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CUTTING EDGE PERFORMANCE
IN MANY OTHER APPLICATIONS

* Disease diagnosis [Zhou, Greenspan & Shen, 2016].

* Language translation [Sutskever et al., 2014].
* Video classification [Karpathy et al., 2014].
* Handwriting recognition [Poznanski & Wolf, 2016].

e Sentiment classification [Socher et al., 2013].

* Image denoising [Remez et al., 2017].
* Depth Reconstruction [Haim et al., 2017].
e Super-resolution [Kim et al., 2016], [Bruna et al., 2016].

* many other applications...



DEEP NEURAL NETWORKS (DNN)

* One layer of a neural net

V e R% X vy Y (VX) e R™
X is a linear P is a non-linear
operation function

* Concatenation of the layers creates the whole net
OXL X%, LX) =@ XHX?) LX)

VeRd > Xt ¥ Xt v XK



CONVOLUTIONAL NEURAL NETWORKS (CNN)

VX
VeR X (1) Y(VX) € R™
X is a linear F is a non-linear
operation function

* In many cases, X is selected to be a convolution.
* This operator is shift invariant.

* CNN are commonly used with images as they are
typically shift invariant.



THE NON-LINEAR PART

e Usuallyyp = gof. X Y
* f is the (point-wise) activation function
RelLU Sigmoid . Hyperbolic
f(x) = max(x,0) (x) = I tangent
fe0 = 1+e* f(x) = tanh(x)

* g is a pooling or an aggregation operator.

Vi W e Ve

Max pooling Mean pooling lp pooling

1 PINTY
max l/; _z 74 zi_lvi
Nnédi=1 B
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What is the role
of pooling?




Generalization
error depends

Deep learning
can be viewed on the DNN

as a metric input margin
learning.




ASSUMPTIONS — GAUSSIAN WEIGHTS

XL .., XY .. XK are
random Gaussian matrices

* Infusion of random weights reveals internal
properties of a system




ASSUMPTIONS — NO POOLING

VeRd> Xt> @ Xty XK. o

Y is an element wise
. . . max(v,0) tanh(v) —
activation function the

* Pooling provides invariance

»We assume that all equivalent points in the data were
merged together and omit this stage.

» Reveals the role of the other components in the DNN.



ASSUMPTIONS — LOW DIMENSIONAL DATA

Y is a low dimensional set

10




Gaussian mean
width is a good
measure for the
complexity of
the data.




WHAT HAPPENS TO SPARSE DATA IN DNN?

* Let Y be sparsely represented data

Y
e Example: Y ={V € R3:[|[V]l, < 1} >|<

 YX is still sparsely represented data

YX
e Example:YX ={V € R3:3W € R3,V = WX, ||[W]||, < 1}

* Y (YX) not sparsely represented W
e But is still low dimensional




GAUSSIAN MEAN WIDTH

e Gaussian mean width:

w(¥)=Esup(V-W,g), g~N(0I).
VWEY

g
w

The width of
the set Y in
the direction 2

of g:

Ve



MEASURE FOR LOW DIMENSIONALITY

e Gaussian mean width:

w)=Esup(V-W,g), g~N(0I).
V.WeY

e w%(Y) is a measure for the dimensionality of the
data.

* Examples:




GAUSSIAN MEAN WIDTH IN DNN

.y - ]Rd X is a linear

F is a non-linear
operation YX C ]Rm function (VX) = Rm

2(Y)

Theorem 1: small imply w?(Y) =~ w* (P (VX))

_—m

W 1t is sufficient to provide proofs only for a single layer




DNN keep
the
important
information
of the data.

BN




ASSUMPTIONS

Xisa Y is an
random element wise

Gaussian activation
matrix function

1 y
1+e™™

max(v, 0) ‘ tanh(v)

m = 0(6 %w?(Y))



ISOMETRY IN A SINGLE LAYER

VX II)

Theorem 2: (- X) is a 0-isometry in the Gromov-
Hausdorff sense between the sphere $¢~1 and the
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2016].

* If two points belong to the same tile
then their distance < &

Each layer of the network keeps the
main information of the data

The rows of X create a tessellation of the space.
» This stands in line with [Montufar et. al. 2014]
» This structure can be used for hashing 18



DNN AND HASHING

* Asingle layer performs a locally sensitive hashing.

