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Learning Problem for Neural Networks
• The learning problem is non-convex

VX1 1( )X2 2( )�(X1, . . . , XK) =  K(· · · · · ·XK)

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

features weightsnonlinearity

labels regularizerloss



How is Non Convexity Handled?
• The learning problem is non-convex 

– Back-propagation, alternating minimization, descent method 

• To get a good local minima 
– Random initialization 
– If training error does not decrease fast enough, start again 
– Repeat multiple times 

• Mysteries 
– One can find many solutions with similar objective values 
– Rectified linear units work better than sigmoid/hyperbolic tangent  
– Dead units (zero weights)

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)



What Properties Facilitate Optimization?
• What properties of the 

network architecture 
facilitate optimization?  
– Positive homogeneity 
– Parallel subnetwork 

structure 

• What properties of the 
regularization function 
facilitate optimization?  
– Positive homogeneity 
– Adapt network 

structure to the data [1]

Today’s Talk: The Questions
• Are there properties of the network 

architecture that allow efficient 
optimization?

• Positive Homogeneity
• Parallel Subnetwork Structure

• Are there properties of the 
regularization that allow efficient 
optimization?

• Positive Homogeneity
• Adapt network architecture to data [1]

Optimization
Generalization/
Regularization

Architecture

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)Picture courtesy of Ben Haeffele 

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)  



Main Results

• Assumptions: 
–                 : convex and once differentiable in 
–      and     : sums of positively homogeneous functions of same degree 

• Examples: 
– ReLU: 
– Max pooling: 
– Matrix product: 
– Tensor product:  
– Deep neural network:

min
X1,...,XK

`(Y,�(X1, . . . , XK)) + �⇥(X1, . . . , XK)

� ⇥
`(Y,X) X

�(↵X1
i , . . . ,↵X

K
i ) = ↵p�(X1

i , . . . , X
K
i ) 8↵ � 0

max(↵x1, . . . ,↵xD) = ↵max(x1, . . . , xD) ↵ � 0

max(↵x, 0) = ↵max(x, 0) ↵ � 0

�(X1, X2) = X1X2>

�(X1, . . . , XK) = X1 ⌦ · · ·⌦XK

�(X1, . . . , XK) =  K(· · · 2( 1(V X1)X2) · · ·XK)

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Main ResultsToday’s Talk: The Results
Optimization

• A local minimum such that 
one subnetwork is all zero is 
a global minimum. 

Theorem 1:  
A local minimum such 
that all the weights from 
one subnetwork are zero 
is a global minimum 

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Main ResultsToday’s Talk: The Results

• Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.

Optimization

Non-Convex Function Today’s Framework

Today’s Talk: The Results

• Once the size of the network 
becomes large enough...

• Local descent can reach a 
global minimum from any 
initialization.

Optimization

Non-Convex Function Today’s Framework

Theorem 2: 
If the size of the network 
is large enough, local 
descent can reach a 
global minimizer from 
any initialization

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.



Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Key Property #1: Positive Homogeneity
• Start with a network 

• Scale the weights by 

• Output is scaled by        , where p = degree of homogeneity

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity

X1 X2 X3

�(X1, X2, X3) = Y

↵ ↵ ↵↵ � 0

Y

�(↵X1,↵X2,↵X3) = ↵pY

↵p

↵p



Examples of Positively Homogeneous Maps
• Example 1: Rectified Linear Units (ReLU) 

• Linear + ReLU layer is positively homogeneous of degree 1

Most Modern Networks Are Positively Homogeneous

• Example: Rectified Linear Units (ReLUs)

↵ ↵

↵

↵

↵

↵ � 0

Does not change 
rectification



Examples of Positively Homogeneous Maps
• Example 2: Simple networks with convolutional layers, ReLU, 

max pooling and fully connected layers 

• Typically each weight layer increases degree of homogeneity 
by 1

Most Modern Networks Are Positively Homogeneous
• Simple Network

Input
Conv 

+ 
ReLU

Linear OutMax 
Pool

Conv 
+ 

ReLU

X1 X2 X3↵

↵

↵ ↵

↵2

↵2 ↵2

↵3

max{ z1, z2}

Y



Examples of Positively Homogeneous Maps
• Some Common Positively Homogeneous Layers  

– ︎Fully Connected + ReLU 

– Convolution + ReLU 

– Max Pooling 

– Linear Layers 

– Mean Pooling 

– Max Out 

– Many possibilities... 

