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CUTTING EDGE PERFORMANCE 
IN MANY OTHER APPLICATIONS

• Disease diagnosis [Zhou,  Greenspan & Shen, 2016].

• Language translation [Sutskever et al., 2014].

• Video classification [Karpathy et al., 2014].

• Handwriting recognition [Poznanski & Wolf, 2016].

• Sentiment classification [Socher et al., 2013].

• Image denoising [Remez et al., 2017].

• Depth Reconstruction [Haim et al., 2017].

• Super-resolution [Kim et al., 2016], [Bruna et al., 2016].

• many other applications…
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DEEP NEURAL NETWORKS (DNN)

• One layer of a neural net

• Concatenation of the layers creates the whole net

Φ(𝑋1, 𝑋2, … , 𝑋𝐾) = 𝜓 𝜓 𝜓 𝑉𝑋1 𝑋2 … 𝑋𝐾

𝑉 ∈ ℝ𝑑 𝑿 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎

𝑋 is a linear 
operation

𝝍 is a non-linear 
function

𝑉𝑋

𝑽 ∈ ℝ𝒅 𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍
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CONVOLUTIONAL NEURAL NETWORKS (CNN)

• In many cases, 𝑋 is selected to be a convolution.

• This operator is shift invariant.

• CNN are commonly used with images as they are 
typically shift invariant. 

𝑽 ∈ ℝ𝒅 𝑿 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎

𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝑉𝑋
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THE NON-LINEAR PART

• Usually 𝜓 = 𝑔 ∘ 𝑓.

• 𝑓 is the (point-wise) activation function

• 𝑔 is a pooling or an aggregation operator. 

ReLU 
𝑓(x) = max(x, 0)

Sigmoid 

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic 
tangent 

𝑓 𝑥 = tanh(𝑥)

𝑉1 𝑉2 𝑉𝑟𝑉3 𝑉4 … … … …

max
𝑖

𝑉𝑖

Max pooling Mean pooling

1

𝑛
 

𝑖=1

𝑛

𝑉𝑖

𝑙𝑝 pooling
𝑝

 
𝑖=1

𝑛

𝑉𝑖
𝑝

𝑿 𝝍
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WHY DNN WORK?

What is so 
special with the 
DNN structure? What is the role of 

the depth of DNN?

What is the role 
of pooling?

What is the role of 
the activation 

function?

How many 
training samples 

do we need?

What is the 
capability of DNN?

What happens to the 
data throughout the 

layers?
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OUTLINE

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems
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• Infusion of random weights reveals internal 
properties of a system

ASSUMPTIONS – GAUSSIAN WEIGHTS

𝑉 ∈ ℝ𝑑 𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍

𝑋𝑖 , … , 𝑋𝑖, …,𝑋𝐾 are 
random Gaussian matrices

Compressed 
Sensing

Phase 
Retrieval

Sparse 
Recovery

Deep 
Learning

[Saxe et al. 
2014] 

[Dauphin et 
al. 2014] 

[Choromanska
et al. 2015] [Arora et 

al. 2014] 
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• Pooling provides invariance [Boureau et. al. 2010, 
Bruna et. al. 2013].

We assume that all equivalent points in the data were 
merged together and omit this stage.

Reveals the role of the other components in the DNN.

ASSUMPTIONS – NO POOLING

𝑽 ∈ ℝ𝒅 𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍

𝜓 is an element wise 
activation function

max(v, 0) 1

1 + 𝑒−𝑥
tanh(𝑣)
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ASSUMPTIONS – LOW DIMENSIONAL DATA

Υ is a low dimensional set

𝑽 ∈ 𝜰 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

Gaussian 
Mixture 
Models 
(GMM)

Signals with 
Sparse 

Representations

Low 
Dimensional 

Manifolds

Low Rank 
Matrices
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Gaussian 
Mean 
Width

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems
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WHAT HAPPENS TO SPARSE DATA IN DNN?

• Let Υ be sparsely represented data

• Example: Υ = {𝑉 ∈ ℝ3: 𝑉 0 ≤ 1}

• ΥX is still sparsely represented data

• Example: ΥX = {𝑉 ∈ ℝ3: ∃𝑊 ∈ ℝ3, 𝑉 = 𝑊𝑋, 𝑊 0 ≤ 1}

• 𝜓(ΥX) not sparsely represented

• But is still low dimensional

Υ𝑋

𝜓(Υ𝑋)

Υ
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GAUSSIAN MEAN WIDTH

• Gaussian mean width:
𝝎 𝜰 = 𝑬 𝐬𝐮𝐩

𝑽,𝑾∈𝜰
𝑽 − 𝑾, 𝒈 ,       𝒈~𝑵(𝟎, 𝑰).