* Deep network with random weights may be
designed to do better |

* |t is possible to train DNN for hashing, which
provides cutting-edge results
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DNN STABLE EMBEDDING

Theorem 3: There exists an algorithm <A such that

w(Y) ;
[V —AQ@VX)| <O0|—]=0(5")
Vm
> After K layers we have an error 0(K63)
»Stands in line with

»DNN keep the important information of the data



RECOVERY FROM DNN OUTPUT

!

. - " " § & " l.




Gaussian
< weights are

good for
classifying the
average points
in the data.




ASSUMPTIONS

Y is the RelLU

max(v, 0) ‘

Gaussian
matrix

m=0 (8_4(»4(1’))



DISTANCE DISTORTION

o

Theorem 4:forV,W €Y

VI [|W
! ”72 L sin 2v,w)

The smaller (V, W) the
smaller the distance we get
between the points
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ANGLE DISTORTION

Theorem 5:forV,IW €Y Behavior of (¥ (VX), p(WX))

A

[,/ .2]

1
— ; (Sin L(V, W)

[ /2, cos 1 (1/7)]

l 6l {r/4,0.71]

—E [L(Y(VX),¥(WX))]
- 0.8/(V,W)
- 0.95/(V, W)

1 15 2 25 3 35
[V, W)
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DISTANCE AND ANGLES DISTORTION

Points with small angles between them become
closer than points with larger angles between them



POOLING AND CONVOLUTIONS

* We test empirically this behavior on convolutional
neural networks (CNN) with random weights and
the MNIST, CIFAR-10 and ImageNet datasets.

* The behavior predicted in the theorems remains
also in the presence of pooling and convolutions.

27



TRAINING DATA SIZE

e Stability in the network implies that close points in the
input are close also at the output

Having a good network for an &-net of the input set Y
guarantees a good network for all the pointsin Y.

Using Sudakov minoration the number of data points

is
exp(w?(Y)/&?).

Though this is not a tight bound, it introduces the

Gaussian mean width w (Y) as a measure for the

complexity of the input data and the required number

of training samples.
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Important goal
of training:
Classify the

boundary points
between the

different classes
in the data.




ROLE OF TRAINING

* Having a theory for Gaussian weights we test the
behavior of DNN after training.

* We looked at the MINIST, CIFAR-10 and ImageNet
datasets.

* We will present here only the ImageNet results.

* We use a state-of-the-art pre-trained network for
ImageNet

* We compute inter and intra class distances.

30



INTER BOUNDARY POINTS DISTANCE RATIO

V is the output of VV and Z the closest
point to I/ at the output from a
different class.

I/ is a random point and
W its closest point from
a different class.

IV-Z|
Iw-V|

Compute the distance ratio:

31



INTRA BOUNDARY POINTS DISTANCE RATIO

l
Let V be a point and W

its farthest point from
the same class.

Let I/ be the output of V and Z the
farthest point from V at the output
from the same class

IV-Z|
Iw-V

Compute the distance ratio:

32



BOUNDARY DISTANCE RATIO

Inter-class Intra-class

- Fiandom
——Trained




AVERAGE POINTS DISTANCE RATIO

L, /2w e e

Class |

Class Il

Class Il

Class |

V,W and Z are three V,W and Z are the outputs of V, W

random points and Z respectively.

\V-w| ||IV-Z|
\v-w|’ |v-Z||

Compute the distance ratios:

34



AVERAGE DISTANCE RATIO

Inter-class Intra-class

—Random —Random
——Trained ——Trained

v —Z||
IV —Zll




ROLE OF TRAINING

* On average distances are preserved in the trained
and random networks.

* The difference is with respect to the boundary
points.

* The inter distances become larger.

* The intra distances shrink.

36



Deep learning
can be viewed
as a metric
learning.




