# Signal Recovery from Scattering Convolutional Networks

Joan Bruna Dept. of Statistics, UC Berkeley collaborators: Stephane Mallat (ENS), Yann LeCun(NYU), Pablo Sprechmann(NYU)

















(from Aren Jensen)

3681796691 6757863485 2179712845 4819018894 (Mnist)



(from Imagenet dataset)





From Vinyals et al, CVPR'I 5

Automatically captioned: "Two pizzas sitting on top of a stove top oven"

![](_page_6_Figure_1.jpeg)

- Spectrum of tasks with varying metric structure. – Metric invariances encoded into a non-linear signal representation  $d(x, x') = \|\Phi(x) - \Phi(x')\|$
- As we move towards the right, how much information do we lose? How to quantify what we keep/lose?
- Can we identify a "perceptual" metric?

## Generative Models of Complex data

![](_page_7_Figure_1.jpeg)

•  $\Phi$  trained to reduce intra-class variability while preserving discriminability (eg a Deep Neural Network)

#### Generative Models of Complex data

![](_page_8_Figure_1.jpeg)

• Sampling or Regressing in transformed space is easy

## Generative Models of Complex data

![](_page_9_Figure_1.jpeg)

- How to perform high-dimensional density estimation via invariant representations?
  - Applications to synthesis, inverse problems, unsupervised learning.

- Review of Scattering Convolutional Networks.
- Signal and Texture Recovery.
- Applications to high-dimensional Inverse Problems:
  - Synthesis,
  - Super-Resolution,
  - -Audio Source Separation.

x(u) ,  $u\colon$  pixels, time samples, etc.  $\tau(u)$  ,  $\colon$  deformation field

#### $L_{\tau}(x)(u) = x(u - \tau(u))$ : warping

![](_page_11_Picture_3.jpeg)

- Deformation "cost":  $\|\tau\| = \lambda \sup_{u} |\tau(u)| + \sup_{u} |\nabla \tau(u)|$ .
  - -Model change in point of view in images
  - -Model frequency transpositions in sounds
  - -Consistent with local translation invariance

• Blur operator:  $Ax = x * \phi$ ,  $\phi$ : local average —The only linear operator A stable to deformations

$$||AL_{\tau}x - Ax|| \le ||\tau|| ||x||$$
.

![](_page_12_Picture_3.jpeg)

• Blur operator:  $Ax = x * \phi$ ,  $\phi$ : local average -The only **linear** operator A stable to deformations:  $\|AL_{\tau}x - Ax\| \le \|\tau\| \|x\|$ .

• Wavelet filter bank:  $Wx = \{x * \psi_k\}, \ \psi_k(u) = 2^{-j}\psi(2^{-j}R_{\theta}u)$ 

 $\psi$ : spatially localized band-pass filter. W recovers information lost by A.

![](_page_13_Figure_5.jpeg)

• Blur operator:  $Ax = x * \phi$ ,  $\phi$ : local average —The only **linear** operator A stable to deformations:  $\|AL_{\tau}x - Ax\| \le \|\tau\| \|x\|$ .

[Bruna'12]

• Wavelet filter bank:  $Wx = \{x * \psi_k\}, \ \psi_k(u) = 2^{-j}\psi(2^{-j}R_{\theta}u)$ 

 $\psi$ : spatially localized band-pass filter. W recovers information lost by A.

θ

- Point-wise non-linearity  $\rho(x) = |x|$ - Commutes with deformations:  $\rho L_{\tau} x = L_{\tau} \rho x$ 
  - **Demodulates** wavelet coefficients, preserves energy.

## Image and Audio descriptors

- MFCC (audio) [Mermelstein,76]
- SIFT, Daisy [Lowe, 04, Fua et al'10]

• ConvNets [LeCun et al, 98]

![](_page_15_Figure_4.jpeg)

## Image and Audio descriptors

- MFCC (audio) [Mermelstein,76]
- SIFT, Daisy [Lowe, 04, Fua et al'10]
- ConvNets [LeCun et al, 98]

![](_page_16_Picture_4.jpeg)

#### Scattering Convolutional Network

![](_page_17_Figure_1.jpeg)

Cascade of contractive operators.

