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image 
captioning

Automatically captioned: “Two pizzas sitting on top of a stove top oven”

From Vinyals et al,
CVPR’15 



Complex Data + Complex tasks

• Spectrum of tasks with varying metric structure. 
– Metric invariances encoded into a non-linear signal representation 

• As we move towards the right, how much information 
do we lose? How to quantify what we keep/lose?

• Can we identify a “perceptual” metric? 

d(x, x0) = k�(x)� �(x0)k
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Generative Models of Complex data

•     trained to reduce intra-class variability while 
preserving discriminability (eg a Deep Neural Network)

class 1
class 2
class 3

high-dimensional space

�

�



• Sampling or Regressing in transformed space is easy

class 1
class 2
class 3

high-dimensional space

�

sampling 
e.g. ⇠ N (µi,⌃i)

Generative Models of Complex data



• How to perform high-dimensional density estimation via 
invariant representations?
• Applications to synthesis, inverse problems, 

unsupervised learning.

class 1
class 2
class 3

high-dimensional space

�

pull-back 

��1

Generative Models of Complex data



Plan

• Review of Scattering Convolutional Networks.

• Signal and Texture Recovery.

• Applications to high-dimensional Inverse Problems:
– Synthesis,
– Super-Resolution,
– Audio Source Separation.



• Deformation “cost”: 
– Model change in point of view in images
– Model frequency transpositions in sounds
– Consistent with local translation invariance

Geometric Variability Prior
x(u) , u : pixels, time samples, etc. ⌧(u) , : deformation field

k⌧k = � sup
u

|⌧(u)|+ sup
u

|r⌧(u)| .

L⌧ (x)(u) = x(u� ⌧(u)) : warping



Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations
kAL⌧x�Axk  k⌧kkxk .

[Bruna’12]
�(u)

Ax = x ⇤ � , �: local average



Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations:

• Wavelet filter bank: 
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W recovers information lost by A.



Geometric Variability Prior
• Blur operator: 

– The only linear operator A stable to deformations:

• Wavelet filter bank: 

• Point-wise non-linearity   
– Commutes with deformations: 
– Demodulates wavelet coefficients, preserves energy.

kAL⌧x�Axk  k⌧kkxk .

[Bruna’12]
�(u)

Ax = x ⇤ � , �: local average

Wx = {x ⇤  k} ,  k(u) = 2�j
 (2�j

R✓u)

 k

✓

j

 : spatially localized band-pass filter.

⇢L⌧x = L⌧⇢x

W recovers information lost by A.

⇢(x) = |x|
[Bruna’12]



• MFCC (audio) 
[Mermelstein,76]

• SIFT, Daisy  
[Lowe, 04, Fua et al’10]

• ConvNets 
[LeCun et al, 98]

Image and Audio descriptors

(figure from Jothilakshmi et al) 
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• MFCC (audio) 
[Mermelstein,76]

• SIFT, Daisy  
[Lowe, 04, Fua et al’10]

• ConvNets 
[LeCun et al, 98]

Image and Audio descriptors

(figure from Jothilakshmi et al) 

(figure from Lowe)

(figure from 
LeCun98)

learnt 1st layer filters
[Krizhevsky et al,12]



     Scattering Convolutional Network

| |f ⇧ ⇤j1,�1 | ⇧ ⇤j2,�2 | ⇧ ⇥J
�j1, j2
��1, �2

|WJ |

|f ⌅ ⇤j1,�1 | ⌅ ⇥J
�j1
��1

| |f ⇥ �j1,�1 | ⇥ �j2,�2 |

|WJ |
|f ⇥ �j1,�1 |

f ⇥ �J
|WJ |

| |f ⇥ �j1,�1 · · · | ⇥ �jm+1,�m+1 |

Cascade of contractive operators.

