Signal Recovery from Scattering
Convolutional Networks

Joan Bruna
Dept. of Statistics, UC Berkeley
collaborators: Stephane Mallat (ENS) ,Yann LeCun(NYU), Pablo
Sprechmann(NYU)

IIIIIIIIIIIIIIIIIIIIII



Complex data + Complex tasks
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general
object
recognition

(from Imagenet dataset)



Image
captioning

/

From Vinyals et dl,
CVPR'[5

Automatically captioned: “Two pizzas sitting on top of a stove top oven”



. general
compression,  source super pattern object

i . . segmentation localization .
denoising  separation  resolution 5 recognition "
recognition

S S S ST

* Spectrum of tasks with varying metric structure.

—Metric invariances encoded Into a non-linear signal representation

d(z,z') = [|®(x) — ®(z')|

* As we move towards the right, how much information
do we lose! How to quantity what we keep/lose?

* Can we identify a “perceptual’ metric?



high-dimensional space @
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* ®trained to reduce intra-class variability while
preserving discriminability (eg a Deep Neural Network)
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* Sampling or Regressing in transformed space Is easy



Generative Models of Complex data
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* How to perform high-dimensional density estimation via
invariant representations?

* Applications to synthesis, Inverse problems,
unsupervised learning.




* Review of Scattering Convolutional Networks.

* Signal and Texture Recovery.

* Applications to high-dimensional Inverse Problems:
— Synthesis,
— Super-Resolution,
— Audio Source Separation.



x(u) , u: pixels, time samples, etc. 7(u) , : deformation field

L:(x)(u) =z(u—7(u)) : warping

e Deformation “cost”: ||7]| = Asup |7(u)| + sup |V (u)] .

—Model change In point of view In Images

—Model frequency transpositions in sounds
—Consistent with local translation invariance



* Blur operator:Az = z x ¢ , ¢: local average

— The only linear operator A stable to deformations

|AL,x — Az| < ||r||z]| o(u)

[Bruna’12]



* Blur operatoriAxz = x * ¢ , ¢: local average

— The only linear operator A stable to deformations:

|AL .« — Ax|| < |7]2] - o(u)

[Bruna’12]

* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
W recovers information lost by A.




* Blur operatoriAxz = x * ¢ , ¢: local average

— The only linear operator A stable to deformations:

|AL .« — Ax|| < |7]2] - o(u)

[Bruna’12]

* Wavelet filter bank: Wz = {z * ¢} , ¥r(u) = 27799(277 Rou)

: spatially localized band-pass filter.
W recovers information lost by A.

* Point-wise non-linearity p(z) = |z
—Commutes with deformations: pL.x = L, px f [Bruna’12]

—Demodulates wavelet coefficients, preserves energy.



* MFCC (audio)

'Mermelstein, /6]

 SIFT, Dalsy

[Lowe, 04, Fua et al'| 0] SGAUEE >

* ConvNets
[LeCun et al, 98]
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~Image and Audio descriptors

* MFCC (audio) !

'Mermelstein, /6]

(figure from Jothilakshmi et al)
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Cascade of contractive operators.




Fourier Wavelet Scattering

fra ] *d ||f x x| x| * ¢

SIFT

window size = image size



Theorem: [Mallat ’10] With appropriate wavelets, S; is stable to additive

noise,
|Ss(x+n) = Syz| < |n|

unitary, |[Syx| = ||z||, and stable to deformations

|Srzr = Syz|| < Cllz|[| V]| .




x(u): realizations of a stationary process X (u) (not Gaussian)

‘-
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(u) (not Gaussian)

Discriminability: need to capture high-order moments
Stability: E(||®(X) — ®(X)||?) small
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Properties of Scattering Moments o
. | [Bruna Mallat

rder moments:

Power Spectrum

ol gh o

* Cascading non-linearities 1s necessary to reveal higher-
order moments.



Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX —SX||*)=0.
N — o0



Consistency of Scattering Moments

Theorem: [B’15] If ¢ is a wavelet such that |[¢|1 < 1, and X (¢) is a
linear, stationary process with finite energy, then

lim E(||SyX — SX|?)=0.
N —00

Corollary: If moreover X (t) is bounded, then

X5

E(|SyX — SX||?) < C .
(HN H)— \/N

* Although we extract a growing number of features, their
olobal variance goes to 0.

* No variance blow-up due to high order moments.

* Adding layers is critical (here depth i1s log(N)).



* State-of-the art on pattern and texture recognition:
~MNIST [Pami'| 3]

* Object Recognition:

a4 Ty
. T

—~17% error on Cifar-10 [Oyallon&Mallat, CVPR'15]

— General Object Recognition requires adapting the wavelets to the
signal classes. Learning is necessary.
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e [QI] GivenSjx computed with m layers, under what
conditions can we recover  (up to global symmetry)?
Using what algorithm? As a function of the localization

scale | ?




SJCI’J:{LIZ‘*¢J, , ,...}jigj

e [QI] GivenSjx computed with m layers, under what
conditions can we recover  (up to global symmetry)?
Using what algorithm? As a function of the localization

scale | ?