Most Modern Networks Are Positively Homogeneous

Some Common Positively Homogeneous Layers
9Fully Connected + ReLU
9Convolution + ReLU
9Max Pooling
9Linear Layers
9Mean Pooling
9Max Out
9Many possibilities…

X Not Sigmoids
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Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
– Sufficient conditions for  

global optimality 
– Local descent can reach  

global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15 
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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Key Property #2: Parallel Subnetworks
• Subnetworks with identical structure connected in parallel 

• Simple example: single hidden network

Key Property 2: Parallel Subnetworks
• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unit

Key Property 2: Parallel Subnetworks
• Subnetworks with identical architecture connected in parallel.
• Simple Example: Single hidden layer network

• Subnetwork: One ReLU hidden unitSubnetwork: 
one ReLU 
hidden unit



Key Property #2: Parallel Subnetworks
• Any positively homogeneous network can be used

Subnetwork: 
multiple  

ReLU layers
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Key Property #2: Parallel Subnetworks
• Example: Parallel AlexNets [1]

Subnetwork: 
AlexNet

Key Property 2: Parallel Subnetworks

• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]

AlexNet

AlexNet

AlexNet

AlexNet

AlexNet

Input Output

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.
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• Subnetwork: AlexNet

• Example: Parallel AlexNets[1]
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AlexNet

AlexNet
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AlexNet

Input Output

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012.

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012 



Outline
• Architecture properties that facilitate optimization 

– Positive homogeneity 
– Parallel subnetwork structure 

• Regularization properties that facilitate optimization  
– Positive homogeneity 
– Adapt network structure to the data 

• Theoretical guarantees  
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global optimality 
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Basic Regularization: Weight Decay

• Proposition non-matching degrees => spurious local minima

Key Property 1: Positive Homogeneity

• The network output scales by the constant to some power.

Network Mapping

- Degree of positive homogeneity

X1 X2 X3

⇥(X1, X2, X3) = kX1k2F + kX2k2F + kX3k2F

⇥(↵X1,↵X2,↵X3) = ↵2⇥(X1, X2, X3)

�(↵X1,↵X2,↵X3) = ↵3�(X1, X2, X3)



Regularizer Adapted to Network Size
• Start with a positively homogeneous network with parallel 

structure

Adapting the size of the network via regularization
• Start with a positively homogeneous network with parallel structure



Regularizer Adapted to Network Size
• Take weights of one subnetwork 

• Define a regularizer

Adapting the size of the network via regularization
• Take the weights of one subnetwork.

✓(X1
1 , X

2
1 , X

3
1 , X

4
1 , X

5
1 )

• Nonnegative 
• Positively homogeneous with 

the same degree as network

X1
1 X2

1 X3
1 X4

1 X5
1

�(↵X) = ↵p�(X)

✓(↵X) = ↵p✓(X)

• Example: product of norms
kX1

1kkX2
1kkX3

1kkX4
1kkX5

1k



Regularizer Adapted to Network Size
• Sum over all subnetworks

Adapting the size of the network via regularization
• Start with a positively homogeneous network with parallel structure

⇥(X) =
rX

i=1

✓(Xi)

r = # subnets

• Allow r to vary 

• Adding a subnetwork is 
penalized by an additional 
term in the sum 

• Regularizer constraints 
number of subnetworks



Outline
• Architecture properties that facilitate optimization 
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– Parallel subnetwork structure 
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global optimality 
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Typical Low-Rank Formulations
• Convex formulations: 

– Low-rank matrix approximation 
– Low-rank matrix completion 
– Robust PCA 

✓ Convex 
✴ Large problem size 
✴ Unstructured factors

• Factorized formulations: 

– Principal component analysis 
– Nonnegative matrix factorization 
– Sparse dictionary learning 

✴ Non-Convex 
✓ Small problem size 
✓ Structured factors

X U
V >

min
U,V

`(Y, UV >) + �⇥(U, V )

Typical Low Rank Formulations

min
X

`(Y,X) + �⇥(X) (1)

min
X

kY �Xk2F + �kXk⇤ (2)

min
X

kY �Xk1 + �kXk⇤ (3)



Relating Convex & Factorized Formulations
• Convex formulations:               Factorized formulations 

• Variational form of the nuclear norm [1,2] 

• A natural generalization is the projective tensor norm [3,4]

min
X

`(Y,X) + �kXk⇤ min
U,V

`(Y, UV >) + �⇥(U, V )

[1] S. Burer and R. Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427–444, 2005. 
[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix 
decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488–2495. 
[3] Bach, Mairal, Ponce, Convex sparse matrix factorizations, arXiv 2008. 
[4] Bach. Convex relaxations of structured matrix factorizations, arXiv 2013.

