
Global Optimality in Matrix and Tensor 
Factorizations, Deep Learning and More

Ben Haeffele and René Vidal 
Center for Imaging Science 

Institute for Computational Medicine 



Learning Deep Image Feature Hierarchies
• Deep learning gives ~ 10% improvement on ImageNet 

– 1.2 million images, 1000 categories, 60 million parameters

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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reduced three times prior to termination. We trained the network for roughly 90 cycles through the
training set of 1.2 million images, which took five to six days on two NVIDIA GTX 580 3GB GPUs.

6 Results

Our results on ILSVRC-2010 are summarized in Table 1. Our network achieves top-1 and top-5
test set error rates of 37.5% and 17.0%5. The best performance achieved during the ILSVRC-
2010 competition was 47.1% and 28.2% with an approach that averages the predictions produced
from six sparse-coding models trained on different features [2], and since then the best pub-
lished results are 45.7% and 25.7% with an approach that averages the predictions of two classi-
fiers trained on Fisher Vectors (FVs) computed from two types of densely-sampled features [24].

Model Top-1 Top-5
Sparse coding [2] 47.1% 28.2%

SIFT + FVs [24] 45.7% 25.7%

CNN 37.5% 17.0%

Table 1: Comparison of results on ILSVRC-
2010 test set. In italics are best results
achieved by others.

We also entered our model in the ILSVRC-2012 com-
petition and report our results in Table 2. Since the
ILSVRC-2012 test set labels are not publicly available,
we cannot report test error rates for all the models that
we tried. In the remainder of this paragraph, we use
validation and test error rates interchangeably because
in our experience they do not differ by more than 0.1%
(see Table 2). The CNN described in this paper achieves
a top-5 error rate of 18.2%. Averaging the predictions
of five similar CNNs gives an error rate of 16.4%. Training one CNN, with an extra sixth con-
volutional layer over the last pooling layer, to classify the entire ImageNet Fall 2011 release
(15M images, 22K categories), and then “fine-tuning” it on ILSVRC-2012 gives an error rate of
16.6%. Averaging the predictions of two CNNs that were pre-trained on the entire Fall 2011 re-
lease with the aforementioned five CNNs gives an error rate of 15.3%. The second-best con-
test entry achieved an error rate of 26.2% with an approach that averages the predictions of sev-
eral classifiers trained on FVs computed from different types of densely-sampled features [7].

Model Top-1 (val) Top-5 (val) Top-5 (test)
SIFT + FVs [7] — — 26.2%

1 CNN 40.7% 18.2% —
5 CNNs 38.1% 16.4% 16.4%
1 CNN* 39.0% 16.6% —
7 CNNs* 36.7% 15.4% 15.3%

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.

Finally, we also report our error
rates on the Fall 2009 version of
ImageNet with 10,184 categories
and 8.9 million images. On this
dataset we follow the convention
in the literature of using half of
the images for training and half
for testing. Since there is no es-
tablished test set, our split neces-
sarily differs from the splits used
by previous authors, but this does
not affect the results appreciably.
Our top-1 and top-5 error rates
on this dataset are 67.4% and
40.9%, attained by the net described above but with an additional, sixth convolutional layer over the
last pooling layer. The best published results on this dataset are 78.1% and 60.9% [19].

6.1 Qualitative Evaluations

Figure 3 shows the convolutional kernels learned by the network’s two data-connected layers. The
network has learned a variety of frequency- and orientation-selective kernels, as well as various col-
ored blobs. Notice the specialization exhibited by the two GPUs, a result of the restricted connec-
tivity described in Section 3.5. The kernels on GPU 1 are largely color-agnostic, while the kernels
on on GPU 2 are largely color-specific. This kind of specialization occurs during every run and is
independent of any particular random weight initialization (modulo a renumbering of the GPUs).

