The Mathematics of Deep Learning

ICCV Tutorial, Santiago de Chile, December 12, 2015

Joan Bruna (Berkeley), Raja Giryes (Duke), Guillermo Sapiro (Duke), Rene Vidal (Johns Hopkins)
Motivations and Goals of the Tutorial

- **Motivation:** Deep networks have led to dramatic improvements in performance for many tasks, but the mathematical reasons for this success remain unclear.

- **Goal:** Review very recent work that aims at understanding the mathematical reasons for the success of deep networks.

- **What we will do:** Study theoretical questions such as
 - What properties of images are being captured/exploited by DNNs?
 - Can we ensure that the learned representations are globally optimal?
 - Can we ensure that the learned representations are stable?

- **What we will not do:** Show X% improvement in performance for a particular application.
Tutorial Schedule

• 14:00-14.30: Introduction

• 14:30-15.15: Global Optimality in Deep Learning (René Vidal)

• 15:15-16.00: Coffee Break

• 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)

• 16:45-17:30: Stability of Deep Networks (Raja Giryes)

• 17.30-18:00: Questions and Discussion
What do we mean by ‘Deep Learning’ in this tutorial?
What do we mean by ‘Deep Learning’ in this tutorial?

• A class of signal representations that are hierarchical:

\[
\Phi(X^1, X^2, \ldots, X^K) = \psi(\psi(\psi(VX^1)X^2) \ldots X^K)
\]

• The optimization procedure by which these representations are learnt from data end-to-end.
Early Hierarchical Feature Models for Vision

- Hubel & Wiesel [60s] Simple & Complex cells architecture:

- Fukushima’s Neocognitron [70s]

figures from Yann LeCun’s CVPR’15 plenary
• Yann LeCun’s Early ConvNets [80s]:
 - Used for character recognition
 - Trained with back propagation.
Deep Learning pre-2012

- Despite its very competitive performance, deep learning architectures were not widespread before 2012.
 - State-of-the-art in handwritten pattern recognition [LeCun et al. ’89, Ciresan et al, ’07, etc]

figures from Yann LeCun’s CVPR’15 plenary
Deep Learning pre-2012

- Despite its very competitive performance, deep learning architectures were not widespread before 2012.
 - Face detection [Vaillant et al’93,’94 ; Osadchy et al, ’03, ’04, ’07]

(Yann’s Family)
Deep Learning pre-2012

• Despite its very competitive performance, deep learning architectures were not widespread before 2012.

 – Scene Parsing [Farabet et al, ’12,’13]
Deep Learning pre-2012

• Despite its very competitive performance, deep learning architectures were not widespread before 2012.

– Scene Parsing [Farabet et al, ’12,’13]
Deep Learning pre-2012

• Despite its very competitive performance, deep learning architectures were not widespread before 2012.

 – Too many parameters to learn from few labeled examples.
 – “I know my features are better for this task”.
 – Non-convex optimization? No, thanks.
 – Black-box model, no interpretability.
Deep Learning Golden age in Vision

- **2012-2014 Imagenet results:**

<table>
<thead>
<tr>
<th>2012 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervision (Toronto)</td>
<td>15.3</td>
</tr>
<tr>
<td>ISI (Tokyo)</td>
<td>26.1</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>26.9</td>
</tr>
<tr>
<td>XRCE/INRIA</td>
<td>27.0</td>
</tr>
<tr>
<td>UvA (Amsterdam)</td>
<td>29.6</td>
</tr>
<tr>
<td>INRIA/LEAR</td>
<td>33.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2013 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarifai (NYU spinoff)</td>
<td>11.7</td>
</tr>
<tr>
<td>NUS (singapore)</td>
<td>12.9</td>
</tr>
<tr>
<td>Zeiler-Fergus (NYU)</td>
<td>13.5</td>
</tr>
<tr>
<td>A. Howard</td>
<td>13.5</td>
</tr>
<tr>
<td>OverFeat (NYU)</td>
<td>14.1</td>
</tr>
<tr>
<td>UvA (Amsterdam)</td>
<td>14.2</td>
</tr>
<tr>
<td>Adobe</td>
<td>15.2</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>15.2</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>23.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2014 Teams</th>
<th>%error</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoogLeNet</td>
<td>6.6</td>
</tr>
<tr>
<td>VGG (Oxford)</td>
<td>7.3</td>
</tr>
<tr>
<td>MSRA</td>
<td>8.0</td>
</tr>
<tr>
<td>A. Howard</td>
<td>8.1</td>
</tr>
<tr>
<td>DeeperVision</td>
<td>9.5</td>
</tr>
<tr>
<td>NUS-BST</td>
<td>9.7</td>
</tr>
<tr>
<td>TTIC-ECP</td>
<td>10.2</td>
</tr>
<tr>
<td>XYZ</td>
<td>11.2</td>
</tr>
<tr>
<td>UvA</td>
<td>12.1</td>
</tr>
</tbody>
</table>

- **2015 results:** MSRA under **3.5%** error. (using a CNN with 150 layers!)

figures from Yann LeCun’s CVPR’15 plenary
Puzzling Questions

• What made this result possible?
 – Larger training sets (1.2 million, high-resolution training samples, 1000 object categories)
 – Better Hardware (GPU)
 – Better Learning Regularization (Dropout)

• Is this just for a particular dataset?