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

kXk⇤ =
X

�i(X)

kXk⇤ = min
U,V

rX

i=1

kUik2kVik2 s.t. UV > = X



Main Results: Projective Tensor Norm Case
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer            of the non-convex factorized problem 
 
 
 
 
such that for some i                      , is a global minimizer. 
Moreover,           is a global minimizer of the convex problem 

• Proof sketch: 
– Convex problem gives global lower bound for non-convex problem 
– If            local min. of non-convex, then             global min. of convex

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14 
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

min
X

`(Y,X) + �kXku,v

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv

Ui = Vi = 0

`

UV >(U, V )

UV >

(U, V )
X
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min
X

`(Y,X) + �kXku,v

min
U,V

`(Y, UV >) + �
rX

i=1

kUikukVikv

Ui = Vi = 0

`

UV >

(U, V )
X

X U V >



Main Results: Projective Tensor Norm Case
• Theorem 2: If the number of columns is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size of factorization and find descent direction (u,v)

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15

r  r + 1 U  
⇥
U u

⇤
V  

⇥
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⇤



Main Results: Homogeneous Regularizers

• Assumptions: 
–                 : convex and once differentiable in 
–       : sum of positively homogeneous functions of degree 2 

• Theorem 1: A local minimizer (U,V) such that for some i  
                          is a global minimizer 

• Theorem 2: If the size of the factors is large enough, local 
descent can reach a global minimizer from any initialization 

⇥
`(Y,X) X

Ui = Vi = 0

min
U,V

`(Y, UV >) + �⇥(U, V )

⇥(U, V ) =
rX

i=1

✓(Ui, Vi), ✓(↵u,↵v) = ↵2✓(u, v), 8↵ � 0

B. Haeffele, E. Young, R. Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing. ICML 2014 
Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015



Example: Nonnegative Matrix Factorization
• Original formulation 

• New factorized formulation 

– Note: regularization limits the number of columns in (U,V)

min
U,V

kY � UV >k2F s.t. U � 0, V � 0

min
U,V

kY � UV >k2F + �
X

i

|Ui|2|Vi|2 s.t. U, V � 0



Example: Sparse Dictionary Learning
• Original formulation 

• New factorized formulation

min
U,V

kY � UV >k2F s.t. kUik2  1, kVik0  r

min
U,V

kY � UV >k2F + �
X

i

|Ui|2(|Vi|2 + �|Vi|1)



Example: Robust PCA
• Original formulation [1] 

• Equivalent formulation 

• New factorized formulation (with non-differentiable loss) 

• New factorized formulation (with differentiable loss)

min
X,E

kEk1 + �kXk⇤ s.t. Y = X + E

min
X

kY �Xk1 + �kXk⇤

min
U,V

kY � UV >k1 + �
X

i

|Ui|2|Vi|2

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.

min
U,V,E

kEk1 + �
X

i

|Ui|2|Vi|2 +
�

2
kY � UV � Ek2F
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Low-Rank Matrix Recovery and Completion via Convex Optimization

Welcome!

Credits People

This website introduces new tools for recovering low-rank matrices from incomplete or corrupted observations.

Matrix of corrupted observations Underlying low-rank matrix 

+

Sparse error matrix

A common modeling assumption in many engineering applications is that the underlying data lies (approximately) on a
low-dimensional linear subspace. This property has been widely exploited by classical Principal Component Analysis
(PCA) to achieve dimensionality reduction. However, real-life data is often corrupted with large errors or can even be
incomplete. Although classical PCA is effective against the presence of small Gaussian noise in the data, it is highly
sensitive to even sparse errors of very high magnitude.