5The error rates without averaging predictions over ten patches as described in Section 4.1 are 39.0% and
18.3%.
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Why These Improvements in Performance?
• More layers [1] 

– Multiple layers capture more invariances 
– Features are learned rather than hand-crafted 

• More data 
– There is more data to train deeper networks 

• More computing 
– GPUs go hand in hand with learning methods 

• First attempt at a theoretical justification of invariance [2,3] 
– Theoretical support for invariance via scattering transform 
– Each layer must be a contraction to keep data volume bounded 
– Optimization issues are not discussed: stage-wise learning is used

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

GHM[8] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7
AGS[11] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1
NUS[39] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM 88.5 81.0 83.5 82.0 42.0 72.5 85.3 81.6 59.9 58.5 66.5 77.8 81.8 78.8 90.2 54.8 71.1 62.6 87.2 71.8 73.9
CNNaug-SVM 90.1 84.4 86.5 84.1 48.4 73.4 86.7 85.4 61.3 67.6 69.6 84.0 85.4 80.0 92.0 56.9 76.7 67.3 89.1 74.9 77.2

Table 1: Pascal VOC 2007 Image Classification Results compared to other methods which also use training data outside VOC. The CNN representation
is not tuned for the Pascal VOC dataset. However, GHM [8] learns from VOC a joint representation of bag-of-visual-words and contextual information.
AGS [11] learns a second layer of representation by clustering the VOC data into subcategories. NUS [39] trains a codebook for the SIFT, HOG and LBP
descriptors from the VOC dataset. Oquab et al. [29] adapt the CNN classification layers and achieves better results (77.7) indicating
the potential to boost the performance by further adaptation of the representation to the target task/dataset.
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Figure 2: a) Evolution of the mean image classification AP over PAS-
CAL VOC 2007 classes as we use a deeper representation from the
OverFeat CNN trained on the ILSVRC dataset. OverFeat considers
convolution, max pooling, nonlinear activations, etc. as separate layers.
The re-occurring decreases in the plot is of the activation function layer
which loses information by half rectifying the signal. b) Confusion matrix
for the MIT-67 indoor dataset. Some of the off-diagonal confused classes
have been annotated, these particular cases could be hard even for a human
to distinguish.

last 2 layers the performance increases. We observed the
same trend in the individual class plots. The subtle drops in
the mid layers (e.g. 4, 8, etc.) is due to the “ReLU” layer
which half-rectifies the signals. Although this will help the
non-linearity of the trained model in the CNN, it does not
help if immediately used for classification.

3.2.3 Results of MIT 67 Scene Classification

Table 2 shows the results of different methods on the MIT
indoor dataset. The performance is measured by the aver-
age classification accuracy of different classes (mean of the
confusion matrix diagonal). Using a CNN off-the-shelf rep-
resentation with linear SVMs training significantly outper-
forms a majority of the baselines. The non-CNN baselines
benefit from a broad range of sophisticated designs. con-
fusion matrix of the CNN-SVM classifier on the 67 MIT
classes. It has a strong diagonal. The few relatively bright
off-diagonal points are annotated with their ground truth
and estimated labels. One can see that in these examples the
two labels could be challenging even for a human to distin-
guish between, especially for close-up views of the scenes.

Method mean Accuracy

ROI + Gist[36] 26.1
DPM[30] 30.4
Object Bank[24] 37.6
RBow[31] 37.9
BoP[21] 46.1
miSVM[25] 46.4
D-Parts[40] 51.4
IFV[21] 60.8
MLrep[9] 64.0

CNN-SVM 58.4
CNNaug-SVM 69.0
CNN(AlexConvNet)+multiscale pooling [16] 68.9

Table 2: MIT-67 indoor scenes dataset. The MLrep [9] has a fine
tuned pipeline which takes weeks to select and train various part detectors.
Furthermore, Improved Fisher Vector (IFV) representation has dimension-
ality larger than 200K. [16] has very recently tuned a multi-scale orderless
pooling of CNN features (off-the-shelf) suitable for certain tasks. With this
simple modification they achieved significant average classification accu-
racy of 68.88.