· · · · · ·
| |f ⇥ �j1,�1 | · · · ⇥ �jm,�m |

|WJ |
| |f ⇧ ⇤j1,�1 | · · · ⇧ ⇤jm,�m | ⇧ ⇥J

⇥j1...jm

⇥�1...�m

f



Wavelet Scattering

SIFT

window size = image size

f̂ |f ⇤ ⇥�1 | ⇤ �

Image Examples

Images Fourier

�1

�2

�1

�2

f ||f ⇤ ⇥�1 | ⇤ ⇥�2 | ⇤ �

[Bruna, Mallat, ’11,’12]



Scattering Stability

Theorem: [Mallat ’10] With appropriate wavelets, SJ is stable to additive

noise,

kSJ(x+ n)� SJxk  knk ,

unitary, kSJxk = kxk, and stable to deformations

kSJx⌧ � SJxk  Ckxkkr⌧k .

x⌧ |cx⌧ | SJx⌧



Representation of Stationary Processes 
x(u): realizations of a stationary process X(u) (not Gaussian)



Representation of Stationary Processes
x(u): realizations of a stationary process X(u) (not Gaussian)

Discriminability: need to capture high-order moments

�(X) = {E(fi(X))}i

Stability: E(kb�(X)� �(X)k2) small

b�(X) =

(
1

N

X

n

fi(x)(n)

)

i

Estimation from samples x(n):



     Scattering Moments
X
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     Scattering Moments
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|WJ |
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Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]



Properties of Scattering Moments
• Captures high order moments:

m = 1 m = 2
SJ [p]XPower Spectrum

[Bruna, Mallat, ’11,’12]

• Cascading non-linearities is necessary to reveal higher-
order moments.



Consistency of Scattering Moments

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Consistency of Scattering Moments

Corollary: If moreover X(t) is bounded, then

E(k ˆSNX � SXk2)  C
|X|21p

N
.

• Although we extract a growing number of features, their 
global variance goes to 0.

• No variance blow-up due to high order moments.
• Adding layers is critical (here depth is log(N)). 

Theorem: [B’15] If  is a wavelet such that k k1  1, and X(t) is a

linear, stationary process with finite energy, then

lim

N!1
E(k ˆSNX � SXk2) = 0 .



Classification with Scattering

• State-of-the art on pattern and texture recognition:
– MNIST [Pami’13]

– Texture (CUREt, UIUC) [Pami’13]

• Object Recognition:

– ~17% error on Cifar-10 [Oyallon&Mallat, CVPR’15]
– General Object Recognition requires adapting the wavelets to the 

signal classes. Learning is necessary.



Signal and Texture Recovery Challenge

• [Q1] Given        computed with m layers, under what 
conditions can we recover    (up to global symmetry)? 
Using what algorithm? As a function of the localization 
scale J ?

SJx = {x ⇤ �J , |x ⇤  j1 | ⇤ �J , ||x ⇤  j1 | ⇤  j2 | ⇤ �J , . . . }jiJ

SJx

x



Signal and Texture Recovery Challenge

• [Q1] Given        computed with m layers, under what 
conditions can we recover    (up to global symmetry)? 
Using what algorithm? As a function of the localization 
scale J ?

• [Q2] Given SX, how can we characterize interesting 
processes? How to sample from such distributions?

SJx = {x ⇤ �J , |x ⇤  j1 | ⇤ �J , ||x ⇤  j1 | ⇤  j2 | ⇤ �J , . . . }jiJ

SJx

x

SX = {E(X), E(|X ⇤  j1 |), E(||X ⇤  j1 | ⇤  j2 |), . . . }



Related Work

• [Q1] As J→∞, with depth fixed to m, we have                         
measurements
– Non-linear, invariant compressed sensing.
– Eldar et al [’12]: Sparse Recovery from Fourier Magnitude
– Plan and Vershynin [’14]: Generalized Linear Model, 1-bit compressed 

sensing.

O(| logN |m) ⌧ N
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Related Work

• [Q1] As J→∞, with depth fixed to m, we have                         
measurements
– Non-linear, invariant compressed sensing.
– Eldar et al [’12]: Sparse Recovery from Fourier Magnitude
– Plan and Vershynin [’14]: Generalized Linear Model, 1-bit compressed 

sensing.