We propose powerful tools that exactly and efficiently correct large errors in such structured data. The basic idea is to
formulate the problem as a matrix rank minimization problem  and solve it efficiently by nuclear-norm minimization. Our
algorithms achieve state-of-the-art performance in low-rank matrix recovery with theoretical guarantees. Please browse
the links to the left for more information. The introduction section provides a brief overview of the low-rank matrix
recovery problem and introduces state-of-the-art algorithms to solve. Please refer to our papers in the references section
for complete technical details, and to the sample code section for MATLAB packages. The applications section showcases
engineering problems where our techniques have been used to achieve state-of-the-art performance. 
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This website is maintained by the research group of Prof. Yi Ma at the University of Illinois at Urbana-Champaign. This
work was partially supported by the grants: NSF IIS 08-49292, NSF ECCS 07-01676, ONR N00014-09-1-0230, ONR
N00014-09-1-0230, NSF CCF 09-64215, NSF ECCS 07-01676, and NSF IIS 11-16012. Any opinions, findings, and
conclusions or recommendations expressed in our publications are those of the respective authors and do not necessarily
reflect the views of the National Science Foundation or Office of Naval Research.

Please direct your comments and questions to the webmaster - Kerui Min.
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From Matrix Factorizations to Deep Learning
• Two-layer NN 

– Input: 
– Weights:  
– Nonlinearity: ReLU 

• “Almost” like matrix factorization 
– r = rank 
– r = #neurons in hidden layer 
– ReLU + max pooling is positively homogeneous of degree 1

From Matrix Factorizations to Deep Learning
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From Matrix Factorizations to Deep Learning

 1(x) = max(x, 0) (10)

V 2 RN⇥d1
(11)

X

1 2 Rd1⇥r
(12)

X

2 2 Rd2⇥r
(13)

�(X

1
, X

2
) =  1(V X

1
)(X

2
)

>
(14)

Xk 2 Rdk⇥r



From Matrix to Tensor Factorization

• Tensor product                                                 
is positively homogeneous of degree K

CHAPTER 4. GENERALIZED FACTORIZATIONS
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Figure 4.2: Rank-r CP decomposition of a 3rd order tensor.

(where ⌦ denotes the tensor outer product) results in �r(X1, . . . , XK) being the

mapping used in the rank-r CANDECOMP/PARAFAC (CP) tensor decomposition

model [29], which is visualized for a 3rd order tensor in figure 4.2. Further, instead

of choosing � to be a simple outer product, we can also generalize this to be any

multilinear function of the factor slices (X1
i , . . . , X

K
i ). For example, the output could

be formed by taking convolutions between the factor slices. We note that more

general tensor decompositions, such as the general form of the Tucker decomposition,

do not explicitly fit inside the framework we describe here; however, by using similar

arguments to the ones we will develop here, it is possible to show analogous results to

those we derive in this paper for more general tensor decompositions, and we briefly

discuss these extensions in section 4.6.2.
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�(X1, X2) = X1X2>

�(X1, . . . , XK) = X1 ⌦ · · ·⌦XK

�(X1, . . . , XK) =  K(· · · 2( 1(V X1)X2) · · ·XK)

�(X1, . . . , XK) =
rX

i=1

�(X1
i , . . . , X

K
i )



From Matrix Factorizations to Deep Learning

CHAPTER 4. GENERALIZED FACTORIZATIONS
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Figure 4.3: Example ReLU networks. (Left panel) ReLU network with a single hidden
layer with the mapping described by the equation in (4.10) with (r = 4, d1 = 3, d2 =
2). Each color corresponds to one element of the elemental mapping �(X1

i , X
2
i ). The

colored hidden units have rectifying non-linearities, while the black units are linear.
(Right panel) Multilayer ReLU network with 4 fully connected parallel subnetworks
(r=4) with elemental mappings defined by (4.11) with (d1 = 5, d2 = 3, d3 = 5, d4 =
1, d5 = 2). Each color corresponds to the subnetwork described by one element of the
elemental mapping �(X1

i , X
2
i , X

3
i , X

4
i ).

the hidden layer units. In this case, the network has the architecture that there are r,

4 layer fully-connected subnetworks, with each subnetwork having the same number

of units in each layer as defined by the dimensions {d2, d3, d4}. The r subnetworks

are all then fed into a fully connected linear layer to produce the output. This is

visualized in figure 4.3 for (d1, d2, d3, d4, d5) = (5, 3, 5, 1, 2) and with r = 4.