• Is this just for a particular task?

• Why are these architectures so efficient?
Is it just for a particular dataset?

- No. Nowadays CNNs hold the state-of-the-art on virtually any object classification task.
Is it just for a particular task?

• No. CNN architectures also obtain state-of-the-art performance on many other tasks:

Object Localization
[R-CNN, HyperColumns, Overfeat, etc.]

Pose estimation [Thomson et al, CVPR’15]
figures from Yann LeCun’s CVPR’15 plenary
Is it just for a particular task?

- No. CNN architectures also obtain state-of-the-art performance on other tasks:
 - Semantic Segmentation [Pinhero, Collobert, Dollar, ICCV'15]

(figures from Yann LeCun’s CVPR’15 plenary)
Is it just for a particular task?

• No. CNN architectures also obtain state-of-the-art performance on other tasks:

• Generative Models for Natural Images [Radford, Metz & Chintala,’15]
Is it just for a particular task?

• No. CNN architectures also obtain state-of-the-art performance on other tasks:

• Generative Models for Natural Images [Radford, Metz & Chintala,’15]
Is it just for a particular task?

- No. CNN architectures also obtain state-of-the-art performance on other tasks:

 ![Chair Arithmetic in Feature Space](image)

- Related work [Kulkarni et al.'15, Dosovitsky et al.'14]
Is it just for a particular task?

• No. CNN architectures also obtain state-of-the-art performance on other tasks:

 • Image Captioning [Vinyals et al.'14, Karpathy et al.'14, etc]

 • Optical Flow estimation [Zontar '15]
Convolutional Deep Learning models thus appear to capture high level image properties more efficiently than previous models.

- Highly Expressive Representations capturing complex geometrical and statistical patterns.
- Excellent generalization: “beating” the curse of dimensionality
• Convolutional Deep Learning models thus appear to capture high level image properties more efficiently than previous models.

• Which architectural choices might explain this advantage mathematically?
 • Role of non-linearities?
 • Role of convolutions?
 • Role of depth?
 • Interplay with geometrical, class-specific invariants?
• Convolutional Deep Learning models thus appear to capture high level image properties more efficiently than previous models.

• Which architectural choices might explain this advantage mathematically?

• Which optimization choices might explain this advantage?
 • Presence of local minima or saddle points?
 • Equivalence of local solutions?
 • Role of Stochastic optimization?
Deep Learning Approximation Theory

- Deep Networks define a class of “universal approximators”: Cybenko and Hornik characterization:

Theorem [C’89, H’91] Let $\rho()$ be a bounded, non-constant continuous function. Let I_m denote the m-dimensional hypercube, and $C(I_m)$ denote the space of continuous functions on I_m. Given any $f \in C(I_m)$ and $\epsilon > 0$, there exists $N > 0$ and $v_i, w_i, b_i, i = 1 \ldots, N$ such that

$$F(x) = \sum_{i \leq N} v_i \rho(w_i^T x + b_i)$$

satisfies

$$\sup_{x \in I_m} |f(x) - F(x)| < \epsilon .$$
Deep Networks define a class of “universal approximators”: Cybenko and Hornik characterization:

Theorem [C’89, H’91] Let $\rho()$ be a bounded, non-constant continuous function. Let I_m denote the m-dimensional hypercube, and $C(I_m)$ denote the space of continuous functions on I_m. Given any $f \in C(I_m)$ and $\epsilon > 0$, there exists $N > 0$ and $v_i, w_i, b_i, i = 1 \ldots, N$ such that

$$F(x) = \sum_{i \leq N} v_i \rho(w_i^T x + b_i)$$

satisfies

$$\sup_{x \in I_m} |f(x) - F(x)| < \epsilon.$$

- It guarantees that even a single hidden-layer network can represent any classification problem in which the boundary is locally linear (smooth).
- It does not inform us about good/bad architectures.
- Or how they relate to the optimization.
Theorem [Barron’92] The mean integrated square error between the estimated network \hat{F} and the target function f is bounded by

$$O \left(\frac{C_f^2}{N} \right) + O \left(\frac{N m}{K} \log K \right),$$

where K is the number of training points, N is the number of neurons, m is the input dimension, and C_f measures the global smoothness of f.
Deep Learning Estimation Theory

Theorem [Barron’92] The mean integrated square error between the estimated network \hat{F} and the target function f is bounded by

$$O\left(\frac{C_f^2}{N}\right) + O\left(\frac{Nm}{K} \log K\right),$$

where K is the number of training points, N is the number of neurons, m is the input dimension, and C_f measures the global smoothness of f.