3.3. Object Detection
Unfortunately, we have not conducted any experiments for
using CNN off-the-shelf features for the task of object de-
tection. But it is worth mentioning that Girshick et al. [15]
have reported remarkable numbers on PASCAL VOC 2007
using off-the-shelf features from Caffe code. We repeat
their relevant results here. Using off-the-shelf features they
achieve a mAP of 46.2 which already outperforms state
of the art by about 10%. This adds to our evidences of
how powerful the CNN features off-the-shelf are for visual
recognition tasks.
Finally, by further fine-tuning the representation for PAS-
CAL VOC 2007 dataset (not off-the-shelf anymore) they
achieve impressive results of 53.1.

3.4. Fine grained Recognition
Fine grained recognition has recently become popular due
to its huge potential for both commercial and cataloging
applications. Fine grained recognition is specially inter-
esting because it involves recognizing subclasses of the
same object class such as different bird species, dog breeds,
flower types, etc. The advent of many new datasets with

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14. 
[2] J Bruna, S Mallat, Invariant scattering convolution networks. 
[3] J Bruna, S Mallat. Classification with scattering operators, arXiv preprint arXiv:1011.3023, 2010 
[4] Mallat and Waldspurger. Deep Learning by Scattering, arXiv 2013



What About Optimization?
• The learning problem is non-convex

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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What About Optimization?

THE NON-LINEAR PART

• Usually 𝜓 = 𝑔 ∘ 𝑓.
• 𝑓 is the (point-wise) activation function

• 𝑔 is a pooling or an aggregation operator. 

ReLU 
𝑓(x) = max(x, 0)

Sigmoid 

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic 
tangent 

𝑓 𝑥 = tanh(𝑥)
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Credit to Raja Giryes and Guillermo Sapiro



Why do We Care About Convexity?

• A local minimizer of a convex problem is a global minimizer.
http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optqp_sect001.htm

http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug_optqp_sect001.htm


Why is Non Convexity a Problem?



How is Non Convexity Handled?
• The learning problem is non-convex 

– Back-propagation, alternating minimization, descent method 

• To get a good local minima 
– Random initialization 
– If training error does not decrease fast enough, start again 
– Repeat multiple times 

• Mysteries 
– One can find many solutions with similar objective values 
– Rectified linear units work better than sigmoid/hyperbolic tangent  
– Dead units (zero weights)

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)



Related Work
• Gradient descent on square loss 

• No spurious local optima for linear networks: Baldi &  Hornik ’89 
• Failure cases: manifold of spurious local optima. Frasconi ’97 
• Random first layer weights suffice for polynomials under gaussian input: 

Andoni et al. ’14 
• Incremental training with polynomial activations. Livni et al. ’14 

• Models with stochastic weights and inputs 
• Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. 

Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non- convex optimization,” NIPS, 2014. 

• A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun, 
“The Loss Surfaces of Multilayer Networks,” AISTAT, 2015.  

• Stochastic models trained using moment methods 
• M Janzamin, H Sedghi, A Janzamin, Beating the Perils of Non-Convexity: 

Guaranteed Training of Neural Networks using Tensor Methods
P Baldi, K Hornik, Neural networks and principal component analysis: Learning from examples without local minima, Neural networks, 1989. 
M Brady, R Raghavan, J Slawny. Back propagation fails to separate where perceptrons succeed. IEEE Trans Circuits & Systems, 36(5):665–674, 1989. 
M Gori, A Tesi. On the problem of local minima in backpropagation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(1):76–86, 1992. 
P Frasconi, M Gori, and A Tesi. Successes and failures of backpropagation: A theoretical. Progress in Neural Networks: Architecture, 5:205, 1997. 



Contributions

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Theorem 1: A local minimizer such that for some i and all k  
                is a global minimizer 

• Theorem 2: If the size of the network is large enough, local 
descent can reach a global minimizer from any initialization 

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

Xk
i = 0
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Contributions

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Theorem 2:

min
X1,...,XK
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CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Outline
• Global Optimality in Structured Matrix Factorization [1,2] 

– PCA, Robust PCA, Matrix Completion 
– Nonnegative Matrix Factorization 
– Dictionary Learning 
– Structured Matrix Factorization 

• Global Optimality in Positively Homogeneous Factorization [2] 
– Tensor Factorization 
– Deep Learning 
– More

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ‘15
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Low Rank Modeling
• Models involving factorization are ubiquitous 

– PCA 
– Nonnegative Matrix Factorization  
– Dictionary Learning 
– Matrix Completion 
– Robust PCA

http://perception.csl.illinois.edu/matrix-rank/home.html

11/9/15, 11:27 PMLow-Rank Matrix Recovery and Completion via Convex Optimization
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Low-Rank Matrix Recovery and Completion via Convex Optimization

Welcome!