V € RY

ASSUMPTIONS

X is fully Y is the
connected hyperbolic tan
and trained

<



METRIC LEARNING BASED TRAINING

Vi€ R X

* Cosine Objective:

min 2 Vl V] 9. .
x1.x2 A7

L,JETraining Set

) ; o /
\ | ViTV}-

A+(1-4) i,] € same class

2

e
|

IVill][v;|
\ —l i,j € dif ferent clas

L] —




METRIC LEARNING BASED TRAINING

P,

1 Lje same average intra ije same

. = "7~ class __ ) class distance 7~ class
j 1 ije different Y average inter ije dif ferent

class class distance class

* Euclidean Objective:

i > [l -l - g,

Set l,JETraining

: Set
o IR o
| |Neighb0urs| Z ‘HVL B V/H B HVl B ‘/JH‘
ViVjare

neighbours
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ROBUSTNESS OF THIS NETWORK

 Metric learning objectives impose stability
e Similar to what we have in the random case
* Close points at the input are close at the output

* Using the theory of (T, €)-robustness
, the generalization error scales as

T

JL
T is the covering number and L = |Training set]|.
* Also here, the number of training samples scales as

exp(w?(Y)/e?).

41



RESULTS

e Better performance with less training samples

#Training/class

original pixels

\ININYE

LeNet
Dataset

Proposed 1
Proposed 2

Faces in
the wild
ROC curve

30
81.91%
87.51%
92.32%
94.14%

50 70
86.18% 86.86%
89.89% 91.24%
94.45% 95.67%
95.20% 96.05%

——HD-LBP
——deepFace
DML
——proposed

100
88.49%
92.75%
96.19%
96.21%
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Generalization
error depends
on the DNN

input margin




ASSUMPTIONS
x1 v xt xK o

softmax/
Two : . .
€ Y general non-linearity linear 74

Classes (ReLU, pooling,...) classifier

Input Space Feature Space




CLASSIFIER TYPES

* Denote the output of the DNN by Z.

e Linear classifier W7 is og‘l thle form
ass

ZWT = b,
Class 2
where b is a certain threshold.

e Softmax classifier predicts the probability of class i:
Zi

o(Z);




* Weight decay: penalty on t

CLASSIFICATION OBJETIVES

Denote the output of the DNN by Z.
Denote by t; the expected output of Z;

Categorical cross entropy:
Y log(Z;)t; .

Hinge loss:

maX(O,l — Zi ti)

)X’

ne weight matrices,




GENERALIZATION ERROR (GE)

* In training, we reduce the classification error
Ctraining Of the training data as the number of

training examples L increases.

* However, we are interested to reduce the error
Y5t Of the (unknown) testing data as L increases.

* The difference between the two is the
generalization error

GE = ftraining — Lrest
= |t is important to understand the GE of DNN

47



ESTIMATION ERROR

* The estimation error of a function f by a neural

networks scales as
/[

Smoothness of Cf
approximated kN

function

Input

) 0 (— log(L)) dimension

Number of Number of

neurons in the training
DNN ENES

48



REGULARIZATION TECHNIQUES

Weight decay — penalizing DNN weights [Krogh & Hertz, 1992].

Dropout - randomly drop units (along with their connections)
from the neural network during training [Hinton et al., 2012],
[Baldi & Sadowski, 2013], Srivastava et al., 2014].

DropConnect — dropout extension [\Wan et al., 2013]
Batch normalization [loffe & Szegedy, 2015].

Stochastic gradient descent (SGD) [Hardt, Recht & Singer,
2016].

Path-SGD [Neyshabur et al., 2015].

And more [Rifai et al., 2011], [Salimans & Kingma, 2016], [Sun et
al, 2016].
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A SAMPLE OF GE BOUNDS —VC DIMENSION

* The VC dimension of a network with RelLUs is
O(K * DNN params)

* Thus,

log(L)
GE < 0O| |DNN params:K - T
\




A SAMPLE OF GE BOUNDS — CAPACITY

* Bounding the GE using the capacity of the
network:

GE < _zKuWuzﬂuxtuzz

* Analysis relies on the Rademacher complexity of
the network



A SAMPLE OF GE BOUNDS

e Using the VC dimension it can be shown that

log(L)
L

GE<O - K -

* The GE was bounded also by the DNN weights
1
GE < 7= Iwll; l_[HX‘sz

* Note that in both cases the GE grows W|th the depth

52



DNN INPUT MARGIN

* Theorem 6: If for every input margin yin(Vi) >y
then GE < \/NY/Z(Y)/\/Z

* Ny /o (Y) is the covering number of the data Y.