𝑾

𝑽

𝜰

𝒈
The width of 
the set 𝜰 in 

the direction 
of 𝒈:
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MEASURE FOR LOW DIMENSIONALITY

• Gaussian mean width:
𝝎 𝜰 = 𝑬 𝐬𝐮𝐩

𝑽,𝑾∈𝜰
𝑽 − 𝑾, 𝒈 ,       𝒈~𝑵(𝟎, 𝑰).

• 𝝎𝟐 𝜰 is a measure for the dimensionality of the 
data.

• Examples:

If Υ ⊂ 𝔹𝑑 is a Gaussian 
Mixture Model with 𝑘
Gaussians then

𝝎𝟐 𝜰 = 𝑶(𝒌)

If Υ ⊂ 𝔹𝑑 is a data 
with 𝑘-sparse 
representations then
𝝎𝟐 𝜰 = 𝑶(𝒌 𝐥𝐨𝐠 𝒅)
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Theorem 1: small 
𝝎𝟐 𝜰

𝒎
imply 𝝎𝟐 𝜰 ≈ 𝝎𝟐 𝝍(𝑽𝑿)

GAUSSIAN MEAN WIDTH IN DNN

𝜰 ⊂ ℝ𝒅

𝑿 𝝍

𝝍(𝑽𝑿) ∈ ℝ𝒎
𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝜰𝑿 ⊂ ℝ𝒎

Small 𝝎𝟐 𝜰 Small 𝝎𝟐 𝝍(𝑽𝑿)

It is sufficient to provide proofs only for a single layer
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Stability
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ASSUMPTIONS

𝑋 is a 
random 

Gaussian 
matrix

𝜓 is an 
element wise 

activation 
function

𝑽 ∈ 𝜰

𝑽 ∈ 𝕊𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎𝑉𝑋𝑿

max(v, 0) 1

1 + 𝑒−𝑥
tanh(𝑣)

𝑚 = 𝑂 𝛿−6𝜔2 Υ
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ISOMETRY IN A SINGLE LAYER

Theorem 2: 𝜓(∙ 𝑋) is a 𝛿-isometry in the Gromov-
Hausdorff sense between the sphere 𝕊𝑑−1 and the 
Hamming cube [Plan & Vershynin, 2014, Giryes, Sapiro & Bronstein 2016].

𝑽 ∈ 𝕊𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎𝑉𝑋𝑋

• If two points belong to the same tile 

then their distance < 𝜹
• Each layer of the network keeps the 

main information of the data

The rows of 𝑋 create a tessellation of the space.
 This stands in line with [Montúfar et. al. 2014]
 This structure can be used for hashing 18



DNN AND HASHING

• A single layer performs a locally sensitive hashing.

• Deep network with random weights may be 
designed to do better [Choromanska et al., 2016].

• It is possible to train DNN for hashing, which 
provides cutting-edge results [Masci et al., 2012], 
[Lai et al., 2015].
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DNN STABLE EMBEDDING

𝑽 ∈ 𝕊𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎𝑉𝑋𝑿

Theorem 3: There exists an algorithm 𝒜 such that

𝑉 − 𝒜(𝜓(𝑉𝑋)) < 𝑂
𝜔 Υ

𝑚
= 𝑂 𝛿3

[Plan & Vershynin, 2013, Giryes, Sapiro & Bronstein 2016].

After 𝐾 layers we have an error 𝑂 𝐾𝛿3

Stands in line with [Mahendran and Vedaldi, 2015].

DNN keep the important information of the data
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RECOVERY FROM DNN OUTPUT

[Mahendran and Vedaldi, 2015].
21



DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

DNN with 
Gaussian 
Weights
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ASSUMPTIONS

𝑋 is a 
random 

Gaussian 
matrix

𝜓 is the ReLU
𝑉 ∈ Υ

𝑽 ∈ ℝ𝒅 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎𝑉𝑋𝑿

max(v, 0)

𝒎 = 𝑶 𝜹−𝟒𝝎𝟒 𝜰
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DISTANCE DISTORTION

𝑽 ∈ 𝜰 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎𝑉𝑋𝑿

Theorem 4: for 𝑉, 𝑊 ∈ Υ

𝜓(𝑉𝑋) − 𝜓(𝑊𝑋) 2 − 1
2 V − W 2

−
V W

𝜋
(sin ∠ V, W

∠ V, W

The smaller ∠ V, W the 
smaller the distance we get 
between the points
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ANGLE DISTORTION

𝑽 ∈ 𝜰 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎𝑉𝑋𝑋

Theorem 5: for 𝑉, 𝑊 ∈ Υ

cos ∠ 𝜓(𝑉𝑋), 𝜓(W𝑋) − cos ∠ V, W

−
1

𝜋
(sin ∠ V, 𝑊

Behavior of ∠ 𝜓(𝑉𝑋), 𝜓(𝑊𝑋)
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DISTANCE AND ANGLES DISTORTION

Points with small angles between them become 
closer than points with larger angles between them

𝑋 𝜓

Class II
Class I Class IIClass I
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POOLING AND CONVOLUTIONS

• We test empirically this behavior on convolutional 
neural networks (CNN) with random weights and 
the MNIST, CIFAR-10 and ImageNet datasets.