Credits People

This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
engineering problems where our techniques have been used to achieve state-of-the-art performance. 
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Typical Low-Rank Formulations
• Convex formulations 

– Robust PCA 
– Matrix Completion 

• Convex 
• Large problem size 
• Unstructured factors

• Factorized formulations 

– Nonnegative matrix factorization 
– Dictionary learning 

• Non-Convex 
• Small problem size 
• Structured factors

X U V >

min
U,V

`(Y, UV >) + �⇥(U, V )

Typical Low Rank Formulations

min
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kY �Xk1 + �kXk⇤ (3)



Why Do We Need Structured Factors?
• Given a low-rank video 

• U: spatial basis 
– Low total-variation 
– Non-negative

• V: temporal basis 
– Sparse on particular basis set 
– Non-negative 

(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n

1

.13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/

~

ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n
1

).
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Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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Why Do We Need Structured Factors?
• Find neuronal shapes and spike trains in calcium imaging
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Why Do We Need Structured Factors?
• Nonnegative matrix factorization 

• Sparse dictionary learning 

• Challenges to state-of-the-art methods  
– Need to pick size of U and V a priori 
– Alternate between U and V, without guarantees of convergence to a 

global minimum

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r



Tackling Non-Convexity: Nuclear Norm Case
• Convex problem                     Factorized problem 

• Variational form of the nuclear norm 

• Theorem: Assume loss    is convex and once differentiable in 
X. A local minimizer of the factorized problem such that for 
some i                         is a global minimizer of both problems 

• Intuition: regularizer      “comes from a convex function”

Ui = Vi = 0

⇥

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

kXk⇤ = min
U,V

rX

i=1

|Ui|2|Vi|2 s.t. UV > = X

`



Tackling Non-Convexity: Nuclear Norm Case
• Convex problem                     Factorized problem 

• Theorem: Assume loss    is convex and once differentiable in 
X. A local minimizer of the factorized problem such that for 
some i                         is a global minimizer of both problemsUi = Vi = 0

min
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`(Y,X) + �kXk⇤ min
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Tackling Non-Convexity: Tensor Norm Case
• A natural generalization is the projective tensor norm [1,2] 

• Theorem 1 [3,4]: A local minimizer of the factorized problem 
 
 
 
 
such that for some i                        , is a global minimizer of 
both the factorized problem and of the convex problem

[1] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[2] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013. 
[3] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[4] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

min
X

`(Y,X) + �kXku,v

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv

Ui = Vi = 0



Tackling Non-Convexity: Tensor Norm Case
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent to reach a local minima 
– If optimality condition is satisfied, then local minima is global 
– If condition fails, choose descent direction (u,v), and set

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Example: Nonnegative Matrix Factorization
• Original formulation 

• New factorized formulation 

– Note: regularization limits the number of columns in (U,V)

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F + �
X

i

|Ui|2|Vi|2 s.t. U, V � 0



Example: Sparse Dictionary Learning
• Original formulation 

• New factorized formulation

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

kY � UV >k2F + �
X

i

|Ui|2(|Vi|2 + �|Vi|1)



Non Example: Robust PCA
• Original formulation [1] 

• Equivalent formulation 

• New factorized formulation 

• Not an example because loss is not differentiable

min
X,E

kEk1 + �kXk⇤ s.t. Y = X + E

min
X

kY �Xk1 + �kXk⇤

min
U,V

kY � UV >k1 + �
X

i

|Ui|2|Vi|2

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.