#### Image Examples

![](_page_18_Figure_1.jpeg)

window size = image size

**Theorem:** [Mallat '10] With appropriate wavelets,  $S_J$  is stable to additive noise,

$$|S_J(x+n) - S_J x|| \le ||n||$$
,

unitary,  $||S_J x|| = ||x||$ , and stable to deformations

$$\|S_J x_\tau - S_J x\| \le C \|x\| \|\nabla \tau\| .$$

![](_page_19_Picture_5.jpeg)

 $x_{\tau}$ 

 $\tilde{x}_{\tau}$ 

 $S_J x_{\tau}$ 

### Representation of Stationary Processes

x(u): realizations of a stationary process X(u) (not Gaussian)

![](_page_20_Picture_2.jpeg)

## Representation of Stationary Processes

x(u): realizations of a stationary process X(u) (not Gaussian)

![](_page_21_Picture_2.jpeg)

## $\Phi(X) = \{E(f_i(X))\}_i$

Estimation from samples 
$$x(n)$$
:  $\widehat{\Phi}(X) = \left\{ \frac{1}{N} \sum_{n} f_i(x)(n) \right\}_i$ 

Discriminability: need to capture high-order moments Stability:  $E(\|\widehat{\Phi}(X) - \Phi(X)\|^2)$  small

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_1.jpeg)

#### Properties of Scattering Moments

![](_page_26_Figure_1.jpeg)

## Properties of Scattering Moments

![](_page_27_Figure_1.jpeg)

 Cascading non-linearities is *necessary* to reveal higherorder moments.

### Consistency of Scattering Moments

**Theorem:** [B'15] If  $\psi$  is a wavelet such that  $\|\psi\|_1 \leq 1$ , and X(t) is a linear, stationary process with finite energy, then

$$\lim_{N \to \infty} E(\|\hat{S}_N X - S X\|^2) = 0 \; .$$

## Consistency of Scattering Moments

**Theorem:** [B'15] If  $\psi$  is a wavelet such that  $\|\psi\|_1 \leq 1$ , and X(t) is a linear, stationary process with finite energy, then

$$\lim_{N \to \infty} E(\|\hat{S}_N X - S X\|^2) = 0 \; .$$

**Corollary:** If moreover X(t) is bounded, then

$$E(\|\hat{S}_N X - SX\|^2) \le C\frac{|X|_{\infty}^2}{\sqrt{N}}$$

- Although we extract a growing number of features, their global variance goes to 0.
- No variance blow-up due to high order moments.
- Adding layers is critical (here depth is log(N)).

Classification with Scattering

- State-of-the art on pattern and texture recognition:
   MNIST [Pami'13]
   MNIST [Pami'13]
  - 6757863485 2179712845 4819018894

-Texture (CUREt, UIUC) [Pami'I 3]

• Object Recognition:

![](_page_30_Picture_5.jpeg)

- –~17% error on Cifar-10 [Oyallon&Mallat, CVPR'15]
- -General Object Recognition requires adapting the wavelets to the signal classes. Learning is *necessary*.

Signal and Texture Recovery Challenge

 $S_J x = \{x * \phi_J, |x * \psi_{j_1}| * \phi_J, ||x * \psi_{j_1}| * \psi_{j_2}| * \phi_J, \dots \}_{j_i \le J}$ 

• [Q1] Given  $S_J x$  computed with m layers, under what conditions can we recover x (up to global symmetry)? Using what algorithm? As a function of the localization scale J?

Signal and Texture Recovery Challenge

 $S_J x = \{x * \phi_J, |x * \psi_{j_1}| * \phi_J, ||x * \psi_{j_1}| * \psi_{j_2}| * \phi_J, \dots \}_{j_i \le J}$ 

• [Q1] Given  $S_J x$  computed with m layers, under what conditions can we recover x (up to global symmetry)? Using what algorithm? As a function of the localization scale J?

$$\overline{S}X = \{E(X), E(|X * \psi_{j_1}|), E(||X * \psi_{j_1}| * \psi_{j_2}|), \dots\}$$

• [Q2] Given SX, how can we characterize interesting processes? How to sample from such distributions?

- [Q1] As  $J \rightarrow \infty$ , with depth fixed to m, we have  $O(|\log N|^m) \ll N$ measurements
  - Non-linear, invariant compressed sensing.
  - Eldar et al ['12]: Sparse Recovery from Fourier Magnitude
  - Plan and Vershynin ['14]: Generalized Linear Model, 1-bit compressed sensing.