More general still, since any positively homogenous transformation is a potential

elemental mapping, by an appropriate definition of �, one can describe neural net-

works with very general architectures, provided the non-linearities in the network are

compatible with positive homogeneity (ReLUs are one example, but non-linearities
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Key Ingredient: Proper Regularization
• In matrix factorization we had “generalized nuclear norm” 

• By analogy we define “nuclear deep net regularizer” 
 
 
 
 
where     is positively homogeneous of the same degree as 

• Proposition:                is convex 

• Intuition: regularizer      “comes from a convex function”

kXku,v = min
U,V

rX

i=1

kUikukVikv s.t. UV > = X

✓

⌦�,✓(X) = min
{Xk}

rX

i=1

✓(X1
i , . . . , X

K
i ) s.t. �(X1, . . . , XK) = X

⌦�,✓

�

⇥



Main Results
• Theorem 1: Assume    is convex and once differentiable in    . 

A local minimizer                         of the factorized formulation  
 
 
 
 
such that for some i and all k                 is a global minimizer. 
Moreover,                                       is a global minimizer of the 
convex problem 

• Examples 
– Matrix factorization 
– Tensor factorization 
– Deep learning

min
{Xk}

`
�
Y,

rX

i=1

�(X1
i , . . . , X

K
i )

�
+ �

rX

i=1

✓(X1
i , . . . , X

K
i )

Xk
i = 0

min
X

`(Y,X) + �⌦�,✓(X)

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15
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Main Results
• Theorem 2: If the size of the network is large enough, local 

descent can reach a global minimizer from any initialization 

• Meta-Algorithm:  
– If not at a local minima, perform local descent 
– At a local minima, test if Theorem 1 is satisfied. If yes => global minima 
– If not, increase size by 1 (add network in parallel) and continue 
– Maximum r guaranteed to be bounded by the dimensions of the 

network output

CHAPTER 4. GENERALIZED FACTORIZATIONS

Critical Points of Non-Convex Function Guarantees of Our Framework

(a) (i)

(b)
(c)

(d)
(e)

(f )

(g)
(h)

Figure 4.1: Left: Example critical points of a non-convex function (shown in red).
(a) Saddle plateau (b,d) Global minima (c,e,g) Local maxima (f,h) Local minima (i
- right panel) Saddle point. Right: Guaranteed properties of our framework. From
any initialization a non-increasing path exists to a global minimum. From points on
a flat plateau a simple method exists to find the edge of the plateau (green points).

plateaus (a,c) for which there is no local descent direction1, there is a simple method

to find the edge of the plateau from which there will be a descent direction (green

points). Taken together, these results will imply a theoretical meta-algorithm that is

guaranteed to find a global minimum of the non-convex factorization problem if from

any point one can either find a local descent direction or verify the non-existence of a

local descent direction. The primary challenge from a theoretical perspective (which

is not solved by our results and is potentially NP-hard for certain problems within

our framework) is thus how to find a local descent direction (which is guaranteed to

exist) from a non-globally-optimal critical point.

Two concepts will be key to establishing our analysis framework: 1) the dimen-

sionality of the factorized elements is not assumed to be fixed, but instead fit to

the data through regularization (for example, in matrix factorization the number of

columns in U and V is allowed to change) 2) we require the mapping, �, and the

regularization on the factors, ⇥, to be positively homogeneous (defined below).

1Note that points in the interior of these plateaus could be considered both local maxima and
local minima as there exists a neighborhood around these points such that the point is both maximal
and minimal on that neighborhood.
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Experimental Results
• Better performance with less training examples [Sokolic, 

Giryes, Sapiro, Rodrigues, 2017] 
– WD = weight decay 
– LM = Jacobian regularizer ~ product of weights regularizer

[Sokolic, Giryes, Sapiro, Rodrigues, 2017]



Conclusions and Future Directions
• Size matters 

– Optimize not only the network weights, but also the network size 
– Today: size = number of neurons or number of parallel networks 
– Tomorrow: size = number of layers + number of neurons per layer 

• Regularization matters 
– Use “positively homogeneous regularizer” of same degree as network 
– How to build a regularizer that controls number of layers + number of 

neurons per layer 

• Not done yet 
– Checking if we are at a local minimum or finding a descent direction 

can be NP hard 
– Need “computationally tractable” regularizers



More Information,

Vision Lab @ Johns Hopkins University 
http://www.vision.jhu.edu 

Center for Imaging Science @ Johns Hopkins University 
http://www.cis.jhu.edu 

Thank You!

http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php



