results on Deep Learning

e Earlier work on optimization theory

No spurious local optima for linear networks (Baldi & Hornik '89)
Backpropagation fails to converge for nonlinear networks (Brady '89)

Back propagation converges for linearly separable data (Gori & Tesi
'91'92), but it get stuck in other cases (Frasconi '97)

 Recent work on optimization theory

Convex neural networks in infinite number of variables: Bengio ‘05
Networks with many hidden units can learn polynomials: Andoni‘14
The loss surface of multilayer networks: Choromanska 15

Attacking the saddle point problem: Dauphin ‘14

Effect of gradient noise on the energy landscape: Chaudhari ‘15
Guaranteed training of NNs using tensor methods: Janzamin ’15
Guarantees of global optimality in neural network training: Haeffele ‘15




Motivations and Goals of this Tutorial

* Motivation: Deep networks have led to dramatic
improvements in performance for many tasks, but the
mathematical reasons for this success remain unclear.

* Goal: Review very recent work that aims at understanding
the mathematical reasons for the success of deep networks.

 What we will do: Study theoretical questions such as
— Can we ensure that the learned representations are globally optimal?
— What properties of images are being captured/exploited by DNNs?
— How should DNNs be regularized to ensure generalization properties?

 What we will not do: Show X% improvement in performance
for a particular application.




Tutorial Schedule

09:00-09:15: René Vidal - Introduction

09:15-10:00: René Vidal - Global Optimality and
Regularization in Deep Learning

10:00-10:30: Coffee Break

10:30-11:15: Raja Giryes - Data Structure Based Theory of
Deep Learning

11:15-12:00: Raja Giryes- Generalization Bounds for Deep
Learning

12:00-12:15: Discussion