Neural Calcium Image Segmentation
• Find neuronal shapes and spike trains in calcium imaging

Data

Neuron Shape

True Signal

Spike Times

Time Time

Z

A A1

1 Z2

2

Y

Φ(AZ )T

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

U1

U2

V1

V2

�(UV >)

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

U1

U2

V1

V2

�(UV >)

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

U1

U2

V1

V2

�(UV >)

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

U1

U2

V1

V2

�(UV >)

Neural Calcium Image Segmentation

min
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k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

U1

U2

V1

V2

�(UV >)



In Vivo Results (Small Area)

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

Raw Data Sparse + Low Rank +Total Variation

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)

60 microns



In Vivo Results
• PCA 

– Sensitive to noise 
– Hard to interpret 

• Proposed method 
– Found 46/48 

manually identified 
active regions 

– Features are easy 
to interpret 

– Minimal post-
processing for 
segmentation 

Features by Our MethodExample Image Frames

Mean Fluorescence Feature obtained by PCA



In Vivo Results (Large Area)



Neural Calcium Image Segmentation



Hyperspectral Compressed Recovery
•                : hyperspectral image of a certain area at multiple 

(t>100) wavelengths of light 

• Different regions in space  
correspond to different materials 
– rank(Y) = number of materials 

• U: spatial features 
– Low total-variation 
– Non-negative 

• V: spectral features 
– Non-negative

Why Do We Need Structure?

Y 2 Rp⇥t

p = number of pixels

t = number of video frames

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.

min
U,V

`(Y, UV >) + �⇥(U, V )



Hyperspectral Compressed Recovery
• Prior method: NucTV (Golbabaee et al., 2012) 

• 180 Wavelengths 
• 256 x 256 Images 
• Computation per Iteration 

– SVT of whole image volume 
– 180 TV Proximal Operators 
– Projection onto Constraint Set

Hyperspectral Compressed Recovery

min
X

kXk⇤ + �
tX

i=1

kXikTV s.t. kY � �(X)k2F  ✏ (7)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(8)



Hyperspectral Compressed Recovery
• Our method 

• (U,V) have 15 columns 
• Problem size reduced by 91.6% 
• Computation per Iteration 

– Calculate gradient 
– 15 TV Proximal Operators 

• Random Initializations

Neural Calcium Image Segmentation

min
U,V

kY � �(UV >)k2F + �
rX

i=1

kUikukVikv (5)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(6)



Hyperspectral Compressed Recovery

Hyperspectral Compressed Recovery

min
X

kXk⇤ + �
tX

i=1

kXikTV s.t. kY � �(X)k2F  ✏ (7)

k · ku = k · k2 + k · k1 + k · kTV

k · kv = k · k2 + k · k1
(8)

kXtrue � UV >kF
kXtruekF

(9)



Conclussions
• Structured Low Rank Matrix Factorization 

– Structure on the factors captured by the Projective Tensor Norm 
– Efficient optimization for Large Scale Problems 

• Local minima of the non-convex factorized form are global 
minima of both the convex and non-convex forms 

• Advantages in Applications 
– Neural calcium image segmentation  
– Compressed recovery of hyperspectral images



Global Optimality in Positively 
Homogeneous Factorization

René Vidal 
Center for Imaging Science 

Institute for Computational Medicine 



From Matrix Factorizations to Deep Learning
• Two-layer NN 

– Input: 
– Weights:  
– Nonlinearity: ReLU 

• “Almost” like matrix factorization 
– r = rank 
– r = #neurons in hidden layer

From Matrix Factorizations to Deep Learning

V 2 RN⇥d1
(10)

X1 2 Rd1⇥r
(11)

X2 2 Rd2⇥r
(12)
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From Matrix Factorizations to Deep Learning

 1(x) = max(x, 0) (10)
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(11)
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From Matrix Factorizations to Deep Learning
• Recall the generalized factorization problem 