SX ={F(X), , R

e [Q2] Given SX, how can we characterize interesting
brocesses! How to sample from such distributions?




Q1] As |00, with depth fixed to m, we have
mMeasurements O(|log N|™) < N

— Non-linear, invariant compressed sensing.

— Eldar et al ['|2]: Sparse Recovery from Fourier Magnitude

— Plan and Vershynin [ |4]: Generalized Linear Model, |-bit compressed
sensing.



Q1] As |00, with depth fixed to m, we have
mMeasurements O(|log N|™) < N

— Non-linear, invariant compressed sensing.

— Eldar et al ['|2]: Sparse Recovery from Fourier Magnitude

— Plan and Vershynin [ |4]: Generalized Linear Model, |-bit compressed
sensing.

QI] Forfixed |, it I1s a generalized phase-recovery
broblem
— Balan et al [06], Candes et al. ['| | ], Waldspurger et al ['| 2]: Phasecut

— Bruna et al [ 14]: Signal Recovery from Ip pooling.




Related Work

* [QI]As =00, with depth fixed to m, we have
mMmeasurements O(|log N|"™) < N

— Non-linear, invariant compressed sensing.

— Eldar et al ['12]: Sparse Recovery from Fourier Magnitude
— Plan and Vershynin ['14]: Generalized Linear Model, |-bit compressed
sensing,
e [QI] For fixed |, it I1s a generalized phase-recovery
broblem
—Balan et al [06], Candes et al.['| | ] ,Waldspurger et al [ | 2]: Phasecut

—Bruna et al ['14]: Signal Recovery from Ip pooling.

* [Q2] Texture synthesis

— Simoncelli & Portilla ['00], Simoncelli & McDermott ['| | ], Mumford et al
[98]: define statistical models using generalized wavelet moments.

— Peyre et al ['14]: models on learnt dictionaries, Effros&Freeman [0 1] Quilting



» Giveny = S0, (fixed |, fixed depth) consider

min || Sz — y||* .
xXr

* When J = log IV, Intersection of mixed 41 2 balls:

|1
\v/jl ’ Qj*wlel
V1,92 5 ||| * Y| *x ¥4,

* Non-convex optimization problem.



Theorem [B,M’14]|: Suppose xo(t) = ) a,0(t—by) with |b, —bp+1]| > A,
and Syxrg = Syx with m =1 and J = oo. If ¥ has compact support, then

z(t) =Y cad(t —ey) , with [e, — ent1]| 2 A .

n



Sparse Signal Recovery

Theorem [B,M’15]|: Suppose zo(t) = > and(t—by) with |b, —bpy1| > A,
and [lzlls = [2olls, [l2 * %11 = o * ;[}x for all 5. Tf 1 has compact support,
then

p(t) =Y cal(t —ey) , with [en — enq1]| 2 A .

n

e Sz essentially identifies sparse measures,
up to log spacing factors.

* Here, sparsity 1s encoded In the measurements
themselves.

* In 2D, singular measures (le curves) require m = 2 to be
well characterized.



Osclllatory Signal Recovery

Theorem [B,M’14]: Suppose zg(§) = > and(§ — b,) with |logb, —
logb,1| > A, and Syjxr = Sjyxg with m = 2 and J = log N. If ¢ has com-
pact support K < A, then

Z(6) = cnd(€ —en) , with [loge, —logenti| 2 A .

n

* Osclllatory, lacunary signals are also well captured with
the same measurements.

* [t Is the opposite set of extremal points from previous
result.




S
S={z st Sx=25)

min || Sz — Sp||?
Xr

* Non-linear Least Squares.

* | evenberg-Marquardt gradient descent:
Tna1 = Tn — Y(DSzy) (Szs — Sp)



20~ N(0,T)

S
S={z st Sx=25)

min || Sz — Sp||?
Xr

* Non-linear Least Squares.

* | evenberg-Marquardt gradient descent:
Tpi1 = Ty — *y(Dgxn)T(gmn — §0)

* Global convergence guarantees using complex wavelets:

DSz is full rank for m = 2 if x compact support.



Sparse Shape Reconstructions

Original images of N? pixels:
Y - 1
P |
/7 A e
P
PO

=1,27 = N: reconstructlon from O( log2 ) scattering coeff.

m = 2, 27 = N: reconstruction from O( log2 ) scattering coeff.

M
M
(7 | Z.
M
M




* For finite | and finite m, recovery depends on redundancy
actOI” dlm(SJﬂf) — O(NQ—ZJJ’WL)

* As | Increases, redundancy decreases.

* No universal recovery guarantees.

* We use the same gradient descent algorithm.



Original
Images

N? pixels
Scattering '
Reconstructior e
27 — 16
1.4 N? coeff.