- [Q1] As  $J \rightarrow \infty$ , with depth fixed to m, we have  $O(|\log N|^m) \ll N$ measurements
  - Non-linear, invariant compressed sensing.
  - Eldar et al ['12]: Sparse Recovery from Fourier Magnitude
  - Plan and Vershynin ['14]: Generalized Linear Model, 1-bit compressed sensing.
- [QI] For fixed J, it is a generalized phase-recovery problem
  - Balan et al ['06], Candes et al. ['11] , Waldspurger et al ['12]: Phasecut
  - Bruna et al ['14]: Signal Recovery from lp pooling.

- [Q1] As  $J \rightarrow \infty$ , with depth fixed to m, we have  $O(|\log N|^m) \ll N$ measurements
  - Non-linear, invariant compressed sensing.
  - Eldar et al ['12]: Sparse Recovery from Fourier Magnitude
  - Plan and Vershynin ['14]: Generalized Linear Model, 1-bit compressed sensing.
- [QI] For fixed J, it is a generalized phase-recovery problem
  - Balan et al ['06], Candes et al. ['11] , Waldspurger et al ['12]: Phasecut
  - Bruna et al ['14]: Signal Recovery from lp pooling.
- [Q2] Texture synthesis
  - Simoncelli & Portilla ['00], Simoncelli & McDermott ['11], Mumford et al ['98]: define statistical models using generalized wavelet moments.
  - Peyre et al ['14]: models on learnt dictionaries, Effros&Freeman ['01] Quilting

#### Problem Set-Up

- Given  $y = S_J x_0$ , (fixed J, fixed depth) consider  $\min_x \|S_J x - y\|^2.$
- When  $J = \log N$ , intersection of mixed  $\ell_{1,2}$  balls:

$$\begin{aligned} \|x\|_{1} \\ \forall j_{1} , \|x * \psi_{j_{1}}\|_{1} \\ \forall j_{1}, j_{2} , \|\|x * \psi_{j_{1}}\| * \psi_{j_{2}}\|_{1} \end{aligned}$$

• Non-convex optimization problem.

#### Sparse Signal Recovery

**Theorem [B,M'14]:** Suppose  $x_0(t) = \sum_n a_n \delta(t-b_n)$  with  $|b_n - b_{n+1}| \ge \Delta$ , and  $S_J x_0 = S_J x$  with m = 1 and  $J = \infty$ . If  $\psi$  has compact support, then

$$x(t) = \sum_{n} c_n \delta(t - e_n)$$
, with  $|e_n - e_{n+1}| \gtrsim \Delta$ .

## Sparse Signal Recovery

**Theorem [B,M'15]:** Suppose  $x_0(t) = \sum_n a_n \delta(t-b_n)$  with  $|b_n - b_{n+1}| \ge \Delta$ , and  $||x||_1 = ||x_0||_1$ ,  $||x * \psi_j||_1 = ||x_0 * \psi_j||_1$  for all *j*. If  $\psi$  has compact support, then

$$x(t) = \sum_{n} c_n \delta(t - e_n)$$
, with  $|e_n - e_{n+1}| \gtrsim \Delta$ .

- Sx essentially identifies sparse measures, up to log spacing factors.
- Here, sparsity is encoded in the measurements themselves.
- In 2D, singular measures (ie curves) require m = 2 to be well characterized.

## Oscillatory Signal Recovery

**Theorem [B,M'14]:** Suppose  $\widehat{x_0}(\xi) = \sum_n a_n \delta(\xi - b_n)$  with  $|\log b_n - \log b_{n+1}| \ge \Delta$ , and  $S_J x = S_J x_0$  with m = 2 and  $J = \log N$ . If  $\widehat{\psi}$  has compact support  $K \le \Delta$ , then

$$\widehat{x}(\xi) = \sum_{n} c_n \delta(\xi - e_n)$$
, with  $|\log e_n - \log e_{n+1}| \gtrsim \Delta$ .

- Oscillatory, lacunary signals are also well captured with the **same** measurements.
- It is the opposite set of extremal points from previous result.

![](_page_40_Figure_0.jpeg)

![](_page_40_Figure_1.jpeg)

- Non-linear Least Squares.
  - Levenberg-Marquardt gradient descent:

$$x_{n+1} = x_n - \gamma (DSx_n)^{\dagger} (Sx_n - S_0)$$

#### Scattering Reconstruction Algorithm

![](_page_41_Figure_1.jpeg)

- Non-linear Least Squares.
  - Levenberg-Marquardt gradient descent:  $x_{n+1} = x_n - \gamma (D\widehat{S}x_n)^{\dagger} (\widehat{S}x_n - \widehat{S}_0)$
- Global convergence guarantees using complex wavelets:  $D\hat{S}x$  is full rank for m = 2 if x compact support.

