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* The learning problem is non-convex
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How is Non Convexity Handled?

* The learning problem is non-convex

min (Y, ®(X', ..., X))+ (X, .., XE)
X1, XK

— Back-propagation, alternating minimization, descent method

* To get a good local minima
— Random initialization
— If training error does not decrease fast enough, start again
— Repeat multiple times

* Mysteries
— One can find many solutions with similar objective values
— Rectified linear units work better than sigmoid/hyperbolic tangent
— Dead units (zero weights)

0




What Properties Facilitate Optimization”?

* What properties of the Architecture
network architecture
facilitate optimization? S

— Positive homogeneity et

— Parallel subnetwork
structure
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Generalization/

» What properties of the Regularization Optimization
regularization function . - . . .
facilitate optimization? '

— Positive homogeneity

— Adapt network AR
structure to the data [1] ° % e o e

Picture courtesy of Ben Haeffele

[1] Bengio, et al., “Convex neural networks.” NIPS. (2005)




Main Results

- mlr}(K (Y, d(X, ., XE) + (X . X

e Assumptions:
~ U(Y, X): convex and once differentiable in X
— ® and ©: sums of positively homogeneous functions of same degree

o(aX}), ..., aX)=aPe(X},..., X)) Ya>0

e Examples:

— RelLU: max(az,0) = amax(z,0) a>0

— Max pooling: max(axy,...,arp) =amax(ry,...,rp) a >0
— Matrix product: ( LX2) =X X2T

— Tensor product: p(X', . X)) = @ XK

— Deep neural network: qb(Xl,..., Ky = sz(- --¢2(¢1(VX1)X2) XK

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




Main Results

Optimization Theorem 1:

A local minimum such
that all the weights from
one subnetwork are zero
IS a global minimum
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[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, 15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




Main Results

Optimization Theorem 2:

If the size of the network
IS large enough, local
descent can reach a
global minimizer from
any initialization

Non-Convex Function Today’s Framework

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




e Architecture properties that facilitate optimization
— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers
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[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




Key Property #1: Positive Homogeneity

e Start with a network

Lot

X #‘ﬂt’? g’"x /
500K oY
« Scale the weights by ‘\v’f/’.\\

a > ( aX! aX? aX?

* Qutput is scaled by o, where p = degree of homogeneity
(X' X2 X°)=Y
1 2 3\ _ P
P(aX", aX*, aX’)=alY




Examples of Positively Homogeneous Maps

 Example 1: Rectified Linear Units (ReLU)
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5 Does not change

rectification

« Linear + RelLU layer is positively homogeneous of degree 1




Examples of Positively Homogeneous Maps

 Example 2: Simple networks with convolutional layers, RelLU,
max pooling and fully connected layers

max{a’zy, a2}

by 1




Examples of Positively Homogeneous Maps

« Some Common Positively Homogeneous Layers
— Fully Connected + RelLU

— Convolution + RelLLU

— Max Pooling

— Linear Layers

6(Not Sigmoids\

— Mean Pooling

— Max Out

— Many possibilities... \ /




e Architecture properties that facilitate optimization

— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers
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[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




Key Property #2. Parallel Subnetworks

« Subnetworks with identical structure connected in parallel
« Simple example: single hidden network
Subnetwork:

one RelLU
hidden unit
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* Any positively homogeneous network can be used




Key Property #2. Parallel Subnetworks

« Example: Parallel AlexNets [1]

Subnetwork:
AlexNet

N R e ERY R
e NT g 3T
E| IS - "
-y o7 193 28 2088 \ / 204 \dense
NN 13 \ | \3
| 3 e 10 i3 [dense idense|
7 3| S
3|\ 000
192 192 128 Max
048

pooling 204

[1] Krizhevsky, Sutskever, and Hinton. "Imagenet classification with deep convolutional neural networks." NIPS, 2012




e Architecture properties that facilitate optimization

— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.




Basic Regularization: Weight Decay
O(X ", X=, X7) = [ X5 + 1X°F + [ X717
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Xt x2 X
O(aX! aX? aX?) =a0(X!, X2 X?)
dlaX', aX? aX?) =ladP(X, X7, X?)

