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* Deep learning glves ~ 10% |mprovement on ImageNet
— 1.2M images : : s ; ' :
1000 categories

— 60 million
parameters
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[1] Krizhevsky, Sutskever and Hinton. ImageNet classification with deep convolutional neural networks, NIPS’12. ’_
[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. ICLR’14.
[3] Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. ICML'14. 1 AxG l \T G



Impact of Deep Learning in Computer Vision

- 2012-2014 classification results in ImageNet CNN

e 2015 results: MSR under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna




Transfer from ImageNet to Other Datasets

« CNNs + SMVs [1] e
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[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.
[2] Oquab, Bottou, Laptev, Sivic. Learning and transferring mid-level image representations using convolutional neural networks CVPR’14 ey et
[3] Taigman, Yang, Ranzato, Wolf. DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR’'14 AGING



Transfer from Classification to Other Tasks

« CNNs + SVMs for object detection [1,2]
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* CNNs for pose estimation [3] and semantic segmentation [4]

[1] Girshick, Donahue, Darrell and Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR’14

[2] Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks. ICLR ALy e
[3] Tompson, Goroshin, Jain, LeCun, Bregler. Efficient Object Localization Using Convolutional Networks. CVPR’15 AGING
[4] Pinheiro, Collobert, Dollar. Learning to Segment Object Candidates. NIPS’15 AR AL



Why These Improvements in Performance?

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.

Features are learned rather than hand-crafted
mean AP

More layers capture more invariances [1]
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More computing (GPUs) 37 1 15 19 23

level

Better regularization: Dropout

New nonlinearities
— Max pooling, Rectified linear units (ReLU)
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Theoretical understanding of deep networks remains shallow




Key Theoretical Questions

Architecture Design

Slide courtesy of Ben Haeffele

Optimization

Generalization




Key Theoretical Questions: Architecture

e Are there principled ways to design networks?

— How many layers?
— Size of layers?
— Choice of layer types?

— What classes of functions
can be approximated by a
feedforward neural network?

— How does the architecture
impact expressiveness? [1]

Slide courtesy of Ben Haeffele

[1] Cohen, et al., “On the expressive power of deep learning: A tensor analysis.” COLT. (2016)
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Key Theoretical Questions: Architecture

 Approximation, depth, width and invariance: earlier work

— Perceptrons and multilayer feedforward networks are universal
approximators: Cybenko ‘89, Hornik 89, Hornik ‘91, Barron 93

e Approximation, depth, width and invariance: recent work

— Exponential gaps between deep and shallow feedforward networks:
Montufar'14

— Deep narrow Boltzmann machines are universal approximators:
Montufar’15

— Design of CNNs via hierarchical tensor decompositions: Cohen 17

— Scattering networks are deformation stable for Lipschitz non-
linearities: Bruna-Mallat '13, Wiatowski '15, Mallat ’16

[1] Cybenko. Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303-314, 1989.

[2] Hornik, Stinchcombe and White. Multilayer feedforward networks are universal approximators, Neural Networks, 2(3), 359-366, 1989.

[3] Hornik. Approximation Capabilities of Multilayer Feedforward Networks, Neural Networks, 4(2), 251-257, 1991.

[4] Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930-945, 1993.
[5] Cohen et al. Analysis and Design of Convolutional Networks via Hierarchical Tensor Decompositions arXiv preprint arXiv:1705.02302

[6] Montufar, Pascanu, Cho, Bengio, On the number of linear regions of deep neural networks, NIPS 27, pp. 2924-2932, 2014

[7] Montufar et al, Deep narrow Boltzmann machines are universal approximators, ICLR 2015, arXiv:1411.3784v3

[8] Bruna and Mallat. Invariant scattering convolution networks. Trans. PAMI, 35(8):1872—-1886, 2013.

[9] Wiatowski, Bolcskei. A mathematical theory of deep convolutional neural networks for feature extraction. arXiv 2015.

[10] Mallat. Understanding deep convolutional networks. Phil. Trans. R. Soc. A, 374(2065), 2016.




Key Theoretical Questions: Optimization

 How to train neural networks?

— Problem is non-convex

— What does the error surface
look like?

— How to guarantee optimality?

— When does local descent succeed?