- Combines approximation and estimation error.
- Does not explain why online/stochastic optimization works better than batch normalization.
- Does not relate generalization error with choice of architecture.
Non-Convex Optimization

- [Choromaska et al, AISTATS’15] (also [Dauphin et al, ICML’15]) use tools from Statistical Physics to explain the behavior of stochastic gradient methods when training deep neural networks.
Non-Convex Optimization

• Offers a macroscopic explanation of why SGD “works”.
• Gives a characterization of the network depth.
• Strong model simplifications, no convolutional specification.
Part I: Global Optimality in Deep Learning (René Vidal)

Critical Points of Non-Convex Function

- (a) Saddle plateau
- (b, c, d, f) Global minima
- (e, g, h) Local maxima
- (i) Local minima

Guarantees of Our Framework

Theorem 1:
There exists an algorithm \mathcal{A} such that

$$V - \mathcal{A}(\varphi(VX)) < O(\omega \Upsilon m) = O(\delta^3)$$

After K layers we have an error $O(L \delta^3)$.

- δ Stands in line with [Mahendran and Vedaldi, 2015].

- DNN keep the important information of the data.

Part II: Signal Recovery from Scattering Convolutional Networks (Joan Bruna)

- Critical Points of Non-Convex Function
- Guaranteed properties of our framework.
- From any initialization a non-increasing path exists to a global minimum.
- From points on a flat plateau a simple method exists to find the edge of the plateau (green points).
- Plateaus (a, c) for which there is no local descent direction. There is a simple method to find the edge of the plateau from which there will be a descent direction (green points).

Taken together, these results will imply a theoretical meta-algorithm that is guaranteed to find a global minimum of the non-convex factorization problem if from any point one can either find a local descent direction or verify the non-existence of a local descent direction. The primary challenge from a theoretical perspective (which is not solved by our results and is potentially NP-hard for certain problems within our framework) is thus how to find a local descent direction (which is guaranteed to exist) from a non-globally-optimal critical point.

- Two concepts will be key to establishing our analysis framework:
 1. The dimensionality of the factorized elements is not assumed to be fixed, but instead fit to the data through regularization (for example, in matrix factorization the number of columns in U and V is allowed to change).
 2. We require the mapping, \mathcal{A}, and the regularization on the factors, \mathcal{R}, to be positively homogeneous (defined below).

1. Note that points in the interior of these plateaus could be considered both local maxima and local minima as there exists a neighborhood around these points such that the point is both maximal and minimal on that neighborhood.

Part III: On the Stability of Deep Networks (Raja Giryes)

- Critical Points of Non-Convex Function
- Guaranteed properties of our framework.
- From any initialization a non-increasing path exists to a global minimum.
- From points on a flat plateau a simple method exists to find the edge of the plateau (green points).
- Plateaus (a, c) for which there is no local descent direction. There is a simple method to find the edge of the plateau from which there will be a descent direction (green points).

Taken together, these results will imply a theoretical meta-algorithm that is guaranteed to find a global minimum of the non-convex factorization problem if from any point one can either find a local descent direction or verify the non-existence of a local descent direction. The primary challenge from a theoretical perspective (which is not solved by our results and is potentially NP-hard for certain problems within our framework) is thus how to find a local descent direction (which is guaranteed to exist) from a non-globally-optimal critical point.

- Two concepts will be key to establishing our analysis framework:
 1. The dimensionality of the factorized elements is not assumed to be fixed, but instead fit to the data through regularization (for example, in matrix factorization the number of columns in U and V is allowed to change).
 2. We require the mapping, \mathcal{A}, and the regularization on the factors, \mathcal{R}, to be positively homogeneous (defined below).

1. Note that points in the interior of these plateaus could be considered both local maxima and local minima as there exists a neighborhood around these points such that the point is both maximal and minimal on that neighborhood.
Part I: Global Optimality in Deep Learning

- **Key Questions**
 - How to deal with the non-convexity of the learning problem?
 - Do learning methods get trapped in local minima?
 - Why many local solutions seem to give about equally good results?
 - Why using rectified linear rectified units instead of other nonlinearities?

- **Key Results**
 - Deep learning is a **positively homogeneous factorization problem**
 - With proper regularization, local minima are global
 - If network large enough, global minima can be found by local descent

![Critical Points of Non-Convex Function](image1)

![Guarantees of Our Framework](image2)
Part II: Scattering Convolutional Networks

• **Key Questions**
 - What is the importance of "deep" and "convolutional" in CNN architectures?
 - What statistical properties of images are being captured/exploited by deep networks?

 ![Image of original and recovered images](image)

 - Original
 - Single-layer recovery: $O(\log N)$
 - Scattering recovery: $O((\log N)^2)$

• **Key Results**
 - Scattering coefficients are stable encodings of geometry and texture
 - Layers in a CNN encode complex, class-specific geometry.
Part III: On the Stability of Deep Networks

- **Key Questions**
 - **Stability**: Do small perturbations to the input image cause small perturbations to the output of the network?
 - Can I recover the input from the output?

- **Key Results**
 - Gaussian mean width is a good measure of data complexity.
 - DNN keep important information of the data.
 - Deep learning can be viewed as metric learning problem.
Tutorial Schedule

• 14:00-14.30: Introduction

• 14:30-15.15: Global Optimality in Deep Learning (René Vidal)

• 15:15-16.00: Coffee Break

• 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)

• 16:45-17:30: Stability of Deep Networks (Raja Giryes)

• 17.30-18:00: Questions and Discussion