JHU vision lab

The Mathematics of Deep Learning

ICCV Tutorial, Santiago de Chile, December 12, 2015

Joan Bruna (Berkeley), Raja Giryes (Duke), Guillermo Sapiro (Duke), Rene Vidal (Johns Hopkins)

Motivations and Goals of the Tutorial

- Motivation: Deep networks have led to dramatic improvements in performance for many tasks, but the mathematical reasons for this success remain unclear.
- **Goal:** Review very recent work that aims at understanding the mathematical reasons for the success of deep networks.
- What we will do: Study theoretical questions such as
 - What properties of images are being captured/exploited by DNNs?
 - Can we ensure that the learned representations are globally optimal?
 - Can we ensure that the learned representations are stable?
- What we will not do: Show X% improvement in performance for a particular application.

Tutorial Schedule

- 14:00-14.30: Introduction
- 14:30-15.15: Global Optimality in Deep Learning (René Vidal)
- 15:15-16.00: Coffee Break
- 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)
- 16:45-17:30: Stability of Deep Networks (Raja Giryes)
- 17.30-18:00: Questions and Discussion

What do we mean by 'Deep Learning' in this tutorial?

Disclaimer

What do we mean by 'Deep Learning' in this tutorial?

• A class of signal representations that are hierarchical:

$$\Phi(X^1, X^2, \dots, X^K) = \psi(\psi(\psi(VX^1)X^2) \dots X^K)$$
$$V \in \mathbb{R}^d \to X^1 \to \psi \longrightarrow X^i \to \psi \longrightarrow X^K \to \psi \to$$

• The optimization procedure by which these representations are learnt from data end-to-end.

figure from Raja Giryes

Early Hierarchical Feature Models for Vision

• Hubel & Wiesel [60s] Simple & Complex cells architecture:

• Fukushima's Neocognitron [70s]

Early Hierarchical Feature Models for Vision

• Yann LeCun's Early ConvNets [80s]:

- -Used for character recognition
- -Trained with back propagation.

figures from Yann LeCun's CVPR'15 plenary

- Despite its very competitive performance, deep learning architectures were not widespread before 2012.
 - State-of-the-art in handwritten pattern recognition [LeCun et al. '89, Ciresan et al, '07, etc]

3681796691 6757863485 2179712845 4819018894

80322-4129 80206

14210 40004

07878 05753

,5502 75716

35460: A4209

figures from Yann LeCun's CVPR' I 5 plenary

- Despite its very competitive performance, deep learning architectures were not widespread before 2012.
 - Face detection [Vaillant et al'93,'94 ; Osadchy et al, '03, '04, '07]

(Yann's Family)

• Despite its very competitive performance, deep learning architectures were not widespread before 2012.

-Scene Parsing [Farabet et al, '12,'13]

figures from Yann LeCun's CVPR'15 plenary

• Despite its very competitive performance, deep learning architectures were not widespread before 2012.

-Scene Parsing [Farabet et al, '12,'13]

• Despite its very competitive performance, deep learning architectures were not widespread before 2012.

- -Too many parameters to learn from few labeled examples.
- "I know my features are better for this task".
- -Non-convex optimization? No, thanks.
- -Black-box model, no interpretability.

Deep Learning Golden age in Vision

• 2012-2014 Imagenet results:

CNN non-CNN

2012 Teams	%error		2013 Teams	%error		2014 Teams	%error
Supervision (Toronto)	15.3		Clarifai (NYU spinoff)	11.7		GoogLeNet	6.6
ISI (Tokyo)	26.1		NUS (singapore)	12.9		VGG (Oxford)	7.3
VGG (Oxford)	26.9	l	Zeiler-Fergus (NYU)	13.5		MSRA	8.0
XRCE/INRIA	27.0	۱	A. Howard	13.5	۱	A. Howard	8.1
UvA (Amsterdam)	29.6		OverFeat (NYU)	14.1	۱	DeeperVision	9.5
INRIA/LEAR	33.4		UvA (Amsterdam)	14.2		NUS-BST	9.7
			Adobe	15.2		TTIC-ECP	10.2
			VGG (Oxford)	15.2	,	XYZ	11.2
			VGG (Oxford)	23.0		UvA	12.1