• [Q1] For fixed J, it is a generalized phase-recovery 
problem
– Balan et al [’06], Candes et al. [’11] , Waldspurger et al [’12]: Phasecut
– Bruna et al [’14]: Signal Recovery from lp pooling.

• [Q2] Texture synthesis
– Simoncelli & Portilla [’00], Simoncelli & McDermott [’11], Mumford et al 

[’98]: define statistical models using generalized wavelet moments.
– Peyre et al [’14]: models on learnt dictionaries, Effros&Freeman [’01] Quilting

O(| logN |m) ⌧ N



Problem Set-Up

• Given              , (fixed J, fixed depth) consider 

• When               , intersection of mixed      balls: 

• Non-convex optimization problem.

y = SJx0

min
x

kS
J

x� yk2 .

J = logN

kxk1
8 j1 , kx ⇤  j1k1

8 j1, j2 , k|x ⇤  j1 | ⇤  j2k1

`1,2



Sparse Signal Recovery

Theorem [B,M’14]: Suppose x0(t) =
P

n an�(t�bn) with |bn�bn+1| � �,

and SJx0 = SJx with m = 1 and J = 1. If  has compact support, then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .



Sparse Signal Recovery

•  

• Here, sparsity is encoded in the measurements 
themselves.

• In 2D, singular measures (ie curves) require           to be 
well characterized.

Sx essentially identifies sparse measures,
up to log spacing factors.

m = 2

Theorem [B,M’15]: Suppose x0(t) =
P

n an�(t�bn) with |bn�bn+1| � �,

and kxk1 = kx0k1, kx ⇤  jk1 = kx0 ⇤  jk1 for all j. If  has compact support,

then

x(t) =

X

n

cn�(t� en) , with |en � en+1| & � .



Oscillatory Signal Recovery

• Oscillatory, lacunary signals are also well captured with 
the same measurements. 

• It is the opposite set of extremal points from previous 
result.

Theorem [B,M’14]: Suppose cx0(⇠) =

P
n an�(⇠ � bn) with | log bn �

log bn+1| � �, and SJx = SJx0 with m = 2 and J = logN . If

b
 has com-

pact support K  �, then

bx(⇠) =
X

n

cn�(⇠ � en) , with | log en � log en+1| & � .



Scattering Reconstruction Algorithm

• Non-linear Least Squares. 
• Levenberg-Marquardt gradient descent:

S
x0 ⇠ N (0, I)

min
x

kbSx� b
S0k2

xn+1 = xn � �(D b
Sxn)

†(bSxn � b
S0)

S = {x s.t.

b
Sx = b

S0}



Scattering Reconstruction Algorithm

• Non-linear Least Squares. 
• Levenberg-Marquardt gradient descent:

• Global convergence guarantees using complex wavelets:

S
x0 ⇠ N (0, I)

min
x

kbSx� b
S0k2

xn+1 = xn � �(D b
Sxn)

†(bSxn � b
S0)

S = {x s.t.

b
Sx = b

S0}

D

ˆ

Sx is full rank for m = 2 if x compact support.



Sparse Shape Reconstructions
Original images of N2 pixels:

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.

m = 1, 2

J
= N : reconstruction from O(log2 N) scattering coe↵.



Multiscale Scattering Reconstruction

• For finite J and finite m, recovery depends on redundancy 
factor.

• As J increases, redundancy decreases. 
• No universal recovery guarantees.

• We use the same gradient descent algorithm.

dim(SJx) = O(N2�2JJm)



Multiscale Scattering Reconstruction

2J = 16

2J = 32

2J = 64

2J = 128 = N

Scattering
Reconstruction

N2
pixels

1.4N2
coe↵.

0.5N2
coe↵.