* Ny /2 (Y) gets smaller as y gets larger.

* Bound is independent of depth.j@

* Our theory relies on the
robustness framework




INPUT MARGIN BOUND

e Maximizing the input margin directly is hard

* Our strategy: relate the input margin to the output
margin yout(V‘) and other DNN properties

* Class 1

e Theorem 7: A

v Vi > Vout(Vi)
m( ) i‘éguﬁm’)”

Vout(Vi)
~ Ma<i<xlX*l,

> Vout(Vi)_
My<i<kll X 2




OUTPUT MARGIN

* Theorem 7: yin(Vi) =

2 - 2 - *  Class 1
HlSiSK”Xlnz H1si5K”Xl”F R

* Output margin is easier to
maximize — SVM problem

* Maximized by many cost
functions, e.g., hinge loss.




GE AND WEIGHT DECAY

Vout(Vi) > yout(Vi)

ilégunvu ](V)H Mi<i<kll X,

* Theorem 7: yin(Vi) =

> Vout(Vi)

* Class 1
* Class 2

* Bounding the weights
increases the input margin

* Weight decay regularization
decreases the GE

* Related to regularization used
by




JACOBIAN BASED REGULARIZATION

Vout(Vi) > yout(Vi)

cupl[r [~ MasierdXT;

e Theorem 7: yin(Vi) =

> Vout(Vi).
My <i<kll Xl -

* J(V) is the Jacobian of the
DNN at point I/.

* J(-) is piecewise constant.

e Using the Jacobian of the
DNN leads to a better bound.

=) New regularization technique.




RESULTS

e Better performance with less training samples

256 samples 512 samples 1024 samples
: loss #layers noreg. WD LM noreg. WD IM noreg. WD LM
vl e —/ Y T
hinge y 88.37 89.88 93.83 9399 9462 9549 9579 96.57 97.45
Dataset [Eueiwe | 8722 8931 9322 9341 9397 9576 9546 9645 97.60

CCE 88.45 8845 9277 9229 93.14 9525 9538 9579 96.89

CCE 3 89.05 89.05 93.10 91.81 93.02 9532 9511 9586 97.14

CCE: the categorical cross entropy.
* WD: weight decay regularization.
* LM: Jacobian based regularization for large margin.

* Note that hinge loss generalizes better than CCE and
that LM is better than WD as predicted by our theory.
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INVARIANCE

* Our theory extends also to study of the relation
between invariance in the data and invariance in
the network

* We have proposed also a new strategy to enforce
invariance in the network

59



INVARIANCE

* Designing invariant DNN reduce the GE

Table 1: Classification accuracy [%]| on CIFAR-10.
number of training samples
2000 5000 10000 20000 50000

Inv. Reg. 69.32 79.08 86.69 8814 94.50
Noreg. 7059 7840 86.05
+ avg.

Inv. Reg. 70.71 7965 RE.96
+ avg.




DNN may
solve
optimization
problems




INVERSE PROBLEMS

* WearegivenV =Z7ZA + E

Pl N e

Given set of Unknown -
measurements signal

e Standard technique for recovery
mZinIIV—ZAIIZ s.t Ze€Y

N\

. UnconStrainEd fOrm Z resides in a low
mzln”V — ZA”% 4 Af(Z) dimensional set Y

N\

Regularization f is a penalty
parameter function

62



£1 MINIMIZATION CASE

 Unconstrained form
mZinIIV — ZA||5 + Al|Z]|4

* Can be solved by iterative shrinkage and
thresholding technique (ISTA)

Zt+1 Ilj)l[,l(zt i H(V _ ZtA)AT)

Soft . U is the
thresholdmg_l step size

operation



ISTA CONVERGENCE

* Reconstruction mean squared error (MSE) as a
function of the number of iterations
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LISTA

* ISTA
Z'" =y, (2 + p(v — 2tA)AT)

* Rewriting ISTA:
Z1 =y, ,(Z +uva’)

e Learned ISTA (LISTA):
7" =, (ZtX +VS)