• The behavior predicted in the theorems remains 
also in the presence of pooling and convolutions. 

27



TRAINING DATA SIZE

• Stability in the network implies that close points in the 
input are close also at the output

• Having a good network for an 𝜀-net of the input set Υ
guarantees a good network for all the points in Υ.

• Using Sudakov minoration the number of data points 
is 

exp(𝜔2 Υ /𝜀2) .

• Though this is not a tight bound, it introduces the 
Gaussian mean width 𝜔 Υ as a measure for the 
complexity of the input data and the required number 
of training samples.

28



DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Role of 
Training

29



ROLE OF TRAINING

• Having a theory for Gaussian weights we test the 
behavior of DNN after training.

• We looked at the MNIST, CIFAR-10 and ImageNet
datasets.

• We will present here only the ImageNet results. 

• We use a state-of-the-art pre-trained network for 
ImageNet [Simonyan & Zisserman, 2014].

• We compute inter and intra class distances.
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Compute the distance ratio: 
 𝑽− 𝒁

𝑾−𝑽

INTER BOUNDARY POINTS DISTANCE RATIO

Class II
Class I

Class IIClass I

𝑾𝑽

𝑉 is a random point and 
𝑊 its closest point from 

a different class.  

 𝑽

 𝑉 is the output of 𝑉 and  𝑍 the closest 
point to  𝑉 at the output from a 

different class.

𝑾 − 𝑽
 𝒁

 𝑽 −  𝒁

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓
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Compute the distance ratio: 
 𝑽− 𝒁

𝑾−𝑽

INTRA BOUNDARY POINTS DISTANCE RATIO

Class IIClass I Class IIClass I

𝑾

𝑽

Let 𝑉 be a point and 𝑊
its farthest point from 

the same class.  

 𝑽

Let  𝑉 be the output of 𝑉 and  𝑍 the 
farthest point from  𝑉 at the output 

from the same class

𝑾 − 𝑽

 𝒁

 𝑽 −  𝒁

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓
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Inter-class Intra-class

 𝑉 −  𝑍

𝑊 − 𝑉

 𝑉 −  𝑍

𝑊 − 𝑉

BOUNDARY DISTANCE RATIO
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Compute the distance ratios: 
 𝑽−𝑾

𝑽−𝑾
,

 𝑽− 𝒁

𝑽−𝒁

AVERAGE POINTS DISTANCE RATIO

Class II

Class I

Class II
Class I𝒁

𝑽

𝑉, 𝑊 and 𝑍 are three 
random points

 𝑽

 𝑉,  𝑊 and  𝑍 are the outputs of 𝑉, 𝑊
and 𝑍 respectively.

𝑽 − 𝑾  𝒁

 𝑽 −  𝒁

𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

𝑾

 𝑽 − 𝑾

𝑽 − 𝒁

𝑊
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AVERAGE DISTANCE RATIO

Inter-class Intra-class

 𝑉 −  𝑊

𝑉 − 𝑊

 𝑉 −  𝑍

𝑉 − 𝑍
35



ROLE OF TRAINING

• On average distances are preserved in the trained 
and random networks.

• The difference is with respect to the boundary 
points. 

• The inter distances become larger.

• The intra distances shrink.
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

DNN as 
Metric 

Learning
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𝝍

ASSUMPTIONS

𝑋 is fully 
connected
and trained

𝝍 is the 
hyperbolic tan

𝑽 ∈ ℝ𝒅 𝝍𝑿𝟏 𝑿𝟐  𝑽

38



METRIC LEARNING BASED TRAINING

• Cosine Objective: 

min
𝑋1,𝑋2

 

𝑖,𝑗∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡

 𝑉𝑖
𝑇  𝑉𝑗

 𝑉𝑖
 𝑉𝑗

− 𝜗𝑖,𝑗

2

𝜗𝑖,𝑗 =
𝜆 + (1 − 𝜆)