Original
Images



Related Work on CNN inversion

• Recently, interest in inverting Deep Convolutional 
Networks
– The Learnt Representations are highly contractive: recovery is more 

“impressionistic”:

conv1 relu1 mpool1 norm1 conv2 relu2 mpool2

norm2 conv3 relu3 conv4 relu4 conv5 relu5

Figure 9. CNN receptive field. Reconstructions of the image of Fig. 5.a from the central 5⇥ 5 neuron fields at different depths of CNN-A.
The white box marks the field of view of the 5⇥ 5 neuron field. The field of view is the entire image for conv5 and relu5.

conv1-grp1 norm1-grp1 norm2-grp1 conv1-grp1 norm1-grp1 norm2-grp1

conv1-grp2 norm1-grp2 norm2-grp2 conv1-grp2 norm1-grp2 norm2-grp2

Figure 10. CNN neural streams. Reconstructions of the images of Fig. 5.c-b from either of the two neural streams of CNN-A. This figure
is best seen in colour/screen.

responses to be switched off. The locality of the features is
obvious in the figure; what is less obvious is that the effec-
tive receptive field of the neurons is in some cases signifi-
cantly smaller than the theoretical one - shown as a white
box in the image.

Finally, Fig. 10 reconstructs images from a subset of fea-
ture channels. CNN-A contains in fact two subsets of fea-
ture channels which are independent for the first several lay-
ers (up to norm2) [13]. Reconstructing from each subset
individually, clearly shows that one group is tuned towards
low-frequency colour information whereas the second one
is tuned to towards high-frequency luminance components.
Remarkably, this behaviour emerges naturally in the learned
network without any mechanism directly encouraging this
pattern.

6. Summary
This paper proposed an optimisation method to invert

shallow and deep representations based on optimizing an
objective function with gradient descent. Compared to al-
ternatives, a key difference is the use of image priors such as
the V � norm that can recover the low-level image statistics
removed by the representation. This tool performs better

Figure 11. Diversity in the CNN model. mpool5 reconstructions
show that the network retains rich information even at such deep
levels. This figure is best viewed in color/screen (zoom in).

than alternative reconstruction methods for HOG. Applied
to CNNs, the visualisations shed light on the information
represented at each layer. In particular, it is clear that a pro-
gressively more invariant and abstract notion of the image
content is formed in the network.

In the future, we shall experiment with more expres-
sive natural image priors and analyze the effect of network
hyper-parameters on the reconstructions. We shall extract
subsets of neurons that encode object parts and try to estab-
lish sub-networks that capture different details of the image.

8

Reconstructions from a 5-layer CNN  
(from Mahendran&Vedaldi, ’15)



Texture Synthesis
• Maximum Entropy Distribution from Scattering Moments: 

by Boltzmann Theorem, we have

•  

p(x) =
1

Z

e

P
|p|m �p(U [p]x⇤�J )(0)

�p are Lagrange multipliers that guarantee that Ep(U [p]x) = ŜX(p).



Texture Synthesis
• Maximum Entropy Distribution from Scattering Moments: 

by Boltzmann Theorem, we have

•  
• When X(t) is ergodic, this distribution converges to the 

uniform measure on the set (the Julesz ensemble):

• Convergence in distribution is a hard problem (cf Chatterjee)
• We can sample approximately using previous algorithm.

⌦(SX) = {x s.t. U [p]x = SX(p) 8 p} .

p(x) =
1

Z

e

P
|p|m �p(U [p]x⇤�J )(0)

�p are Lagrange multipliers that guarantee that Ep(U [p]x) = ŜX(p).



Ergodic Texture Reconstruction
Original Textures

Gaussian process model with same second order moments

m = 2, 2

J
= N : reconstruction from O(log

2
2 N) scattering coe↵.



