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Motivations and Goals of the Tutorial

* Motivation: Deep networks have led to dramatic
improvements in performance for many tasks, but the
mathematical reasons for this success remain unclear.

* Goal: Review very recent work that aims at understanding
the mathematical reasons for the success of deep networks.

 What we will do: Study theoretical questions such as
— What properties of images are being captured/exploited by DNNs?
— Can we ensure that the learned representations are globally optimal?
— Can we ensure that the learned representations are stable?

 What we will not do: Show X% improvement in performance
for a particular application.




Tutorial Schedule

* 14:00-14.30: Introduction

* 14:30-15.15: Global Optimality in Deep Learning (René Vidal)
« 15:15-16.00: Coffee Break

* 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)
« 16:45-17:30: Stability of Deep Networks (Raja Giryes)

« 17.30-18:00: Questions and Discussion




Disclaimer

What do we mean by ‘Deep Learning’ in this tutorial?



Disclaimer

What do we mean by ‘Deep Learning’ in this tutorial?

* A class of signal representations that are hierarchical:
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* The optimization procedure by which these representations
are learnt from data end-to-end.

fisure from Raja Giryes



Early Hierarchical Feature Models for Vision

* Hubel & Wiesel [60s] Simple & Complex cells architecture:

“Simple cells”
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* Fukushima's Neocognitron [/0s]

Fig. 2. Schemati diagram illustrating the
interconnections between kiyers in the

figures from Yann LeCun’s CVPR'I' 5 plenary




Early Hierarchical Feature Models for Vision

* Yann LeCun’s Early ConvNets [80s]:
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—Used for character recognition
— Trained with back propagation.

figures from Yann LeCun’s CVPR''5 plenary



Deep Learning pre-2012

» Despite its very competitive performance, deep learning
architectures were not widespread before 201 2.

— State-of-the-art in handwritten pattern recognition [LeCun et al. '89,

Ciresan et al, ‘07, etc]
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Deep Learning pre-2012

» Despite its very competitive performance, deep learning
architectures were not widespread before 201 2.
—Face detection [Vaillant et al'93,94 ; Osadchy et al, '03,'04, '07]
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Deep Learning pre-2012

» Despite its very competitive performance, deep learning
architectures were not widespread before 201 2.
—Scene Parsing [Farabet et al, "1 2, | 3]
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Deep Learning pre-2012

» Despite its very competitive performance, deep learning
architectures were not widespread before 201 2.
—Scene Parsing [Farabet et al, "1 2, | 3]




Deep Learning pre-2012

» Despite its very competitive performance, deep learning
architectures were not widespread before 201 2.

— Too many parameters to learn from few labeled examples.
— "l know my features are better for this task’"
—Non-convex optimization? No, thanks.

— Black-box model, no interpretabllity.



Deep Learning Golden age in Vision

* 2012-2014 Imagenet results:

* 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)

fioures from Yann LeCun's CVPR'I 5 plenary



Puzzling Questions

*What made this result possible?

—Larger training sets (1.2 million, high-resolution training samples, 1000
object categories)

—Better Hardware (GPU)
— Better Learning Regularization (Dropout)

*|s this just for a particular dataset?
*|s this just for a particular task?

* Why are these architectures so efficient!



|s it just for a particular dataset?

* No. Nowadays CNNs hold the state-of-the-art on virtually any object
classification task.
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|s It just for a particular task?

* No. CNN architectures also obtain state-of-the-art performance on many
other tasks:

| ,}F\i\ Object Localization
“\ [R-CNIN, HyperColumns, Overfeat, etc.]

Pose estimation [Thomson et al, CVPR'| 5]
figures from Yann LeCun’s CVPR''5 plenary



|s It just for a particular task?

* No. CNN architectures also obtain state-of-the-art performance on other
tasks:
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* Semantic Segmentatio [Pinhero, Collobert, Dollar, ICCV'| 5]
figures from Yann LeCun’'s CVPR'I'5 plenary



|s It just for a particular task?

* No. CNN architectures also obtain state-of-the-art performance on other
tasks:
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» Generative Models for Natural Images [Radford, Metz & Chintala, | 5]




|s It just for a particular task?

* No. CNN architectures also obtain state-of-the-art performance on other
tasks:

» Generative Models for Natural Images [Radford, Metz & Chintala,' | 5]



|s It just for a particular task?

architectures also obtain state-of-the-art performance on other
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* Related work [Kulkarni et al'| 5, Dosovitsky et al *14]



|s It just for a particular task?

* No. CNN architectures also obtain state-of-the-art performance on other
tasks:

4\ HUUOH ERSay & Two dogs play in the grass. A skateboarder does a trick
motorcycle on a dirt road. s ek ooy A dog Is jumping to catch a

*Image Captioning [Vinyals et al'[4, Karpathy et aI’I,et]

* Optical Flow estimation [Zontar '| 5]

SRCNN / 27.58 dB



* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Highly Expressive Representations capturing complex geometrical and
statistical patterns.