Slide courtesy of Ben Haeffele




Key Theoretical Questions: Optimization

 Optimization theory: earlier work

No spurious local minima for linear networks (Baldi & Hornik '89)
Backpropagation fails to converge for nonlinear networks (Brady ’89)

Back propagation converges for linearly separable data (Gori & Tesi '91
'92), but it get stuck in other cases (Frasconi '97)

e Optimization theory: recent work

Convex neural networks in infinite number of variables: Bengio ‘05
Networks with many hidden units can learn polynomials: Andoni‘14
The loss surface of multilayer networks: Choromanska '15
Attacking the saddle point problem: Dauphin ‘14

Effect of gradient noise on the energy landscape: Chaudhari ‘15
Entropy-SGD is biased toward wide valleys: Chaudhari ‘17

Deep relaxation: PDEs for optimizing deep nets: Chaudhari ‘17
Guaranteed training of NNs using tensor methods: Janzamin 15
No spurious local minima for wide enough networks: Haeffele ‘15




Key Theoretical Questions: Generalization

 Classification performance guarantees?

— How well do deep networks generalize?
— How should networks be regularized?

— How to prevent overfitting?

Slide courtesy of Ben Haeffele
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Key Theoretical Questions: Generalization

 Generalization and regularization theory: earlier work
— # training examples grows exponentially with network size [1]

* New regularization methods
— Early stopping [2]
— Dropout, Dropconnect, and extensions (adaptive, annealed) [3,4]

 Generalization and regularization theory: recent work
— Distance and margin-preserving embeddings [5,6]
— Path SGD regularization & generalization bounds [7]
— Product of norms regularization & generalization bounds [8]
— Implicit regularization & generalization bounds [9]
— Information theory: information bottleneck, information dropout [10,11]

[1] Bartlett and Maass. Vapnik-Chervonenkis dimension of neural nets. The handbook of brain theory and neural networks, pages 1188— 1192, 2003.
[2] R Caruana, S Lawrence, CL Giles. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. NIPS 2001.

[3] Srivastava. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 2014.

[4] Wan. Regularization of neural networks using dropconnect. In ICML, 2013.

[5] Giryes, Sapiro, A Bronstein. Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? arXiv:1504.08291.
[6] Sokolic. Margin Preservation of Deep Neural Networks, 2015

[7] B Neyshabur. Path-SGD: Path-Normalized Optimization in Deep Neural Networks. NIPS 2015

[8] Sokolic, R. Giryes, G. Sapiro, and M. Rodrigues. Generalization error of invariant classifiers. In AISTATS, 2017.

[9] Behnam Neyshabur. Implicit Regularization in Deep Learning. PhD Thesis 2017

[10] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information. arXiv preprint arXiv:1703.00810, 2017.
[11] A. Achille and S. Soatto. Information dropout: Learning optimal representations through noisy computation. arXiv:1611.01353, 2016.




Key Theoretical Questions are Interrelated

* Optimization can Architecture
Impact
generalization [1]
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« Architecture has

strong effect on Generalization/

generalization [2] Regularization
« Some architectures el

could be easier to S

optimize than others

Courtesy of Ben Haeffele

[1] Neyshabur, et al., “In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” ICLR workshop. (2015).
[2] Zhang, et al., “Understanding deep learning requires rethinking generalization.” ICLR. (2017).




|ICCV 2017 Tutorial Schedule

08:30-08:45: René Vidal Introduction
08:45-09:30: René Vidal Global Optimality in Deep Learning

09:30-10:15: Raja Giryes Structure Based Theory for Deep
Learning

10:15-11:00: Coffee Break

11:00-11:45: Raja Giryes Generalization Bounds for Deep
Learning

11:45-12:30: Vardan Papyam From Convolutional Sparse
Coding to Convolutional Neural Networks




More Information

e Slides of the presentations
— http://vision.jhu.edu/tutorials/ICCV17-Tutorial-Math-Deep-Learning.htm

e Paper,
— Conference on Decision and Control, December 2017

Mathematics of Deep Learning

René Vidal Joan Bruna

Abstract— Recently there has been a dramatic increase in the
performance of recognition systems due to the introduction of
deep architectures for representation learning and classification.
However, the mathematical reasons for this success remain
elusive. This tutorial will review recent work that aims to
provide a mathematical justification for several properties of
deep networks, such as global optimality, geometric stability,
and invariance of the learned representations.

Raja Giryes Stefano Soatto

sigmoidal activations are universal function approximators
[5], [6], [7], [8]. However, the capacity of a wide and shallow
network can be replicated by a deep network with significant
improvements in performance. One possible explanation is
that deeper architectures are able to better capture invariant
properties of the data compared to their shallow counterparts.
In computer vision, for example, the category of an object
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