• Matrix factorization is a particular case where K=2 

• Both     and     are sums of positively homogeneous functions  

• Other examples 
– ReLU + max pooling is positively homogeneous of degree 1

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

� ⇥

f(↵X1, . . . ,↵XK) = ↵pf(X1, . . . , XK) 8↵ � 0

�(U, V ) =
rX

i=1

UiV
>
i , ⇥(U, V ) =

rX

i=1

kUikukVikv



“Matrix Multiplication” for K > 2
• In matrix factorization we have 

• By analogy we define 
 
 
 
where        is a tensor,        is its i-th slice along its last 
dimension, and      is a positively homogeneous function 

• Examples 
– Matrix multiplication: 
– Tensor product: 
– ReLU neural network:

�(U, V ) = UV > =
rX

i=1

UiV
>
i

Xk Xk
i

�

�(X1, . . . , XK) =
rX

i=1

�(X1
i , . . . , X

K
i )

�(X1, X2) = X1X2>

�(X1, . . . , XK) = X1 ⌦ · · ·⌦XK

�(X1, . . . , XK) =  K(· · · 2( 1(V X1)X2) · · ·XK)



Example: Tensor Factorization

CHAPTER 4. GENERALIZED FACTORIZATIONS
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Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

(where ⌦ denotes the tensor outer product) results in �r(X1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [29], which is visualized for a 3rd order tensor in figure 4.2. Further, instead

of choosing � to be a simple outer product, we can also generalize this to be any

multilinear function of the factor slices (X1
i , . . . , X

K
i ). For example, the output could

be formed by taking convolutions between the factor slices. We note that more

general tensor decompositions, such as the general form of the Tucker decomposition,

do not explicitly fit inside the framework we describe here; however, by using similar

arguments to the ones we will develop here, it is possible to show analogous results to

those we derive in this paper for more general tensor decompositions, and we briefly

discuss these extensions in section 4.6.2.
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Example: Deep Learning

CHAPTER 4. GENERALIZED FACTORIZATIONS
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ReLU Network with One Hidden Layer

Rectified Linear Unit (ReLU)

Multilayer ReLU 
Parallel Network

Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.10) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping �(X1

i , X
2
i ). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r=4) with elemental mappings defined by (4.11) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping �(X1

i , X
2
i , X

3
i , X

4
i ).

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a potential

elemental mapping, by an appropriate definition of �, one can describe neural net-

works with very general architectures, provided the non-linearities in the network are

compatible with positive homogeneity (ReLUs are one example, but non-linearities
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“Projective Tensor Norm” for K > 2
• In matrix factorization we had 

• By analogy we define 
 
 
 
 
where     is positively homogeneous of the same degree as 

• Proposition:                is convex

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

✓

⌦�,✓(X) = min
{Xk}

rX

i=1

✓(X1
i , . . . , X

K
i ) s.t. �(X1, . . . , XK) = X

⌦�,✓

�



Main Results
• Theorem 1: A local minimizer of the factorized formulation 
 
 
 
 
such that for some i and all k                 is a global minimizer 
for both the factorized problem and of the convex formulation 

• Examples 
– Matrix factorization 
– Tensor factorization 
– Deep learning

min
{Xk}

`
�
Y,

rX

i=1

�(X1
i , . . . , X

K
i )

�
+ �

rX

i=1

✓(X1
i , . . . , X

K
i )

Xk
i = 0

min
X

`(Y,X) + �⌦�,✓(X)

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15



Main Results
• Theorem 2: If the size of the network is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent to reach a local minima 
– If optimality condition is satisfied, then local minima is global 
– If condition fails, choose descent direction, increase r <- r+1, and 

move along descent direction

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
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Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Conclusions
• For many non-convex factorization problems, such as matrix 

factorization, tensor factorization, and deep learning, a local 
minimizer for the factors gives a global minimizer 

• For matrix factorization, this  
– allows one to incorporate structure on the factors, and  
– gives efficient optimization method suitable for large problems 

• For deep learning, this provides theoretical insights on why 
– many local minima give similar objective values 
– ReLU works better than sigmoidal functions 

• While alternating minimization is efficient and guaranteed to 
converge, it is not guaranteed to converge to a local minimum



More Information,

Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 

Center for Imaging Science @ Johns Hopkins University 
http://www.cis.jhu.edu 

Thank You!

http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php