* Proposition non-matching degrees => spurious local minima
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Regularizer Adapted to Network Size

« Start with a positively homogeneous network with parallel
structure
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Regularizer Adapted to Network Size

» Take weights of one subnetwork
- Define a regularizer H(Xll,Xlz,Xf,Xf,Xf)

* Nonnegative
* Positively homogeneous with
the same degree as network

P(aX) =al|P(X)
O(aX) =laPh(X)

 Example: product of norms
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Regularizer Adapted to Network Size

O(X) = Ze(xi)

r = #f subnets

« Sum over all subnetworks

N><7
[ X457 XL T\
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NeT ST B * Allow r to vary

Vo OSKSTOSBET
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* Adding a subnetwork is
penalized by an additional
term in the sum
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* Regqularizer constraints
number of subnetworks




e Architecture properties that facilitate optimization

— Positive homogeneity
— Parallel subnetwork structure

* Regularization properties that facilitate optimization
— Positive homogeneity
— Adapt network structure to the data

« Theoretical guarantees

— Sufficient conditions for X
global optimality

— Local descent can reach
global minimizers

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ’15
[3] Haeffele, Vidal. Global optimality in neural network training. CVPR 2017.
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e Convex formulations:

Typical Low-Rank Formulations

 Factorized formulations:

min/(Y, X) + AO(X) minl(Y,UV ")+ \O(U,V)

VT

— Low-rank matrix approximation
— Low-rank matrix completion
— Robust PCA

v Convex

— Principal component analysis
— Nonnegative matrix factorization
— Sparse dictionary learning

* Non-Convex

* Large problem size
* Unstructured factors

v Small problem size

v Structured factors




Relating Convex & Factorized Formulations

e Convex formulations: Factorized formulations

min (Y, X) + A| X[ min(Y, UV +X0(U,V)

» Variational form of the nuclear norm [1 2]

(I )= min vl uvu2 ot UV =X

\’L 1

° @%%Hﬁ]rarl g?a‘né’ﬁe(lég)ion Is the projective tensor norm [3,4]

—mmZHUHuHVHU st. UV =X

[1] S. Burer and R. Monteiro. Local minima and con g n low- k md finite programming. Ma th Pro g 103(3):427-444, 2005.
[2] R. Cabral, F. De la Torre, J. P. Costeira, andA. Be U fy ar norm and bilinear factorization approaches for low-rank matrix
decomposition,” in IEEE International Conferenc C mp t r Vis! 2013 pp. 2488-2495.

[3] Bach, Mairal, Ponce, Convex sp. matri f t ti Xiv 2008

[4] Bach. Convex relaxations of structured matrix fact t arXiv 2013




Main Results: Projective Tensor Norm Case

« Theorem 1: Assume ¢ is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

. T _ .
min (Y, UV )+A§HU@HUHVZHU

such that for some i U; = V; = 0, is a global minimizer.
Moreover, UV ' is a global minimizer of the convex problem

n}}nﬁ(Y, X) 4+ A X w0

* Proof sketch:
— Convex problem gives global lower bound for non-convex problem
— If (U, V) local min. of non-convex, then UV ' global min. of convex

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML '14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Main Results: Projective Tensor Norm Case

« Theorem 1: Assume ¢ is convex and once differentiable in X.
A local minimizer (U, V') of the non-convex factorized problem

T . .
%u‘;w(y UV + )\Z Uil | Vil]

such that for some i U; = V;, = 0, is a global minimizer.
Moreover, UV ' is a global minimizer of the convex problem

min £(Y, X) + Al X,

N —

[1] Haeffele, Young, Vidal. Structured Lo wR nk Matrix Factorization: Optimality, Algorithm, and Applications to Image Pro ing, ICML 14
[2] Ha e, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Main Results: Projective Tensor Norm Case

 Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Critical Points of Non-Convex Function Guarantees of Our Framework

 Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u| V|V v

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Main Results: Homogeneous Regularizers

min (Y, UV ") + A0(U, V)
U,V
e Assumptions:
~ 4(Y, X): convex and once differentiable in X
— © : sum of positively homogeneous functions of degree 2
OU,V) = ZH(Ui, Vi), O(au,av) = a?0(u,v),Va >0
i=1

 Theorem 1: Alocal minimizer (U,V) such that for some j
U, =V, =0 isaglobal minimizer

