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Motivations and Goals of the Tutorial
• Motivation: Deep networks have led to dramatic 

improvements in performance for many tasks, but the 
mathematical reasons for this success remain unclear.  

• Goal: Review very recent work that aims at understanding 
the mathematical reasons for the success of deep networks. 

• What we will do: Study theoretical questions such as 
– What properties of images are being captured/exploited by DNNs? 
– Can we ensure that the learned representations are globally optimal? 
– Can we ensure that the learned representations are stable? 

• What we will not do: Show X% improvement in performance 
for a particular application. 



Tutorial Schedule
• 14:00-14.30: Introduction 

• 14:30-15.15: Global Optimality in Deep Learning (René Vidal) 

• 15:15-16.00: Coffee Break  

• 16:00-16:45: Scattering Convolutional Networks (Joan Bruna) 

• 16:45-17:30: Stability of Deep Networks (Raja Giryes) 

• 17.30-18:00: Questions and Discussion



What do we mean by ‘Deep Learning’ in this tutorial?

Disclaimer



What do we mean by ‘Deep Learning’ in this tutorial?

•A class of signal representations that are hierarchical:

•The optimization procedure by which these representations 
are learnt from data end-to-end. 

Disclaimer

figure from Raja Giryes



Early Hierarchical Feature Models for Vision
• Hubel & Wiesel [60s] Simple & Complex cells architecture:

• Fukushima’s Neocognitron [70s]

figures from Yann LeCun’s CVPR’15 plenary



Early Hierarchical Feature Models for Vision
• Yann LeCun’s Early ConvNets [80s]:

– Used for character recognition
– Trained with back propagation.

figures from Yann LeCun’s CVPR’15 plenary



Deep Learning pre-2012

•Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.

– State-of-the-art in handwritten pattern recognition [LeCun et al. ’89, 
Ciresan et al, ’07, etc] 

figures from Yann LeCun’s CVPR’15 plenary



Deep Learning pre-2012

•Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.

– Face detection [Vaillant et al’93,’94 ; Osadchy et al, ’03, ’04, ’07]

(Yann’s Family)



Deep Learning pre-2012

•Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.

– Scene Parsing [Farabet et al, ’12,’13]

figures from Yann LeCun’s CVPR’15 plenary
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•Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.

– Scene Parsing [Farabet et al, ’12,’13]

figures from Yann LeCun’s CVPR’15 plenary



Deep Learning pre-2012

•Despite its very competitive performance, deep learning 
architectures were not widespread before 2012.

– Too many parameters to learn from few labeled examples.
– “I know my features are better for this task”.
– Non-convex optimization? No, thanks. 
– Black-box model, no interpretability. 



Deep Learning Golden age in Vision
• 2012-2014 Imagenet results: 

• 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)

CNN
non-CNN

figures from Yann LeCun’s CVPR’15 plenary



Puzzling Questions

•What made this result possible?
– Larger training sets (1.2 million, high-resolution training samples, 1000 

object categories)
– Better Hardware (GPU)
– Better Learning Regularization (Dropout)

•Is this just for a particular dataset?

•Is this just for a particular task?

•Why are these architectures so efficient? 



Is it just for a particular dataset?
• No. Nowadays CNNs hold the state-of-the-art on virtually any object 

classification task.

figures from Yann LeCun’s NIPS’15 tutorial



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on many 

other tasks:

Pose estimation [Thomson et al, CVPR’15]

Object Localization 
[R-CNN, HyperColumns, Overfeat, etc.]

figures from Yann LeCun’s CVPR’15 plenary



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on other 

tasks:

•Semantic Segmentation [Pinhero, Collobert, Dollar, ICCV’15]
figures from Yann LeCun’s CVPR’15 plenary



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on other 

tasks:

•Generative Models for Natural Images [Radford, Metz & Chintala,’15]



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on other 

tasks:

•Generative Models for Natural Images [Radford, Metz & Chintala,’15]



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on other 

tasks:

•Related work [Kulkarni et al’15, Dosovitsky et al ‘14]

Y LeCun
Supervised ConvNets that Draw Pictures

Generating Chairs

Chair Arithmetic in Feature Space



Is it just for a particular task?
• No. CNN architectures also obtain state-of-the-art performance on other 

tasks:

•Image Captioning [Vinyals et al’14, Karpathy et al ’14, etc]

•Optical Flow estimation [Zontar ’15]

•Image Super-Resolution [MSR’14]



•Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

• Highly Expressive Representations capturing complex geometrical and 
statistical patterns.

• Excellent generalization: “beating” the curse of dimensionality



•Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

•  Which architectural choices might explain this advantage 
mathematically?