𝑉𝑖
𝑇𝑉𝑗

𝑉𝑖 𝑉𝑗

𝑖, 𝑗 ∈ 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠

−1 𝑖, 𝑗 ∈ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑐𝑙𝑎𝑠

𝝍𝑽𝒊 ∈ ℝ𝒅 𝝍𝑉𝑋
𝑿𝟏 𝑿𝟐  𝑽𝒊

Classification 
term

Metric 
preservation term
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METRIC LEARNING BASED TRAINING

• Euclidean Objective: 

min
𝑋1,𝑋2

𝜆
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑆𝑒𝑡

 
𝑖,𝑗∈𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑆𝑒𝑡

𝒍𝒊𝒋
 𝑉𝑖 −  𝑉𝑗 − 𝒕𝒊𝒋 +

+ 1−𝜆
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

 
𝑉𝑖,𝑉𝑗 𝑎𝑟𝑒

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

 𝑉𝑖 −  𝑉𝑗 − 𝑉𝑖 − 𝑉𝑗

𝝍𝑽𝒊 ∈ ℝ𝒅 𝝍𝑉𝑋𝑿𝟏 𝑿𝟐  𝑽𝒊

𝒍𝒊𝒋 =  
𝟏 𝒊, 𝒋 ∈

𝒔𝒂𝒎𝒆
𝒄𝒍𝒂𝒔𝒔

−𝟏 𝒊, 𝒋 ∈
𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕

𝒄𝒍𝒂𝒔𝒔

𝒍𝒊𝒋 =

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒊𝒏𝒕𝒓𝒂
𝒄𝒍𝒂𝒔𝒔 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝒊, 𝒋 ∈
𝒔𝒂𝒎𝒆
𝒄𝒍𝒂𝒔𝒔

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒊𝒏𝒕𝒆𝒓
𝒄𝒍𝒂𝒔𝒔 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝒊, 𝒋 ∈
𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕

𝒄𝒍𝒂𝒔𝒔

Classification term

Metric learning term

40



ROBUSTNESS OF THIS NETWORK

• Metric learning objectives impose stability

• Similar to what we have in the random case

• Close points at the input are close at the output

• Using the theory of 𝑇, 𝜖 -robustness [Xu & Mannor, 
2012], the generalization error scales as

𝑇

𝐿

• 𝑇 is the covering number and 𝐿 = Training set .

• Also here, the number of training samples scales as 

exp(𝜔2 Υ /𝜀2) .
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RESULTS

• Better performance with less training samples
#Training/class 30 50 70 100

original pixels 81.91% 86.18% 86.86% 88.49%

LeNet 87.51% 89.89% 91.24% 92.75%

Proposed 1 92.32% 94.45% 95.67% 96.19%

Proposed 2 94.14% 95.20% 96.05% 96.21%

MNIST 
Dataset

Faces in 
the wild

ROC curve

[Huang, Qiu, Sapiro, 
Calderbank, 2015]
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Generali-
zation
Error

43



softmax/ 
linear 

classifier

ASSUMPTIONS

𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍

general non-linearity 
(ReLU, pooling,…) 

𝐓𝐰𝐨

𝐂𝐥𝐚𝐬𝐬𝐞𝐬 𝑾

𝒘𝑻𝜱 𝑿𝟏, 𝑿𝟐, … , 𝑿𝑲 = 𝟎

∈ 𝜰

Input Space Feature Space
44



CLASSIFIER TYPES

• Denote the output of the DNN by 𝑍.

• Linear classifier 𝑊𝑇 is of the form

𝑍𝑊𝑇 ≷ 𝑏,

where b is a certain threshold.

• Softmax classifier predicts the probability of class i:

𝜎 𝑍 𝑖 =
𝑒𝑍𝑖

𝑒𝑍1 + 𝑒𝑍2
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CLASSIFICATION OBJETIVES

• Denote the output of the DNN by 𝑍.

• Denote by 𝑡𝑖 the expected output of 𝑍𝑖

• Categorical cross entropy:

∑ log 𝑍𝑖 𝑡𝑖 .

• Hinge loss:
max 0,1 − 𝑍𝑖𝑡𝑖

• Weight decay: penalty on the weight matrices,

∑ 𝑋𝑖
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GENERALIZATION ERROR (GE)

• In training, we reduce the classification error 
ℓtraining of the training data as the number of 

training examples 𝐿 increases.

• However, we are interested to reduce the error 
ℓtest of the (unknown) testing data as 𝐿 increases.

• The difference between the two is the 
generalization error

GE = ℓtraining − ℓtest

• It is important to understand the GE of DNN
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ESTIMATION ERROR

• The estimation error of a function f by a neural 
networks scales as [Barron 1994].