• 2015 results: MSRA under **3.5%** error. (using a CNN with 150 layers!)

figures from Yann LeCun's CVPR'15 plenary

Puzzling Questions

- •What made this result possible?
 - Larger training sets (1.2 million, high-resolution training samples, 1000 object categories)
 - -Better Hardware (GPU)
 - -Better Learning Regularization (Dropout)
- Is this just for a particular dataset?
- Is this just for a particular task?
- Why are these architectures so efficient?

• No. Nowadays CNNs hold the state-of-the-art on virtually any object classification task. airplane

bird

cat

deer

dog

frog

horse

ship

truck

figures from Yann LeCun's NIPS' I 5 tutorial

• No. CNN architectures also obtain state-of-the-art performance on many other tasks:

Object Localization [R-CNN, HyperColumns, Overfeat, etc.]

Pose estimation [Thomson et al, CVPR'15] figures from Yann LeCun's CVPR'15 plenary

 No. CNN architectures also obtain state-of-the-art performance on other tasks:

• Semantic Segmentation [Pinhero, Collobert, Dollar, ICCV' | 5] figures from Yann LeCun's CVPR' | 5 plenary

• No. CNN architectures also obtain state-of-the-art performance on other tasks:

• Generative Models for Natural Images [Radford, Metz & Chintala,'15]

• No. CNN architectures also obtain state-of-the-art performance on other tasks:

• Generative Models for Natural Images [Radford, Metz & Chintala,'15]

 No. CNN architectures also obtain state-of-the-art performance on other tasks:
Original Reconstuction Light direction varied

• Related work [Kulkarni et al'15, Dosovitsky et al '14]

• No. CNN architectures also obtain state-of-the-art performance on other tasks:

Two dogs play in the grass.

A skateboarder does a trick

A dog is jumping to catch a frisbee.

- Image Captioning [Vinyals et al'14, Karpathy et al '14, etc]
- Optical Flow estimation [Zontar '15]

- Convolutional Deep Learning models thus appear to capture high level image properties more efficiently than previous models.
 - Highly Expressive Representations capturing complex geometrical and statistical patterns.
 - Excellent generalization: "beating" the curse of dimensionality

- Convolutional Deep Learning models thus appear to capture high level image properties more efficiently than previous models.
- Which architectural choices might explain this advantage mathematically?
 - Role of non-linearities?
 - Role of convolutions?
 - Role of depth?
 - Interplay with geometrical, class-specific invariants?

- Convolutional Deep Learning models thus appear to capture high level image properties more efficiently than previous models.
- Which architectural choices might explain this advantage mathematically?
- Which optimization choices might explain this advantage?
 - Presence of local minima or saddle points?
 - Equivalence of local solutions?
 - Role of Stochastic optimization?

Deep Learning Approximation Theory

• Deep Networks define a class of "universal approximators": Cybenko and Hornik characterization:

Theorem [C'89, H'91] Let $\rho()$ be a bounded, non-constant continuous function. Let I_m denote the *m*-dimensional hypercube, and $C(I_m)$ denote the space of continuous functions on I_m . Given any $f \in C(I_m)$ and $\epsilon > 0$, there exists N > 0 and $v_i, w_i, b_i, i = 1..., N$ such that

$$F(x) = \sum_{i \le N} v_i \rho(w_i^T x + b_i) \text{ satisfies}$$
$$\sup_{x \in I_m} |f(x) - F(x)| < \epsilon .$$

Deep Learning Approximation Theory

• Deep Networks define a class of "universal approximators": Cybenko and Hornik characterization:

Theorem [C'89, H'91] Let $\rho()$ be a bounded, non-constant continuous function. Let I_m denote the *m*-dimensional hypercube, and $C(I_m)$ denote the space of continuous functions on I_m . Given any $f \in C(I_m)$ and $\epsilon > 0$, there exists N > 0 and $v_i, w_i, b_i, i = 1 \dots, N$ such that

$$F(x) = \sum_{i \le N} v_i \rho(w_i^T x + b_i) \text{ satisfies}$$
$$\sup |f(x) - F(x)| < \epsilon.$$

- It guarantees that even a single hidden-layer network can represent any classification problem in which the boundary is locally linear (smooth).
- It does not inform us about good/bad architectures.