## Sparse Shape Reconstructions

#### Original images of $N^2$ pixels:

![](_page_42_Picture_2.jpeg)

#### $m = 1, 2^J = N$ : reconstruction from $O(\log_2 N)$ scattering coeff.

![](_page_42_Picture_4.jpeg)

#### $m = 2, 2^J = N$ : reconstruction from $O(\log_2^2 N)$ scattering coeff.

![](_page_42_Picture_6.jpeg)

## Multiscale Scattering Reconstruction

- For finite J and finite m, recovery depends on redundancy factor.  $\dim(S_J x) = O(N2^{-2J}J^m)$
- As J increases, redundancy decreases.
- No universal recovery guarantees.
- We use the same gradient descent algorithm.

#### Multiscale Scattering Reconstruction

![](_page_44_Picture_1.jpeg)

## Related Work on CNN inversion

- Recently, interest in inverting Deep Convolutional Networks
  - The Learnt Representations are highly contractive: recovery is more "impressionistic":

![](_page_45_Picture_3.jpeg)

#### Reconstructions from a 5-layer CNN (from Mahendran&Vedaldi, '15)

#### **Texture Synthesis**

 Maximum Entropy Distribution from Scattering Moments: by Boltzmann Theorem, we have

$$p(x) = \frac{1}{Z} e^{\sum_{|p| \le m} \lambda_p(U[p]x * \phi_J)(0)}$$

•  $\lambda_p$  are Lagrange multipliers that guarantee that  $E_p(U[p]x) = \hat{S}X(p)$ .

#### **Texture Synthesis**

 Maximum Entropy Distribution from Scattering Moments: by Boltzmann Theorem, we have

$$p(x) = \frac{1}{Z} e^{\sum_{|p| \le m} \lambda_p(U[p]x * \phi_J)(0)}$$

- $\lambda_p$  are Lagrange multipliers that guarantee that  $E_p(U[p]x) = \hat{S}X(p)$ .
- When X(t) is ergodic, this distribution converges to the uniform measure on the set (the Julesz ensemble):

$$\Omega(SX) = \{x \ s.t. \ \overline{U[p]x} = SX(p) \ \forall p\} \ .$$

- Convergence in distribution is a hard problem (cf Chatterjee)
- We can sample approximately using previous algorithm.

#### Ergodic Texture Reconstruction

#### Original Textures

![](_page_48_Picture_2.jpeg)

#### Gaussian process model with same second order moments

![](_page_48_Picture_4.jpeg)

#### $m = 2, 2^J = N$ : reconstruction from $O(\log_2^2 N)$ scattering coeff.

![](_page_48_Picture_6.jpeg)

![](_page_48_Picture_7.jpeg)

![](_page_48_Picture_8.jpeg)

![](_page_48_Picture_9.jpeg)

![](_page_48_Picture_10.jpeg)

![](_page_48_Picture_11.jpeg)

## Ergodic Texture Reconstruction

- Scattering Moments of 2nd order thus capture essential geometric structures with only  $O((\log N)^2)$  coefficients.
- However, not all texture geometry is captured.
- Results using a deep VGG network from [Gathys et al, NIPS'15]

![](_page_49_Picture_4.jpeg)

Synthesised

![](_page_49_Picture_6.jpeg)

![](_page_49_Picture_7.jpeg)

![](_page_49_Picture_8.jpeg)

Source

## Ergodic Texture Reconstruction

- Scattering Moments of 2nd order thus capture essential geometric structures with only  $O((\log N)^2)$  coefficients.
- However, not all texture geometry is captured.
- Results using a deep VGG network from [Gathys et al, NIPS' I 5]

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

Synthesised

![](_page_50_Picture_7.jpeg)

![](_page_50_Picture_8.jpeg)

Source

### **Application: Super-Resolution**

![](_page_51_Figure_1.jpeg)

![](_page_51_Picture_2.jpeg)

• Best Linear Method: Least Squares estimate (linear interpolation):  $\hat{y} = (\hat{\Sigma}_x^{\dagger} \hat{\Sigma}_{xy}) x$ 

## **Application: Super-Resolution**

![](_page_52_Figure_1.jpeg)

![](_page_52_Picture_2.jpeg)