𝑶
𝑪𝒇

𝑵
+ 𝑶

𝑵𝒅

𝑳
𝐥𝐨𝐠(𝑳)Smoothness of 

approximated 
function

Number of 
neurons in the 

DNN

Number of 
training 

examples

Input 
dimension
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REGULARIZATION TECHNIQUES

• Weight decay – penalizing DNN weights [Krogh & Hertz, 1992]. 

• Dropout - randomly drop units (along with their connections) 
from the neural network during training [Hinton et al., 2012], 
[Baldi & Sadowski, 2013], Srivastava et al., 2014].

• DropConnect – dropout extension [Wan et al., 2013]

• Batch normalization [Ioffe & Szegedy, 2015].

• Stochastic gradient descent (SGD) [Hardt, Recht & Singer, 
2016].

• Path-SGD [Neyshabur et al., 2015].

• And more [Rifai et al., 2011], [Salimans & Kingma, 2016], [Sun et 
al, 2016].
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A SAMPLE OF GE BOUNDS – VC DIMENSION

• The VC dimension of a network with ReLUs is
𝑂 𝐾 ∗ DNN params

• Thus,

GE ≤ 𝑂 DNN params ∙ 𝐾 ∙
log 𝐿

𝐿

[Bartlett et al. 1998, Shalev-Shwartz and Ben-
David, 2014, Bartlett 2017, Harvey et al. 2017].
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A SAMPLE OF GE BOUNDS – CAPACITY

• Bounding the GE using the capacity of the 
network: 

GE ≤
1

𝐿
2𝐾 𝑤 2  

𝑖

𝑋𝑖
2,2

• Analysis relies on the Rademacher complexity of 
the network
[Bartlett 1998, Neyshabur et al., 2015].
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A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙ 𝐾 ∙
log 𝐿

𝐿

[Bartlett et al. 1998, Shalev-Shwartz and Ben-David, 2014, 
Bartlett 2017, Harvey et al. 2017]

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2  

𝑖

𝑋𝑖
2,2

[Bartlett 1998, Neyshabur et al., 2015].

• Note that in both cases the GE grows with the depth
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DNN INPUT MARGIN

• Theorem 6: If for every input margin 𝛾𝑖𝑛 𝑉𝑖 > 𝛾

then 𝐺𝐸 ≤  𝑁𝛾/2(Υ) 𝐿

• 𝑁𝛾/2(Υ) is the covering number of the data Υ.

• 𝑁𝛾/2(Υ) gets smaller as 𝛾 gets larger.

• Bound is independent of depth.

• Our theory relies on the 
robustness framework 
[Xu & Mannor, 2012].

𝑉𝑖

𝑉𝑖

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INPUT MARGIN BOUND

• Maximizing the input margin directly is hard

• Our strategy: relate the input margin to the output 
margin 𝛾𝑜𝑢𝑡 𝑉𝑖 and other DNN properties

• Theorem 7:

𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

𝑉𝑖

Φ(𝑉𝑖)

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017] 54



OUTPUT MARGIN

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Output margin is easier to
maximize – SVM problem

• Maximized by many cost 
functions, e.g., hinge loss.

𝑉𝑖

Φ(𝑉𝑖)
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GE AND WEIGHT DECAY

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Bounding the weights 
increases the input margin

• Weight decay regularization
decreases the GE

• Related to regularization used 
by [Haeffele & Vidal, 2015]

𝑉𝑖

Φ(𝑉𝑖)

56



JACOBIAN BASED REGULARIZATION

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• 𝐽 𝑉 is the Jacobian of the 
DNN at point 𝑉.

• 𝐽 ∙ is piecewise constant.

• Using the Jacobian of the
DNN leads to a better bound.

• New regularization technique.
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RESULTS

• Better performance with less training samples

• CCE: the categorical cross entropy.

• WD: weight decay regularization.

• LM: Jacobian based regularization for large margin.

• Note that hinge loss generalizes better than CCE and 
that LM is better than WD as predicted by our theory.

MNIST 
Dataset

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INVARIANCE

• Our theory extends also to study of the relation 
between invariance in the data and invariance in 
the network

• We have proposed also a new strategy to enforce 
invariance in the network [Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INVARIANCE

• Designing invariant DNN reduce the GE

[Sokolić, Giryes, Sapiro & Rodrigues, 2017]
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DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems

Minimiza
tion by 

DNN
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INVERSE PROBLEMS

• We are given 𝑽 = 𝒁𝑨 + 𝑬

• Standard technique for recovery
𝐦𝐢𝐧

𝒁
𝑽 − 𝒁𝑨 𝟐 𝐬. 𝐭. 𝒁 ∈ 𝜰

• Unconstrained form

𝐦𝐢𝐧
𝒁

𝑽 − 𝒁𝑨 𝟐
𝟐 + 𝝀𝒇(𝒁)
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linear 
operator

noise 
Given set of 

measurements
Unknown 

signal

𝒁 resides in a low 
dimensional set 𝜰

𝒇 is a penalty 
function

Regularization 
parameter



ℓ𝟏 MINIMIZATION CASE

• Unconstrained form

𝐦𝐢𝐧
𝒁

𝑽 − 𝒁𝑨 𝟐
𝟐 + 𝝀 𝒁 𝟏

• Can be solved by iterative shrinkage and 
thresholding technique (ISTA)

𝒁𝒕+𝟏 = 𝝍𝝀𝝁 𝒁𝒕 + 𝝁 𝑽 − 𝒁𝒕𝑨 𝑨𝑻
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Soft 
thresholding

operation
- 𝝀𝝁 𝝀𝝁

𝝁 is the 
step size



ISTA CONVERGENCE

• Reconstruction mean squared error (MSE) as a 
function of the number of iterations
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𝑬 𝒁 −  𝒁𝒕

𝒕



𝑳𝑰𝑺𝑻𝑨

• ISTA

𝒁𝒕+𝟏 = 𝝍𝜆𝜇 𝒁𝒕 + 𝜇 𝑽 − 𝒁𝒕𝑨 𝑨𝑻

• Rewriting ISTA:

𝒁𝒕+𝟏 = 𝝍𝜆𝜇 𝒁𝒕 𝑰 − 𝝁𝑨𝑨𝑻 + 𝜇𝑽𝑨𝑻

• Learned ISTA (LISTA): 
𝒁𝒕+𝟏 = 𝝍𝜆 𝒁𝒕𝑿 + 𝑽𝑺

65

Learned 
operators



• Replacing 𝐼 − 𝜇𝐴𝐴𝑇 and 𝜇𝐴𝑇 in ISTA with the learned 
𝑋 and 𝑆 improves convergence [Gregor & LeCun, 2010]

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016].

LISTA CONVERGENCE

100

20

66

𝐸 𝑍 −  𝑍𝑡

𝒕
5020



LISTA AS A NEURAL NETWORK

𝑿 𝝍

𝑺

𝜓 is a non-
linear 

operation
𝒁 ∈ 𝜰

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

 𝒁

An estimate 
of 𝑍

+

Linear 
operators

67

linear 
operator

noise



ℓ0-MINIMIZATION

𝜓 is the hard 
thresholding

operation: keeps 
the largest 
k entries 

𝒁 is a
k−sparse
vecotr

𝑽 ∈ ℝ𝒅

𝑉 = 𝑍𝐴 + 𝐸

Iterative hard 
thresholding 

algorithm (IHT)

𝝁𝑨𝑻 𝝍

𝑰 − 𝝁𝑨𝑨𝑻

 𝒁+

𝜇 is the 
step size

A k-sparse 
estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡  𝑍
0

≤ k
68
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ℓ1-MINIMIZATION

𝜓 projects onto 
the ℓ1 ball

𝒁 𝟏 ≤ 𝑹

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬 Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡  𝑍
1

≤ 𝑅

Projected 
gradient descent 
algorithm for ℓ1

minimization

𝝁𝑨𝑻 𝝍

𝑰 − 𝝁𝑨𝑨𝑻

 𝒁+

𝑹

𝑹

−𝑹

−𝑹

𝜇 is the 
step size
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UNCONSTRAINED ℓ1-MINIMIZATION

𝝁𝑨𝑻

Soft 
thresholding

operation

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

 𝒁+

Step size 𝜇 obeys
1
𝜇

≥ 𝐴

Iterative soft 
thresholding 

algorithm (ISTA)

- 𝝀𝝁 Minimizer of 

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨 + 𝝀  𝒁
𝟏

𝝀𝝁

𝜇 is the 
step size

[Daubechies, Defrise & Mol, 2004], 
[Beck & Teboulle, 2009]
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ISTA CONVERGENCE

• Reconstruction mean squared error (MSE) as a 
function of the number of iterations
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𝒕



LEARNED ISTA (LISTA)

𝑿 𝝍

𝑺

𝒁 ∈ 𝜰

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

 𝒁

An estimate 
of 𝒁

+

Learned 
linear 

operators

[Gregor & LeCun, 2010]

Soft 
thresholding

operation
- 𝝀 𝝀
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• Replacing 𝐼 − 𝜇𝐴𝐴𝑇 and 𝜇𝐴𝑇 in ISTA with the learned 
𝑋 and 𝑆 improves convergence [Gregor & LeCun, 2010]

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016].