• Role of non-linearities?
• Role of convolutions?
• Role of depth?
• Interplay with geometrical, class-specific invariants?



•Convolutional Deep Learning models thus appear to 
capture high level image properties more efficiently than 
previous models.

•  Which architectural choices might explain this advantage 
mathematically?

•Which optimization choices might explain this advantage?
• Presence of local minima or saddle points?
• Equivalence of local solutions?
• Role of Stochastic optimization?



• Deep Networks define a class of “universal approximators”: Cybenko and 
Hornik characterization: 

Deep Learning Approximation Theory
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• Deep Networks define a class of “universal approximators”: Cybenko and 
Hornik characterization:

• It guarantees that even a single hidden-layer network can represent any 
classification problem in which the boundary is locally linear (smooth).

• It does not inform us about good/bad architectures.
• Or how they relate to the optimization.

Deep Learning Approximation Theory
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Deep Learning Estimation Theory

Theorem [Barron’92] The mean integrated square error between the esti-

mated network

ˆF and the target function f is bounded by
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where K is the number of training points, N is the number of neurons, m is the

input dimension, and Cf measures the global smoothness of f .



• Combines approximation and estimation error. 
• Does not explain why online/stochastic optimization works better than batch 

normalization.
• Does not relate generalization error with choice of architecture.

Deep Learning Estimation Theory

Theorem [Barron’92] The mean integrated square error between the esti-
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Non-Convex Optimization
• [Choromaska et al, AISTATS’15] (also [Dauphin et al, ICML’15] ) use tools 

from Statistical Physics to explain the behavior of stochastic gradient methods 
when training deep neural networks. 



Non-Convex Optimization
• [Choromaska et al, AISTATS’15] (also [Dauphin et al, ICML’15] ) use tools 

from Statistical Physics to explain the behavior of stochastic gradient methods 
when training deep neural networks. 

• Offers a macroscopic explanation of why SGD “works”.
• Gives a characterization of the network depth.
• Strong model simplifications, no convolutional specification.



Tutorial Outline
• Part I: Global Optimality in Deep Learning (René Vidal) 

• Part II: Signal Recovery from Scattering Convolutional 
Networks (Joan Bruna) 

• Part III: On the Stability of Deep Networks (Raja Giryes)
ONE LAYER STABLE EMBEDDING

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 1: There exists an algorithm 𝒜 such that

𝑉 −𝒜(𝜓(𝑉𝑋)) < 𝑂
𝜔 Υ
𝑚

= 𝑂 𝛿3

[Plan & Vershynin, 2013, Giryes, Sapiro & Bronstein 2015].

¾After 𝐾 layers we have an error 𝑂 𝐿𝛿3

¾Stands in line with [Mahendran and Vedaldi, 2015].

¾DNN keep the important information of the data

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.

88
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Part I: Global Optimality in Deep Learning
• Key Questions 

– How to deal with the non-convexity of the learning problem? 
– Do learning methods get trapped in local minima? 
– Why many local solutions seem to give about equally good results? 
– Why using rectified linear rectified units instead of other nonlinearities? 

• Key Results 
– Deep learning is a positively homogeneous factorization problem 
– With proper regularization, local minima are global 
– If network large enough, global minima can be found by local descentCHAPTER 4. GENERALIZED FACTORIZATIONS
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guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Part II: Scattering Convolutional Networks
• Key Questions 

– What is the importance of "deep" and "convolutional" in CNN 
architectures? 

– What statistical properties of images are being captured/exploited by 
deep networks? 

• Key Results 
– Scattering coefficients are stable encodings of geometry and texture 
– Layers in a CNN encode complex, class-specific geometry.
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Part III: On the Stability of Deep Networks
• Key Questions 

– Stability: Do small perturbations to the input image cause small 
perturbations to the output of the network? 

– Can I recover the input from the output?  

• Key Results 
– Gaussian mean width is a good measure of data complexity.  
– DNN keep important information of the data. 
– Deep learning can be viewed as metric learning problem. 

ONE LAYER STABLE EMBEDDING

𝑉 ∈ 𝕊𝑑 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚𝑉𝑋𝑋

Theorem 1: There exists an algorithm 𝒜 such that

𝑉 −𝒜(𝜓(𝑉𝑋)) < 𝑂
𝜔 Υ
𝑚

= 𝑂 𝛿3

[Plan & Vershynin, 2013, Giryes, Sapiro & Bronstein 2015].

¾After 𝐾 layers we have an error 𝑂 𝐿𝛿3

¾Stands in line with [Mahendran and Vedaldi, 2015].

¾DNN keep the important information of the data
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