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Learning Deep Image Feature Hierarchies

* Deep learning gives ~ 10% improvement on ImageNet
— 1.2 million images, 1000 categories, 60 million parameters
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| Model | Top-1 | Top-5 | SIFT + FVs [7] — — 26.2%
- 1 CNN 40.7% 18.2% —
Sparse coding [2] | 47.1% | 28.2% 5 CNNs 33 1% 16.4% 16.4%
SIFT + FVs [24] | 45.7% | 25.7% 1 CNN* 39.0% 16.6% —
CNN 37.5% | 17.0% 7 CNNs* 36.7% 15.4% 15.3%
Table 1: Com parison of results on ILSVRC- Table 2: Cc.)m;.)arison of error rates on ILSVRC-2012 Validatiop and
L test sets. In italics are best results achieved by others. Models with an
2019 test set. In italics are best results asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
achieved by others. release. See Section 6 for details.

[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12.
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR’14.
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML’14.




Why These Improvements in Performance?

* More layers [1] A il
— Multiple layers capture more invariances 0.8/ - |
— Features are learned rather than hand-crafted 0.6 f/ff |
0.4/ , |
« More data 02,

3 7 11 15 19 23
— There is more data to train deeper networks level

* More computing
— GPUs go hand in hand with learning methods

« First attempt at a theoretical justification of invariance [2,3]
— Theoretical support for invariance via scattering transform
— Each layer must be a contraction to keep data volume bounded
— Optimization issues are not discussed: stage-wise learning is used

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] J Bruna, S Mallat, Invariant scattering convolution networks.

[3] J Bruna, S Mallat. Classification with scattering operators, arXiv preprint arXiv:1011.3023, 2010

[4] Mallat and Waldspurger. Deep Learning by Scattering, arXiv 2013




What About Optimization?

* The learning problem is non-convex
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THE NON-LINEAR PART

e Usuallyyp = g o f. % Y

* f is the (point-wise) activation function

RelLU Sigmoid , Hyperbolic
f(x) = max(x,0) Flx) = 1 tangent
1+e™™ f(x) = tanh(x)

* g is a pooling or an aggregation operator.
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Why do We Care About Convexity?

Convex f = x™x + y'y Convex (degenerate) f = x*x

Concave f= =x*x — y*y
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http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optqp_sect001.htm
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How is Non Convexity Handled?

* The learning problem is non-convex

min (Y, ®(X', ..., X))+ (X, .., XE)
X1, XK

— Back-propagation, alternating minimization, descent method

* To get a good local minima
— Random initialization
— If training error does not decrease fast enough, start again
— Repeat multiple times

* Mysteries
— One can find many solutions with similar objective values
— Rectified linear units work better than sigmoid/hyperbolic tangent
— Dead units (zero weights)

0




Related Work

 Gradient descent on square loss
* No spurious local optima for linear networks: Baldi & Hornik '89
« Failure cases: manifold of spurious local optima. Frasconi '97

* Random first layer weights suffice for polynomials under gaussian input:
Andoni et al. '14

 Incremental training with polynomial activations. Livni et al. "14

« Models with stochastic weights and inputs

* Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y.
Bengio, “ldentifying and attacking the saddle point problem in high-
dimensional non- convex optimization,” NIPS, 2014.

* A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun,
“The Loss Surfaces of Multilayer Networks,” AISTAT, 2015.

e Stochastic models trained using moment methods

* M Janzamin, H Sedghi, A Janzamin, Beating the Perils of Non-Convexity:
Guaranteed Training of Neural Networks using Tensor Methods

P Baldi, K Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989.

M Brady, R Raghavan, J Slawny. Back propagation fails to separate where perceptrons succeed. |IEEE Trans Circuits & Systems, 36(5):665-674, 1989.
M Gori, A Tesi. On the problem of local minima in backpropagation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(1):76-86, 1992.

P Frasconi, M Gori, and A Tesi. Successes and failures of backpropagation: A theoretical. Progress in Neural Networks: Architecture, 5:205, 1997.




Contributions

min /Y, ®(X', ..., X")+ 09X, ... XT)
X1,... XK

e Assumptions:
~ U(Y, X): convex and once differentiable in X
— ® and ©: sums of positively homogeneous functions of same degree

flaX', ..., aX®) =P f(X', ..., X") VYa>0

e Theorem 1: A local minimizer such that for some j and all k
Xf — () is a global minimizer

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization




Contributions

min (Y, ®(X*', ..., X))+ 0(X, ..., XT)
X1, XK

e Assumptions:
~ 4(Y, X): convex and once differentiable in X
— ® and ©: sums of positively homogeneous functions of same degree

flaX', ..., aX®) =P f(X', ..., X") VYa>0

* Theorem 2:

Critical Points of Non-Convex Function Guarantees of Our Framework




Outline

* Global Optimality in Structured Matrix Factorization [1,2]
— PCA, Robust PCA, Matrix Completion
— Nonnegative Matrix Factorization b d -t ot

calclum imaging dataset
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« Global Optimality in Positively Homogeneous Factorization [2]
— Tensor Factorization

— Deep Learning
— More

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ‘15
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Low Rank Modeling

« Models involving factorization are ubiquitous
— PCA

— Nonnegative Matrix Factorization
o - (1X11 = o)

— Dictionary Learning
— Matrix Completion
— Robust PCA

min Y — X1 + A X1
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http://perception.csl.illinois.edu/matrix-rank/home.html

Typical Low-Rank Formulations

« Convex formulations » Factorized formulations
min /(Y, X) +A\0(X) minl(Y,UV ")+ O(U,V)
X U,V
T
X Vv
— Robust PCA — Nonnegative matrix factorization
— Matrix Completion — Dictionary learning
« Convex  Non-Convex
* Large problem size * Small problem size

« Unstructured factors e Structured factors




Why Do We Need Structured Factors?

- Given a low-rank video Y € RP*! m)}n 1Y — X ||1 + A|| X«

(a) Original frames (b) Low-rank L

(c) Sparse S
min (Y, V') 4+ 20U, V)
» U: spatial basis
— Low total-variation
— Non-negative

« V:temporal basis
— Sparse on particular basis set
— Non-negative

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.

---------
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Find neuronal shapes and spike trains in calcium imaging

min (Y, (U, V)) + )\@(U, V)
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Why Do We Need Structured Factors?

* Nonnegative matrix factorization

min ¥ - UV'|% st. U>0,V >0

« Sparse dictionary learning

min [V —UVT[3 st Ul <1, [[Villo < r

« Challenges to state-of-the-art methods
— Need to pick size of U and V a priori

— Alternate between U and V, without guarantees of convergence to a
global minimum




Tackling Non-Convexity: Nuclear Norm Case

« Convex problem Factorized problem
min (Y, X) + A|X]. min (Y, UV +X0(U,V)
 Variational form of the nuclear norm
 r )
| X1l = min E_; \Uz-!z\v;-bj st. UV =X

« Theorem: Assume loss ¢ is convex and once differentiable in
X. A local minimizer of the factorized problem such that for
some i U; = V; = 0 is a global minimizer of both problems

e Intuition: regularizer © “comes from a convex function”




Tackling Non-Convexity: Nuclear Norm Case

« Convex problem Factorized problem

m)}nE(Y, X) + M| X« rlgli‘;lﬁ(Y, UvV"')+X0(U, V)
| T |
« Theorem: Assume loss /¢ is convex and once differentiable in

X. A local minimizer of the factorized problem such that for
some i U; = V; = 0 is a global minimizer of both problems




Tackling Non-Convexity: Tensor Norm Case

* A natural generalization Is the projective tensor norm [1,2]

HXHuv_mmZHUHuHVHU st. UV =X

 Theorem 1 [3,4]: A local minimizer of the factorized problem

T . .
%u‘;w(y UV’ + )\Z Uil Villo

such that for some i U; = V; = 0, is a global minimizer of
both the factorized problem and of the convex problem

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008.

[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.

[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML '14
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Tackling Non-Convexity: Tensor Norm Case

 Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Critical Points of Non-Convex Function Guarantees of Our Framework

 Meta-Algorithm:
— If not at a local minima, perform local descent to reach a local minima
— If optimality condition is satisfied, then local minima is global
— If condition fails, choose descent direction (u,v), and set

rr+1 U<+ U u| V|V v

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Example: Nonnegative Matrix Factorization

 QOriginal formulation

min ¥ - UV'|I|IZ2 st. U>0,V>0

 New factorized formulation

%11‘51 Y —UV'||E + AZ Uil2|Vil2 st. U,V >0

— Note: regularization limits the number of columns in (U,V)




Example: Sparse Dictionary Learning

 QOriginal formulation

min||[V —UVT 3 st [Uills < 1, [[Villo < r

 New factorized formulation

. T2 | . .
min |y — UV ||F+AZ:\UZ\2(M!2+’VMI1)




Non Example: Robust PCA

* Original formulation [1]

min || B, + A X[, st. YV =X4E
X.E

« Equivalent formulation

min [[Y" = Xly + A Xl

 New factorized formulation

mmﬂY (ﬂﬂm1+x§:um|vb

* Not an example because loss is not dn‘ferenhable

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.