LISTA CONVERGENCE

100

20

73

𝐸 𝑍 −  𝑍𝑡

𝒕
5020



PROJECTED GRADIENT DESCENT (PGD)

𝝍 projects onto 
the set 𝜰

𝒇( 𝒁) ≤ 𝑹

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

𝝁𝑨𝑻 𝝍  𝒁+

𝒇(𝒁) ≤ 𝑹

𝜇 is the 
step size

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

𝒔. 𝒕. 𝒇( 𝒁) ≤ 𝑹
74
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THEORY FOR PGD

• Theorem 8: Let 𝑍 ∈ ℝ𝑑, 𝑓: ℝ𝑑 → ℝ a proper 
function, 𝑓 𝑍 ≤ 𝑅, 𝐶𝑓(𝑍) the tangent cone of 𝑓
at point 𝑥, 𝐴 ∈ ℝ𝑑×𝑚 a random Gaussian matrix 
and 𝑉 = 𝑍𝐴 + 𝐸. Then the estimate of PGD at 
iteration 𝑡,  𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜅𝑓𝜌
𝑡

𝑍 ,

where 𝜌 = sup
𝑈,𝑊∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇

and  𝜅𝑓 = 1 if 𝑓 is convex and 𝜅𝑓 = 2 otherwise.
[Oymak, Recht & Soltanolkotabi, 2016].
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PGD CONVERGENCE RATE
• 𝜌 = sup

𝑈,𝑊∈𝐶𝑓 𝑍 ∩ℬ𝑑
𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇 is the convergence 

rate of PGD.

• Let 𝜔 be the Gaussian mean width of 𝐶𝑓 𝑍 ∩ ℬ𝑑. 

• If 𝜇 =
1

𝑚+ 𝑑
2 ≃

1

𝑑
then 𝜌 = 1 − 𝑂

𝑚−𝜔

𝑚+𝑑
.

• If 𝜇 =
1

𝑚
then 𝜌 = 𝑂

𝜔

𝑚
. 

• For the 𝑘-sparse model 𝜔2 = 𝑂 𝑘log d

• For GMM with 𝑘 Gaussians  𝜔2 = 𝑂 𝑘 .

• How may we cause 𝜔 to become smaller for having a 
better convergence rate?

76



INACCURATE PROJECTION

• PGD iterations projects onto Υ =  𝑍: 𝑓  𝑍 ≤ 𝑅 .

• Smaller Υ ⇒ Smaller 𝜔.

Faster convergence as

𝜌 = 1 − 𝑂
𝑚−𝜔

𝑚+𝑑
or 𝑂

𝜔

𝑚

• Let us assume that our signal belongs to a smaller set 
 Υ =  𝑍:  𝑓  𝑍 ≤ 𝑅 with  𝜔 ≪ 𝜔. 

• Ideally, we would like to project 
onto  Υ instead of Υ.

• This will lead to faster convergence.

• What if such a projection is not feasible?

⇒ 𝒇( 𝒁) ≤ 𝑹

 𝒇( 𝒁) ≤ 𝑹

77
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INACCURATE PROJECTION

• We will estimate the projection onto  Υ by

• A linear projection 𝑃

• Followed by a projection onto Υ

• Assumptions:

• ℘Υ(𝑍𝑃)−𝑍 ≤ ϵ

Projection of the target vector 𝑍
onto P and then onto Υ

 𝒇( 𝒁) ≤ 𝑹
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INACCURATE PGD (IPGD)

𝝍 projects onto 
the set Υ

𝒇(𝒁) ≤ 𝑹

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

𝝁𝑨𝑻𝑷 𝝍

𝑰 − 𝝁𝑨𝑨𝑻 𝑷

 𝒁+

 𝜰

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

𝒔. 𝒕.  𝒇( 𝒁) ≤ 𝑹

 𝒇(𝒁) ≤ 𝑹
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THEORY FOR IPGD

• Theorem 9: Let 𝑍 ∈ ℝ𝑑, 𝑓: ℝ𝑑 → ℝ a proper convex* 
function, 𝑓 𝑍 ≤ 𝑅,  𝐶𝑓(𝑍) the tangent cone of 𝑓 at 
point 𝑍, 𝐴 ∈ ℝ𝑑×𝑚 a random Gaussian matrix and 𝑉
= 𝑍𝐴 + 𝐸. Then the estimate of IPGD at iteration 𝑡, 
 𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜌𝑃
𝑡 +

1 − 𝜌𝑃
𝑡

1 − 𝜌𝑃
 𝜖 𝑍 ,

where 𝜌𝑝 = sup
𝑈,𝑊∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈𝑃 𝐼 − 𝜇𝐴𝐴𝑇 𝑃𝑊𝑇

and   𝜖 = (2 + 𝜌𝑝)ϵ.
[Giryes, Eldar, Bronstein & Sapiro, 2016]