0.5 N? coeff.




Recently, interest in inverting Deep Convolutional
Networks

— The Learnt Representations are highly contractive: recovery i1s more
“Impressionistic’:

Reconstructions from a 5-layer CNN
(from Mahendran&Vedaldi, ' 5)



Maximum Entropy Distribution from Scattering Moments:
oy Boltzmann Theorem, we have

p(z) = Eez|p|gm Ap(Ulplz*¢5)(0)

e )\, are Lagrange multipliers that guarantee that E,(U[p]z) = SX(p).



Texture Synthesis

* Maximum Entropy
oy Boltzmann Theo

Distribution from Scattering Moments:

rem, we have

p(x) — —ezlmgm Ap(Ulplz*¢5)(0)

A

e )\, are Lagrange multipliers that guarantee that E,(U[p]z) = SX(p).

* When X(1) Is ergodic, this distribution converges to the

uniform measure o

n the set (the Julesz ensemble):

Q(SX) =A{x s.t. Ulplx = SX(p) Vp} .

* Convergence In distribution is a hard problem (cf Chatterjee)

* We can sample approximately using previous algorithm.
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* Scattering Moments of 2Znd order thus capture essential geometric
structures with only O((log V)?) coefficients.

* However, not all texture geometry Is captured.
» Results using a deep VGG network from [Gathys et al, NIPS' [ 5]

Synthesised
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* Scattering Moments of 2Znd order thus capture essential geometric
structures with only O((log N)?) coefficients.

* However, not all texture geometry Is captured.
» Results using a deep VGG network from [Gathys et al, NIPS' [ 5]

Synthesised Source

Synthesised




* Best Linear Method: Least Squares estimate (linear
interpolation): § = (X13,,)z



* Best Linear Method: Least Squares estimate (linear
interpolation): § = (X13,,)z
* State-of-the-art Methods:

— Dictionary-learning Super-Resolution
— CNN-based: Just train a CNN to regress from low-res to high-res.
— They optimize cleverly a fundamentally unstable metric criterion:

* : . R I S %
© —argmén;\\F(wz,@) yil|© , 9= F(z,07)



Scattering Approach

o Relax the metric;




Scattering Approach

. Relax the metric;

— Start with simple linear estimation on scattering domain.

— Deformation stablility gives more approximation power Iin the
transformed domain via locally linear methods.

— The method Is not necessarily better in terms of PSNR!



Best Scattering
Linear Estimate Estimate

state-of-the-art

Original



* Geometric encoding with deformation stability

— Convolutional Networks are good representations

* Inverse Scattering I1s a generalized phase recovery

— Efficiently solved using back propagation

* Maximum Entropy Scattering Distributions

— Capture non-gaussian properties

* Learning a metric contraction can break the curse of
dimensionalrty.



~ Audio Source Separation
(/omt work with P Sprechmann and Y, LeCun, ICLR’ /5)

e Suppose we observe y(t) = x1(t) + x2(1).

e Goal: Estimate x1(%), x2(t).

* [l-posed Inverse problem.VWe need to impose structure
in our estimates 1 (t), 2a2(t).

* Different learning set-ups:

—Blind/No learning: Construct priors via time-frequency local
regularity ([Wolf et al; [4]).

—Non-discriminative: We observe each source separately, learn a
model of each source.

—Discriminative: VWe train directly with input mixtures.



~ Audio Source Separaton

. State of the-art methods:

y(t) Time-Freq > (I)_l wl(j)
— ¢ > D , P @)
\ o P

— D is a synthesis operator, trained to estimate ®x; from Oy .
* Non-negative Matrix Factorization

min |y — Y Dizil|* + A |lzilh)

IIL N N N N ' ' ' e '
— Can be trained either non-discriminative or discrimmative.

« DNIN/ RNIN / LSTM: D is modeled as a Neural Net trained
discriminatively.

— @1 is approximately linear if A small.
—Long temporal structure is iImposed on the D.



__Multi-Resolution Scattering Source Sep.

* Rather than adding structure to the unstable synthesis
block, replace the analysis with a more Invariant one.

* We use a multi-resolution pyramid CNN analysis d

—Pros:We relieve the synthesis from having to model uninformative
variability.

—Pros: The wavelets can be replaced by a learnt linear transformation
that preserves informations.

— Cons: Phase Recovery i1s more expensive, but approximate linear
inverse still works well In practice.



* 64 Speakers, gender-specific models.

SDR SIR SAR
NMFE 6.1 [2.9] | 14.1[3.8] | 7.4 2.0
scatt-NMF (1) 6.2 [2.8] | 13.5[3.5] | 7.8 (2.2
scatt-NMF(2) 6.9 [2.7] | 16.0[3.5] | 7.9 [2.2

CQT-DNN-1 frame | 9.4 [3.0] | 17.7 [4.2] 10.4 [2.6]
CQT-DNN-5 frame | 9.2 [2.8] | 17.4 [4.0] 10.3 [2.4]
CQT-DNN-scatt 0.7 [3.0] | 19.6 [4.4] | 10.4 [2.7
CQT-CNN-scatt 9.9 [3.1] | 19.8 [4.2] | 10.6 [2.8]

* Learning long-range dependency with multi scale as an
alternative to recurrent architectures.



Thank you!