- Best Linear Method: Least Squares estimate (linear interpolation):  $\hat{y} = (\hat{\Sigma}_x^{\dagger} \hat{\Sigma}_{xy}) x$
- State-of-the-art Methods:
  - -Dictionary-learning Super-Resolution
  - -CNN-based: Just train a CNN to regress from low-res to high-res.
  - -They optimize cleverly a fundamentally unstable metric criterion:

$$\Theta^* = \arg\min_{\Theta} \sum_{i} \|F(x_i, \Theta) - y_i\|^2 \quad , \ \hat{y} = F(x, \Theta^*)$$

## Scattering Approach

• Relax the metric:

![](_page_53_Picture_2.jpeg)

![](_page_53_Picture_3.jpeg)

## Scattering Approach

• Relax the metric:

![](_page_54_Figure_2.jpeg)

- Start with simple linear estimation on scattering domain.
- -Deformation stability gives more approximation power in the transformed domain via locally linear methods.
- -The method is not necessarily better in terms of PSNR!

#### Some Numerical Results

![](_page_55_Picture_1.jpeg)

Original

Best Linear Estimate Scattering Estimate

state-of-the-art

## Conclusions

- Geometric encoding with deformation stability – Convolutional Networks are good representations
- Inverse Scattering is a generalized phase recovery

   Efficiently solved using back propagation
- Maximum Entropy Scattering Distributions

   Capture non-gaussian properties
- Learning a metric contraction can break the curse of dimensionality.

## Audio Source Separation

(joint work with P. Sprechmann and Y. LeCun, ICLR' 15)

- Suppose we observe  $y(t) = x_1(t) + x_2(t)$ .
- Goal: Estimate  $x_1(t), x_2(t)$ .
- Ill-posed inverse problem. We need to impose structure in our estimates  $\hat{x_1}(t)$ ,  $\hat{x_2}(t)$ .
- Different learning set-ups:
  - Blind/No learning: Construct priors via time-frequency local regularity ([Wolf et al, 14]).
  - Non-discriminative: We observe each source separately, learn a model of each source.
  - -Discriminative: We train directly with input mixtures.

## Audio Source Separation

![](_page_58_Figure_1.jpeg)

- D is a synthesis operator, trained to estimate  $\Phi x_i$  from  $\Phi y$  .
  - Non-negative Matrix Factorization

$$\min_{z_i} \|\Phi y - \sum D_i z_i\|^2 + \lambda (\sum \|z_i\|_1) .$$

- Can be trained either non-discriminative or discriminative.
- $\bullet\,{\rm DNN}/\,{\rm RNN}$  / LSTM:  $D\,$  is modeled as a Neural Net trained discriminatively.
- $-\Phi^{-1}$  is approximately linear if  $\Delta$  small.
- Long temporal structure is imposed on the D.

## Multi-Resolution Scattering Source Sep.

- Rather than adding structure to the unstable synthesis block, replace the analysis with a more invariant one.
- We use a multi-resolution pyramid CNN analysis  $\Phi$ 
  - Pros: We relieve the synthesis from having to model uninformative variability.
  - Pros: The wavelets can be replaced by a learnt linear transformation that preserves informations.
  - Cons: Phase Recovery is more expensive, but approximate linear inverse still works well in practice.

### Results on TIMIT

• 64 Speakers, gender-specific models.

|                      | SDR              | SIR               | SAR            |
|----------------------|------------------|-------------------|----------------|
| NMF                  | 6.1 [2.9]        | 14.1 [3.8]        | 7.4 [2.1]      |
| scatt-NMF(1)         | 6.2 [2.8]        | 13.5 [3.5]        | 7.8 [2.2]      |
| scatt-NMF(2)         | 6.9 [2.7]        | 16.0 [3.5]        | $7.9 \ [2.2]$  |
| CQT-DNN-1 frame      | 9.4 [3.0]        | 17.7 [4.2]        | $10.4 \ [2.6]$ |
| CQT- $DNN$ -5 frame  | 9.2 [2.8]        | 17.4 [4.0]        | $10.3 \ [2.4]$ |
| CQT- $DNN$ - $scatt$ | 9.7 [3.0]        | 19.6 [4.4]        | $10.4 \ [2.7]$ |
| CQT- $CNN$ - $scatt$ | <b>9.9</b> [3.1] | <b>19.8</b> [4.2] | 10.6 [2.8]     |

• Learning long-range dependency with multi scale as an alternative to recurrent architectures.

## Thank you!