80*We have a version of this theorem also when 𝑓 is non-proper or non-convex function



CONVERGENCE RATE COMPARISON

• PGD convergence:

𝜌 𝑡

• IPGD convergence:

𝜌𝑃
𝑡 +

1 − 𝜌𝑃
𝑡

1 − 𝜌𝑃
(2 + 𝜌𝑝)𝜖

 ≃
(𝑎)

𝜌𝑃
𝑡 + 𝜖  ≃

(𝑏)

𝜌𝑃
𝑡  ≪

(𝑐)

𝜌 𝑡

(a)𝜖 is negligible compared to 𝜌𝑃

(b) For small values of 𝑡 (early iterations).

(c) Faster convergence as 𝜌𝑃 ≪ 𝜌 (because 𝜔𝑝 ≪ 𝜔).
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MODEL BASED COMPRESSED SENSING

•  Υ is the set of sparse vectors with sparsity patterns 
that obey a tree structure.

• Projecting onto  Υ improves convergence 
rate compared to projecting onto the set 
of sparse vectors Υ [Baraniuk et al., 2010].

• The projection onto  Υ is more 
demanding than onto Υ.

• Note that the probability of selecting atoms from 
lower tree levels is smaller than upper ones.

• 𝑃 will be a projection onto certain tree levels – zeroing 
the values at lower levels.

1

0.5 0.5

0.25 0.25 0.25 0.25
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MODEL BASED COMPRESSED SENSING

Non-zeros picked 
entries has zero mean 
random Gaussian 
distribution with 
variance:
- 1 at first two levels
- 0.52 at the third level
- 0.22 at the rest of 
the  levels
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 2-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 20.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 2 of each active 
atom to be ~𝑁(0,0.012) , respectively

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 3 only the largest value.
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SPECTRAL COMPRESSED SENSING
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 4-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 5.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 1 and 2 of each 
active atom to be ~𝑁(0,0.052)

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 5 only the largest value.
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LEARNING THE PROJECTION

• If we have no explicit information about  Υ it might 
be desirable to learn the projection. 

• Instead of learning 𝑃, it is possible to replace 
𝐼 − 𝜇𝐴𝐴𝑇 𝑃 and 𝜇𝐴𝑇𝑃 with two learned matrices 

𝑆 and 𝑋 respectively.

• This leads to a very similar scheme to the one of 
LISTA and provides a theoretical foundation for the 
success of LISTA.
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LEARNED IPGD

𝝍 projects onto 
the set 𝜰

𝒇(𝒁) ≤ 𝑹

𝑽 ∈ ℝ𝒅 𝑿 𝝍  𝒁+

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

𝒔. 𝒕.  𝒇( 𝒁) ≤ 𝑹

Learned 
linear  

operators
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𝑽 = 𝒁𝑨 + 𝑬
 𝜰

 𝒇(𝒁) ≤ 𝑹

𝑺



LISTA

𝜓 is a proximal 
mapping.

𝝍 𝑼 =

𝐚𝐫𝐠𝐦𝐢𝐧
 𝒁∈ℝ𝒅

𝑼 −  𝒁

+𝝀𝒇( 𝒁)

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

𝑿 𝝍

𝑺

 𝒁+

 𝜰

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

+𝝀 𝒇( 𝒁)

 𝒇(𝒁) ≤ 𝑹

Learned 
linear  

operators
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LISTA MIXTURE MODEL

• Approximation of the projection onto  Υ
with one linear projection may not 
be accurate enough.

• This requires more LISTA layers/iterations.

• Instead, one may use several LISTA networks, 
where each approximates a different part of  Υ

• Training multiple LISTA networks
accelerate the convergence further.

 Υ

 Υ
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RELATED WORKS

• In [Bruna et al. 2017] it is shown that a learning 
may give a gain due to better preconditioning of A.

• In [Xin et al. 2016] a relation to the restricted 
isometry property (RIP) is drawn

• In [Borgerding & Schniter, 2016] a connection is 
drawn to approximate message passing (AMP).

• All these works consider only the sparsity case
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Take 
Home 

Message

DNN keep 
the 

important 
information 
of the data.

Gaussian mean 
width is a good 
measure for the 

complexity of 
the data.

Random 
Gaussian 

weights are 
good for 

classifying the 
average points 

in the data.

Important goal 
of training: 
Classify the 

boundary points 
between the 

different classes 
in the data.

Generalization 
error depends 

on the DNN 
input margin

Deep learning 
can be viewed 

as a metric 
learning.

DNN may 
solve 

optimization 
problems
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