Ergodic Texture Reconstruction
• Scattering Moments of 2nd order thus capture essential geometric 

structures with only                  coefficients.
• However, not all texture geometry is captured. 
• Results using a deep VGG network from [Gathys et al, NIPS’15]

O((logN)

2
)



Ergodic Texture Reconstruction
• Scattering Moments of 2nd order thus capture essential geometric 

structures with only                  coefficients.
• However, not all texture geometry is captured. 
• Results using a deep VGG network from [Gathys et al, NIPS’15]
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Application: Super-Resolution

• Best Linear Method: Least Squares estimate (linear 
interpolation):

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x



Application: Super-Resolution

• Best Linear Method: Least Squares estimate (linear 
interpolation):

• State-of-the-art Methods:
– Dictionary-learning Super-Resolution
– CNN-based: Just train a CNN to regress from low-res to high-res.
– They optimize cleverly a fundamentally unstable metric criterion:

x

y

F

ŷ = (b⌃†
x

b⌃
xy

)x

⇥⇤ = argmin
⇥

X

i

kF (xi,⇥)� yik2 , ŷ = F (x,⇥⇤)



Scattering Approach
• Relax the metric: 

F

S
S

x

y

S�1



Scattering Approach
• Relax the metric: 

– Start with simple linear estimation on scattering domain.
– Deformation stability gives more approximation power in the 

transformed domain via locally linear methods.
– The method is not necessarily better in terms of PSNR!

F

S
S

x

y

S�1



Some Numerical Results

Original  Best 
Linear Estimate

Scattering  
Estimate state-of-the-art



Conclusions

• Geometric encoding with deformation stability
– Convolutional Networks are good representations

• Inverse Scattering is a generalized phase recovery
– Efficiently solved using back propagation 

• Maximum Entropy Scattering Distributions
– Capture non-gaussian properties

• Learning a metric contraction can break the curse of 
dimensionality. 



Audio Source Separation

•  
•  
• Ill-posed inverse problem. We need to impose structure 

in our estimates 

• Different learning set-ups:
– Blind/No learning: Construct priors via time-frequency local 

regularity ([Wolf et al,’14]).
– Non-discriminative: We observe each source separately, learn a 

model of each source. 
– Discriminative: We train directly with input mixtures.

(joint work with P. Sprechmann and Y. LeCun, ICLR’15)

Suppose we observe y(t) = x1(t) + x2(t).

Goal: Estimate x1(t), x2(t).

x̂1(t), x̂2(t).



Audio Source Separation
• State-of-the-art methods:

–      is a synthesis operator, trained to estimate        from      .  
•Non-negative Matrix Factorization

– Can be trained either non-discriminative or discriminative. 

•DNN/ RNN / LSTM:      is modeled as a Neural Net trained 
discriminatively.

–         is approximately linear if      small. 
– Long temporal structure is imposed on the D.

Time-Freq

D�

sampling rate ��1

��1

��1

y(t)
x̂1(t)

x̂2(t)

D �xi �y

min
zi

k�y �
X

i

Dizik2 + �(
X

i

kzik1) .

D

��1 �



Multi-Resolution Scattering Source Sep.

• Rather than adding structure to the unstable synthesis 
block, replace the analysis with a more invariant one.

• We use a multi-resolution pyramid CNN analysis 
– Pros: We relieve the synthesis from having to model uninformative 

variability.
– Pros: The wavelets can be replaced by a learnt linear transformation 

that preserves informations.
– Cons: Phase Recovery is more expensive, but approximate linear 

inverse still works well in practice.

�



Results on TIMIT

• 64 Speakers, gender-specific models.

• Learning long-range dependency with multi scale as an 
alternative to recurrent architectures.

SDR SIR SAR
NMF 6.1 [2.9] 14.1 [3.8] 7.4 [2.1]
scatt-NMF(1) 6.2 [2.8] 13.5 [3.5] 7.8 [2.2]
scatt-NMF(2) 6.9 [2.7] 16.0 [3.5] 7.9 [2.2]
CQT-DNN-1 frame 9.4 [3.0] 17.7 [4.2] 10.4 [2.6]
CQT-DNN-5 frame 9.2 [2.8] 17.4 [4.0] 10.3 [2.4]
CQT-DNN-scatt 9.7 [3.0] 19.6 [4.4] 10.4 [2.7]
CQT-CNN-scatt 9.9 [3.1] 19.8 [4.2] 10.6 [2.8]



Thank you! 