Find neuronal shapes and spike trains in calcium imaging

min [|Y" — UV IE+ 2> NUillulVillo
1=1 Ul UQ
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min [[Y — @OV )[[E + A Y |Uilull Vil
’ i=1

=1 le+ 1 |l1+]

60 microns ‘
|

Raw Data Sparse + Low Rank +Total Variation
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. PCA Mean Fluoresoence - Feature obtained by PCA
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— Sensitive to noise
— Hard to interpret

* Proposed method Example Image Frames Features by Our Method

— Found 46/48
manually identified
active regions

— Features are easy
to interpret

— Minimal post-
processing for
segmentation

@iicing



In Vivo Results (Large Area)




Manual

Sparse

Sparse +
Low-Rank %

Sparse +
Low-Rank + TV %




Hyperspectral Compressed Recovery

- Y e RP*': hyperspectral image of a certain area at multiple
(t>100) wavelengths of light

» Different regions in space
correspond to different materials
— rank(Y) = number of materials

« U: spatial features
— Low total-variation
— Non-negative

» V: spectral features

_ Non-negative %1151 (Y, UV ")+ X6(U,V)

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.




Hyperspectral Compressed Recovery

* Prior method: NucTV (Golbabaee et al., 2012)

t
min [ X, + A IXillry st [IY = @(X)[[E < e
1=1

* 180 Wavelengths
« 256 x 256 Images

« Computation per lteration
— SVT of whole image volume
— 180 TV Proximal Operators
— Projection onto Constraint Set




Hyperspectral Compressed Recovery

Our method

min [}y — Q(UV') HF+AZHUH Vil

(U,V) have 15 columns
Problem size reduced by 91.6%

Computation per lteration
— Calculate gradient
— 15 TV Proximal Operators

Random Initializations




Hyperspectral Compressed Recovery

Reconstruction Error
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HXt’rue — UVTHF
HXt’rueHF
lSNR _
NucTV
= Our Method

16:1 32:1
Subsampling Ratio
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Conclussions

» Structured Low Rank Matrix Factorization
— Structure on the factors captured by the Projective Tensor Norm
— Efficient optimization for Large Scale Problems

« Local minima of the non-convex factorized form are global
minima of both the convex and non-convex forms

« Advantages in Applications
— Neural calcium image segmentation
— Compressed recovery of hyperspectral images
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From Matrix Factorizations to Deep Learning

« Two-layer NN
— Input: V e RVxd Xl c Rdl XT X2 c Rdg X7
— Weights: X" e R%>*"
— Nonlinearity: RelLU

output layer

Y1(x) = gnax(x, 0) inPUt Iayer
hidden layer

 “Almost” like matrix factorization
— r=rank (I)(Xl,XQ) :¢1(VX1)(X2)T

— r =#neurons in hidden layer




From Matrix Factorizations to Deep Learning

Recall the generalized factorization problem

i (Y, o(Xh ., X)) Fae(Xh LX)

Matrix factorization is a particular case where K=2

QU V)=> UV, U V)= |[UillullVill.
=1 1=1

Both ® and © are sums of positively homogeneous functions
flaX! ..., aX®)=aoPf(X',..., X)) VYa>0

Other examples
— ReLU + max pooling is positively homogeneous of degree 1




“Matrix Multiplication” for K > 2

* |n matrix factorization we have ,
QU V)=UV' = Z UV,

« By analogy we deflne

d(X1L, ..., Z¢ X

where Xk IS a tensor, Xk IS its i-th slice along its last
dimension, and ¢ is a posmvely homogeneous function

 Examples
— Matrix multiplication:

— Tensor product:
— ReLU neural network:




Example: Tensor Factorization

S S e
1 R e
X2 X2 X2
do ds X! boXx] ? x! '
I

r |




Example: Deep Learning

X! X2 x3 X! Multilayer ReLU
Parallel Network

O(X XA X5 X

Rectified Linear Unit (ReLU)

S =3 S
0 *'.




“Projective Tensor Norm™ for K > 2

* |n matrix factorization we had

—mmZHUHuHVHU st. UV =X

« By analogy we define

Tr

Qpo(X) = gmk% O(X}, ..., X )st. o(XY, ... XF)=X
X
1=1

where 0 is positively homogeneous of the same degree as 0,

* Proposition: qu IS convex




Main Results

* Theorem 1: A local minimizer of the factorized formulation

(Y, LX) D eX, . X
min £( Zcb )) ;( )

such that for some i and all k X?;k = (s a global minimizer
for both the factorized problem and of the convex formulation

II}}H K(Y, X) + )\qu,g(X)

 Examples
— Matrix factorization
— Tensor factorization
— Deep learning

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Main Results

 Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

 Meta-Algorithm:
— If not at a local minima, perform local descent to reach a local minima
— If optimality condition is satisfied, then local minima is global

— If condition fails, choose descent direction, increase r <- r+1, and
move along descent direction

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Conclusions

For many non-convex factorization problems, such as matrix
factorization, tensor factorization, and deep learning, a local
minimizer for the factors gives a global minimizer

For matrix factorization, this

— allows one to incorporate structure on the factors, and
— gives efficient optimization method suitable for large problems

For deep learning, this provides theoretical insights on why
— many local minima give similar objective values
— RelLU works better than sigmoidal functions

While alternating minimization is efficient and guaranteed to
converge, it is not guaranteed to converge to a local minimum




More Information,

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Thank You!
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