Learned
operators



LISTA CONVERGENCE

* Replacing I — pAA" and uA" in ISTA with the learned
X and S improves convergence

e Extensions to other models

66



LISTA AS A NEURAL NETWORK

Linear
operators S
VeRd X + 1) Z
V=ZA+EF |
|- \noise Y is a non- An estimate
operator linear of /

operation

&




£o-MINIMIZATION

Iterative hard is the
thresholding I — pAA" .

step size
algorithm (IHT)

Ve R4 pAt o+ ¥ Z
. A k-sparse
V=244 E Y is the hard estimate of Z.
Is a thresholding Aim at solving
G EIEE  operation: keeps mjn‘ V—7A ‘
vecotr the largest SO ,
k entries s-t |2 ‘0 =K

68
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£1-MINIMIZATION

Projected
gradient descent I — uAAT U is th.e
algorithm for €4 step size
minimization
VeR uA’ + Y 7
V=2A4FL Y projects onto Estimate of ~.
the £, ball Aim at solving
& mjn‘ V — ZAH
r R z '
S.t ‘ZH <R
|




UNCONSTRAINED £1-MINIMIZATION

Iterative soft

. . T U is the
thresholding I'—pAa step size
algorithm (ISTA)
VeR:—s pAT & ¥ Z
Soft
Step size 4 obeys thresholding
% > || Al operation
A A7 Minimizer of

min|lv ~ 24| + 4)1Z]



ISTA CONVERGENCE

* Reconstruction mean squared error (MSE) as a
function of the number of iterations
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LEARNED ISTA (LISTA)

Learned
linear S
operators
V e R X + Y Z
- NYolj
V B ZA + E thresholding An estimate
operation of 7
-2 |

o




LISTA CONVERGENCE

* Replacing I — pAA" and uA" in ISTA with the learned
X and S improves convergence

e Extensions to other models

73



PROJECTED GRADIENT DESCENT (PGD)

I—uAAT K is the

step size
V e R4 77 L Y Z

V=ZA+E Y projects onto Estimate of Z.
the set ¥’ Aim at solving

mzinHV — ZA||
s.t. f(Z) <R

f(Z) =R




THEORY FOR PGD

* Theorem 8: Let Z € R%, f:R? — R a proper
function, f(Z) < R, C¢(Z) the tangent cone of f

at point x, A € Rdxm a random Gaussian matrix
and V' = ZA + E. Then the estimate of PGD at
iteration t, Z¢, obeys

12¢ - z|| < (xsp) 111,

where p = sup U(l — uAADOHW?T
UWEeCr(Z)NBE

and kr = 1if f isconvex and ks = 2 otherwise.



PGD CONVERGENCE RATE

= sup U(l — uAA"W? is the convergence
UWEeCs(Z)nB4
rate of PGD.

Let w be the Gaussian mean width of Cf(Z) N B4,

1 1 g Vm-w
A thenp=1—0 ( e )

1 w
If u = Ethenp =0 (\/—m)
For the k-sparse model w? = O(klog(d))

For GMM with k Gaussians w? = 0(k).

How may we cause w to become smaller for having a
petter convergence rate?

If u =

76



INACCURATE PROJECTION

* PGD iterations projects onto Y = {Z:f(Z) < R}.

 Smaller Y = Smaller w.

= Faster convergence as
p=1-0(7)or0 ()

* Let us assume that our signal belongs to a smaller set
Y ={Z:f(Z) < R} with® K w.

* |deally, we would like to project
onto Y instead of Y.

* This will lead to faster convergence.

 What if such a projection is not feasible?

Y

P

Y

77



INACCURATE PROJECTION

 We will estimate the projection onto Y by
* Alinear projection P
* Followed by a projection onto Y

* Assumptions:
* lleoy(ZP)-Z]| < €

Projection of the target vector Z
onto P and thenonto Y

78



INACCURATE PGD (IPGD)

(I—ﬂAAT)P U is the

step size

V e R —uA"™P— % () Z

V=ZA+E

Y projects onto Estimate of Z.
the set Y Aim at solving

mzinHV — ZA||
s.t. f(Z) <R

Y




THEORY FOR IPGD

e Theorem 9: Let Z € R?, f: R% — R a proper convex*
function, f(Z) < R, C'f(Z) the tangent cone of f at
point Z, A € R¥*™ 3 random Gaussian matrix and V
= /A + E. Then the estimate of IPGD at iteration ¢,
7t obeys

1—pp

where p,, = sup UP(l — uAA"PW?T
UWEeCr(Z)nBE
and € = (2 + pple.