 $x \in I_m$

• Or how they relate to the optimization.

Deep Learning Estimation Theory

Theorem [Barron'92] The mean integrated square error between the estimated network \hat{F} and the target function f is bounded by

$$O\left(\frac{C_f^2}{N}\right) + O\left(\frac{Nm}{K}\log K\right) ,$$

where K is the number of training points, N is the number of neurons, m is the input dimension, and C_f measures the global smoothness of f.

Deep Learning Estimation Theory

Theorem [Barron'92] The mean integrated square error between the estimated network \hat{F} and the target function f is bounded by

$$O\left(\frac{C_f^2}{N}\right) + O\left(\frac{Nm}{K}\log K\right) ,$$

where K is the number of training points, N is the number of neurons, m is the input dimension, and C_f measures the global smoothness of f.

- Combines approximation and estimation error.
- Does not explain why online/stochastic optimization works better than batch normalization.
- Does not relate generalization error with choice of architecture.

Non-Convex Optimization

• [Choromaska et al, AISTATS'15] (also [Dauphin et al, ICML'15]) use tools from Statistical Physics to explain the behavior of stochastic gradient methods when training deep neural networks.

Non-Convex Optimization

• [Choromaska et al, AISTATS'15] (also [Dauphin et al, ICML'15]) use tools from Statistical Physics to explain the behavior of stochastic gradient methods when training deep neural networks.

- Offers a macroscopic explanation of why SGD "works".
- Gives a characterization of the network depth.
- Strong model simplifications, no convolutional specification.

Tutorial Outline

• Part I: Global Optimality in Deep Learning (René Vidal)

 Part II: Signal Recovery from Scattering Convolutional Networks (Joan Bruna)

single-layer recovery $O(\log N)$

scattering recovery $O((\log N)^2)$

Part III: On the Stability of Deep Networks (Raja Giryes)

Part I: Global Optimality in Deep Learning

Key Questions

- How to deal with the non-convexity of the learning problem?
- Do learning methods get trapped in local minima?
- Why many local solutions seem to give about equally good results?
- Why using rectified linear rectified units instead of other nonlinearities?

Key Results

- Deep learning is a positively homogeneous factorization problem
- With proper regularization, local minima are global
- If network large enough, global minima can be found by local descent

Part II: Scattering Convolutional Networks

Key Questions

- What is the importance of "deep" and "convolutional" in CNN architectures?
- What statistical properties of images are being captured/exploited by deep networks?

original

single-layer recovery $O(\log N)$

scattering recovery $O((\log N)^2)$

Key Results

- Scattering coefficients are stable encodings of geometry and texture
- Layers in a CNN encode complex, class-specific geometry.

Part III: On the Stability of Deep Networks

Key Questions

- Stability: Do small perturbations to the input image cause small perturbations to the output of the network?
- Can I recover the input from the output?

Key Results

- Gaussian mean width is a good measure of data complexity.
- DNN keep important information of the data.
- Deep learning can be viewed as metric learning problem.

Tutorial Schedule

- 14:00-14.30: Introduction
- 14:30-15.15: Global Optimality in Deep Learning (René Vidal)
- 15:15-16.00: Coffee Break
- 16:00-16:45: Scattering Convolutional Networks (Joan Bruna)
- 16:45-17:30: Stability of Deep Networks (Raja Giryes)
- 17.30-18:00: Questions and Discussion