* Excellent generalization: "beating” the curse of dimensionality



* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Which architectural choices might explain this advantage
mathematically?
* Role of non-linearities?
* Role of convolutions!
* Role of depth?

* Interplay with geometrical, class-specific invariants?



* Convolutional Deep Learning models thus appear to
capture high level image properties more efficiently than
previous models.

* Which architectural choices might explain this advantage
mathematically?

* Which optimization choices might explain this advantage!
* Presence of local minima or saddle points?

* Equivalence of local solutions!
* Role of Stochastic optimization!?



Deep Learning Approximation Theory

* Deep Networks define a class of “universal approximators™: Cybenko and
Hornik characterization:

Theorem [C’89, H’91] Let p() be a bounded, non-constant continuous func-
tion. Let I,, denote the m-dimensional hypercube, and C(I,,) denote the space
of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N >0 and v;,w;,b;, 1 =1..., N such that

F(x) = Z vip(wi x + b;) satisfies
i<N

sup |f(z) — F(z)] <e.

x€Il,,



Deep Learning Approximation Theory

* Deep Networks define a class of “universal approximators™: Cybenko and
Hornik characterization:

Theorem [C’89, H’91] Let p() be a bounded, non-constant continuous func-
tion. Let I,, denote the m-dimensional hypercube, and C(I,,) denote the space
of continuous functions on I,,. Given any f € C([,,) and € > 0, there exists
N >0 and v;,w;,b;, 1 =1..., N such that

F(x) = Z vip(wi x + b;) satisfies
i<N

sup |f(z) — F(z)| <e.
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* [t guarantees that even a single hidden-layer network can represent any
classification problem in which the boundary is locally linear (smooth).

* [t does not inform us about good/bad architectures.
» Or how they relate to the optimization.



Deep Learning Estimation Theory

Theorem [Barron’92] The mean integrated square error between the esti-
mated network F' and the target function f is bounded by

C? Nm
—f Ly
O<N>-|-O( logK>,

where K is the number of training points, IV is the number of neurons, m is the
input dimension, and C'y measures the global smoothness of f.



Deep Learning Estimation Theory

Theorem [Barron’92] The mean integrated square error between the esti-
mated network F' and the target function f is bounded by

C? Nm
—f Ly
O<N>-|—O< logK),

where K is the number of training points, IV is the number of neurons, m is the
input dimension, and C'y measures the global smoothness of f.

* Combines approximation and estimation error.

* Does not explain why online/stochastic optimization works better than batch
normalization.

* Does not relate generalization error with choice of architecture.



Non-Convex Optimization

* [Choromaska et al, AISTATS'I 5] (also [Dauphin et al, ICML 5] ) use tools

from Statistical Physics to explain the behavior of stochastic gradient methods
when training deep neural networks.
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Non-Convex Optimization

* [Choromaska et al, AISTATS'I 5] (also [Dauphin et al, ICML 5] ) use tools

from Statistical Physics to explain the behavior of stochastic gradient methods
when training deep neural networks.
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 Offers a macroscopic explanation of why SGD “works”
* Gives a characterization of the network depth.

* Strong model simplifications, no convolutional specification.



Tutorial Outline

« Part l: Global Optimality in Deep Learning (René Vidal)

Guarantees of Our Framework

Critical Points of Non-Convex Function
(9)

« Part ll: Signal Recovery from Scattering Convolutional

Networks (Joan Bruna) n. .- .-
M- B
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O(log N) O((log N)?)

« Part Ill: On the Stability of Deep Networks (Raja Giryes)




Part |I: Global Optimality in Deep Learning

 Key Questions
— How to deal with the non-convexity of the learning problem?
— Do learning methods get trapped in local minima?
— Why many local solutions seem to give about equally good results?
— Why using rectified linear rectified units instead of other nonlinearities?

 Key Results
— Deep learning is a positively homogeneous factorization problem
— With proper regularization, local minima are global
— If network large enough, global minima can be found by local descent

Critical Points of Non-Convex Function Guarantees of Our Framework




 Key Questions

— What is the importance of "deep" and "convolutional" in CNN
architectures?

— What statistical properties of images are being captured/exploited by

deep networks?
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 Key Results

— Scattering coefficients are stable encodings of geometry and texture
— Layers in a CNN encode complex, class-specific geometry.

SNk



Part lll: On the Stability of Deep Networks

+ Key Questions

— Stability: Do small perturbations to the input image cause small
perturbations to the output of the network?

— Can | recover the input from the output?

 Key Results
— Gaussian mean width is a good measure of data complexity.
— DNN keep important information of the data.
— Deep learning can be viewed as metric learning problem.




Tutorial Schedule

* 14:00-14.30: Introduction

* 14:30-15.15: Global Optimality in Deep Learning (René Vidal)
« 15:15-16.00: Coffee Break

* 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)
« 16:45-17:30: Stability of Deep Networks (Raja Giryes)

« 17.30-18:00: Questions and Discussion