 Theorem 2: If the size of the factors is large enough, local
descent can reach a global minimizer from any initialization

B. Haeffele, E. Young, R. Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing. ICML 2014
Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015




Example: Nonnegative Matrix Factorization

 QOriginal formulation

min ¥ - UV'|I|IZ2 st. U>0,V>0

 New factorized formulation

T(I]ll‘ﬁl Y —UV'||E + AZ Uil2|Vil2 st. U,V >0

— Note: regularization limits the number of columns in (U,V)




Example: Sparse Dictionary Learning

 QOriginal formulation

min||[V —UVT 3 st [Uills < 1, [[Villo < r

 New factorized formulation

. T2 | . .
min |y — UV ||F+AZ:\UZ\2(M!2+’VMI1)




Example: Robust PCA

* Original formulation [1]

min ||El; + A X[, st. YV =X4E
X, E

« Equivalent formulation

« New factor il _ _ lble loss)

mmHY UVTHl + )\Z Ui|2|Vil2

» New factorized formulation (with dlfferentlable loss)

: Y 2
AT |Ef + AZ Uil2|Vil2 + §HY - UV - B3

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.
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From Matrix Factorizations to Deep Learning

« Two-layer NN X1 e Rdrxr X2 ¢ R2xr

— Input: V e RV*d
— Weights: X" e R%>*"
— Nonlinearity: RelLU

output layer
input layer

P1(x) = (r)naX(:c, 0) hidden layer

“Almost’ like matrix factorization
— r=rank 1 2\ 1 INT
O(X, X)) =1 (VX)(X7)

— r =#neurons in hidden layer
— RelLU + max pooling is positively homogeneous of degree 1




From Matrix to Tensor Factorization

1 2 3
q)r(X 7X 7X) /1 } /r
& — I\—|— I\—|— —I—I\

X2 X2 X2
da d3 *X11 1 le i Xrl r
I

r |

e Tensor product ¢(X',.... X" =X'® - @ X"
is positively homogeneous of degree K

(X', X =N e(X], . X
1=1




From Matrix Factorizations to Deep Learning

X! X2 x3 X! Multilayer ReLU
Parallel Network

O(X XA X5 X

Rectified Linear Unit (ReLU)

> -3




Key Ingredient: Proper Regularization

* In matrix factorization we had “generalized nuclear norm”

—mmZHUHuHVHU st. UV =X

* By analogy we defme ‘nuclear deep net regularizer”

r

qu,g(X)—gm% O(X}, ..., XF)st. (XY, ... XF) =X
X
1=1

where 0 is positively homogeneous of the same degree as ¢
+ Proposition: {149 is convex

e Intuition: regularizer © “comes from a convex function”




Main Results

« Theorem 1: Assume ¢ is convex and once differentiable in X.
A local minimizer (X1, ..., X*)of the factorized formulation

rggl}ﬁ Yqu ...,Xf())—l—)\;é’(Xil,---aXf)

such that for some i and all k X = (s a global minimizer.
Moreover, X = ®(X*,.. XK) is a global minimizer of the

convex problem
II}}H K(Y, X) + )\Q(b,g (X)
 Examples

— Matrix factorization
— Tensor factorization
— Deep learning

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Main Results

 Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

 Meta-Algorithm:
— If not at a local minima, perform local descent
— At a local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size by 1 (add network in parallel) and continue

— Maximum r guaranteed to be bounded by the dimensions of the
network output

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Experimental Results

» Better performance with less training examples [Sokolic,
Giryes, Sapiro, Rodrigues, 2017]
— WD = weight decay
— LM = Jacobian regularizer ~ product of weights regularizer

256 samples 512 samples 1024 samples
loss #layers noregz. WD LM noreg. WD IM noreg. WD LM

hinge 2 88.37 89.88 93.83 9399 9462 9549 9579 96.57 97.45
hinge 3 87.22 8931 9322 9341 9397 9576 9546 9645 97.60
CCE 2 88.45 8845 9277 9229 93.14 9525 9538 95.79 96.89
CCE 3 89.05 89.05 93.10 9181 93.02 9532 9511 9586 97.14

[Sokolic, Giryes, Sapiro, Rodrigues, 2017]




Conclusions and Future Directions

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

e Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers




More Information,

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Thank You!



http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php