*We have a version of this theorem also when f is non-proper or non-convex function  *



CONVERGENCE RATE COMPARISON

* PGD convergence:

(p)°
* IPGD convergence:
1— (pp)t
(pp)* (2 + pp)e
1—pp

(©)
(pp)t+€ — (pp)t < (p)t

(a)

(b)

(c) Faster convergence as pp < p (because w, < w).



MODEL BASED COMPRESSED SENSING

* Y is the set of sparse vectors with sparsity patterns
that obey a tree structure.

* Projecting onto Y Improves convergence !
rate compared to projecting onto the set
of sparse vectors Y . 05 0.5

* The projection onto Y is more
demanding than onto Y. 025 025 025 0.25

* Note that the probability of selecting atoms from
lower tree levels is smaller than upper ones.

P will be a projection onto certain tree levels — zeroing
the values at lower levels.
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MODEL BASED COMPRESSED SENSING

m—— PED K
— GO ree

m—— |PED 1 tree level
p' - ====|PGD 2 tree lavels
Tom= = PGED 3 tree levels
== = |PGD 4 tree lovels
== =IPGD changing leveals |

10

1 :5 20 25 ¥ 35
t (Iteration Number)

3o

Non-zeros picked
entries has zero mean
random Gaussian
distribution with
variance:

- 1 at first two levels

- 0.52 at the third level
- 0.22 at the rest of
the levels
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SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in a 2-times redundant DCT dictionary such that:

* We set P to be a pooling-like operation that keeps
in each window of size 3 only the largest value.
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SPECTRAL COMPRESSED SENSING

I E;Z'III EI:-.:II:' Zald SIII::ID :15.IIIIZ' 4III;1'EI 4E-:ZII1' EJ:I.II.“-:I
t (Iteration Number)




SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in a 4-times redundant DCT dictionary such that:

in each window of size 5 only the largest value.
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SPECTRAL COMPRESSED SENSING

e PGD
== |PGD

LS.
-—_—_

150 200 250 300
t (Iteration Number)




LEARNING THE PROJECTION

* If we have no explicit information about Y it might
e desirable to learn the projection.

* Instead of learning P, it is possible to replace
(I — uAA")P and uA" P with two learned matrices
S and X respectively.

* This leads to a very similar scheme to the one of
LISTA and provides a theoretical foundation for the
success of LISTA.
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Learned
linear
operators

V € R

V=ZA+E
Y

LEARNED IPGD

S

+ Y

Y projects onto
the set YV

Z

Estimate of Z.
Aim at solving

mzinHV — ZA||
s.t. f(Z) <R



LISTA

Learned
linear S
operators
VeR? X + ), Z
Y is a proximal .
Y _
YU) = mmHV ZA|
argmlnHU ZH
ZeRd +Af(2)

+Af(Z)



LISTA MIXTURE MODEL

e Approximation of the projection onto ¥;
with one linear projection may not
be accurate enough.

 This requires more LISTA layers/iterations.

* Instead, one may use several LISTA networks,
where each approximates a different part of X

* Training multiple LISTA networks
accelerate the convergence further. ~‘

alad
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LISTA MIXTURE MODEL

10"

—ISTA
——LISTA ]
- — LISTA-MM | |

E3
<
|
al
]
|
>
|
Kl
Ty
N
<
_|_
Al
g
|
>

30 40 50 60 70 80 90
t (iteration number)




RELATED WORKS

* In it is shown that a learning
may give a gain due to better preconditioning of A.

° In a relation to the restricted
isometry property (RIP) is drawn

* In a connection is
drawn to approximate message passing (AMP).

* All these works consider only the sparsity case
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Generalization
error depends

Deep learning
can be viewed on the DNN

as a metric input margin
learning.
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QUESTIONS?
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